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Improved downstream 
functional analysis of single‑cell 
RNA‑sequence data using DGAN
Diksha Pandey  & Perumal P. Onkara *

The dramatic increase in the number of single‑cell RNA‑sequence (scRNA‑seq) investigations is indeed 
an endorsement of the new‑fangled proficiencies of next generation sequencing technologies that 
facilitate the accurate measurement of tens of thousands of RNA expression levels at the cellular 
resolution. Nevertheless, missing values of RNA amplification persist and remain as a significant 
computational challenge, as these data omission induce further noise in their respective cellular 
data and ultimately impede downstream functional analysis of scRNA‑seq data. Consequently, it 
turns imperative to develop robust and efficient scRNA‑seq data imputation methods for improved 
downstream functional analysis outcomes. To overcome this adversity, we have designed an 
imputation framework namely deep generative autoencoder network [DGAN]. In essence, DGAN is 
an evolved variational autoencoder designed to robustly impute data dropouts in scRNA‑seq data 
manifested as a sparse gene expression matrix. DGAN principally reckons count distribution, besides 
data sparsity utilizing a gaussian model whereby, cell dependencies are capitalized to detect and 
exclude outlier cells via imputation. When tested on five publicly available scRNA‑seq data, DGAN 
outperformed every single baseline method paralleled, with respect to downstream functional 
analysis including cell data visualization, clustering, classification and differential expression analysis. 
DGAN is executed in Python and is accessible at https:// github. com/ diksh ap11/ DGAN.

More recently next-generation sequencing (NGS) technologies are increasingly being adopted as a versatile and 
expedient tool for an assortment of functional genomics applications including RNA-sequencing and single-
cell RNA-sequence (scRNA-seq)1. While NGS technologies continue to endure transformation of becoming a 
mainstream investigational tool at the same time the volume of scRNA-seq data has also risen dramatically over 
the last few  years2. Despite the fact that the initial pioneering investigation of scRNA sequencing was published 
more than a decade  ago3subsequent studies over the course of the decade have ameliorated several characteristics 
of capturing RNA expression at the single-cell level. Besides acquiring transcriptome-wide expression counts of 
tens of hundreds of individual cells, variability with high resolution of cellular differences, investigations also have 
decrypted the dynamics of heterogeneous cell classifications, complex tissues within the  microenvironment4,5. 
On the whole, purpose of scRNA-seq data analysis is to detect stimulating cell conditions that prevail in the 
biological samples, while cells are clustered according to cell to cell similarity within gene expression  profiles6.

Nevertheless, the increasing number of biological cells, high dropout rates and technical noise levels create 
considerable computational challenges in downstream functional analysis of scRNA-seq  data7. In addition, these 
challenges also compromise the competence to extract the plenty of information available besides suffering 
from execution time, accuracy and scalability issues. As both data volume and data complexity of scRNA-seq 
are expanding exponentially, thus more robust imputation approaches become indispensable for downstream 
functional analysis.

While technological improvements in high-throughput scRNA-seq technologies have facilitated the quantity 
of gene expressions profiles individual cells, thereby unfolding new insights at the genomic scale that were pre-
viously concealed in gene expression analysis executed by bulk RNA  sequencing8,9 conversely, scRNA-seq data 
quality is more often much less than that of bulk RNA sequencing  data10 as the former data is particularly noisy 
due to technical besides biological error. High noise levels in scRNA-seq data are largely attributed to inadequate 
RNA input in addition to low quantities of RNA that are frequently observed during the reverse transcription 
phase in scRNA-seq investigations, denoted as ‘dropouts’. Dropouts are either categorized as technical /true zero 
counts or as false negatives depending on whether or not they arise due to amplification failure of original RNA 
transcripts during the sequencing  step11. Technical/true zero counts (also called as missing values) arise due 
to genes that aren’t expressed, as opposed to false zero counts, that are caused by measurement errors. Missing 
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values are more likely to occur if gene expression is significantly high in some, but not in other identical type of 
cells. Likewise, missing values are quite frequent in scRNA-seq data attained from lower-level gene expression of 
RNA transcripts with relatively shallow sequencing  depths12. Further, incidence of missing values often hinders 
particularly downstream functional analysis of scRNA-seq  data13, including cell data visualization, cell clustering, 
classification and differential expression  analysis14.

In the recent past, a multitude of imputation models have been implemented. Data imputation models 
amongst several others such as  ScImpute15,  SAVER16,  MAGIC17,  AutoImpute18,  VIPER19,  DrImpute20 and 
 scMTD21 acquire their inputs from the entire gene set thereby attaining accurate and denoised expression esti-
mation in scRNA-seq effectively. All gene expression profiles which are not influenced by dropouts, would be 
altered by  ScImpute15,  MAGIC17 and  SAVER16, which might potentially introducing additional biases in the data 
and perhaps obliterate important biological variance based on probabilistic mixture model. By contrast, VIPER 
pertains a sparse non-generative regression model to impute zero values in gene expression levels in the cells of 
interest. Similarly, DrImpute interestedly anticipated dropouts from technical /true zeros counts more precisely 
in addition to identifying similar cells by clustering their corresponding expression values. Additionally, more 
recent development of neural network imputation models for instance  SEDIM22, GE-Impute23,  AutoImpute18, 
 DCA24,  scScope25,  scvis26,  DeepImpute27,  GSCI28 and  PBLR29, which exploits dropout layers adopting loss func-
tions besides clustering to resolve dataset patterns. The above models preferentially improved the clustering 
performance of scRNA-seq data rather than considering aspects such as classification, DEA and visualization; 
instead, they mostly focused on overcoming the sparsity problem and precisely use the bottleneck feature for 
downstream analysis. The latent features of scRNA-seq data might be distorted and noisy if hidden code is not 
constrained during the feature learning process, which is not helpful for downstream analysis.

In this study, we have proposed a stacked neural network inspired framework labelled as Deep Generative 
Autoencoder Network (DGAN) (Fig. 1). In essence DGAN is a revamped Variational Autoencoder (VAE)30 based 
imputation model intended principally for noisy scRNA-seq experimental data. DGAN mechanistically attempts 
to catalogue the real scRNA-seq data into expediently compressed subsets, thereby evolving a learning model 
of the intrinsic data distribution masked in the real data. Utilizing a sparse gene expression imputation matrix, 
here we demonstrate DGAN’s relative performance paralleled with contemporary imputation methods such as 
 DeepImpute27,  DCA24,  GSCI28, and  PBLR29. While imputation of technical zero counts significantly improved 
DGAN’s estimation efficiency, nevertheless as a means to assess the latent ability of DGAN we have chosen both 
real and imputed data as inputs. From our relative analysis DGAN exhibited significant improvements in all of 
the downstream functional analyses including visualization, clustering, classification and differential expres-
sion analysis. Additionally, with reference to performance, accuracy and memory usage we observed DGAN 
performs better.

Figure 1.  Schematic of deep generative autoencoder network (DGAN) downstream functional analysis 
pipeline for scRNA-seq data: The real input matrix ‘m’ is filtered for bad genes, normalize them according to 
library size and pruned by log transformed and scaling. The processed matrix is then fed into the DGAN model, 
which learns gene expression data depiction and reconstructs the imputed matrix. Finally, these imputed matrix 
facilitate extensive downstream analysis.
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Materials and methods
ScRNA‑seq data selection and pre‑processing. Dual archives i.e. National Centre for Biotechnol-
ogy Information Sequence Read Archive (NCBI-SRA) database the largest publicly available repository of high 
throughput sequencing data https:// www. ncbi. nlm. nih. gov/ sra and 10 × Genomics datasets https:// www. 10xge 
nomics. com/ resou rces/ datas ets were accessed manually on following customized inclusion and exclusion crite-
ria.

In accordance with the search criteria five published and publicly accessible scRNA-seq datasets (Table 1) were 
selected. The complete datasets were accepted and retained for subsequent pre-processing and representational 
downstream functional analyses. For ease of comprehension, all of the aforementioned datasets were assigned 
unique dataset tags, henceforth denoted as Karen, Zeisel and Basile, PBMC, HEK293T-NIH3T3.

Download and pre‑processing of the scRNA‑seq datasets. Prior to the pre-processing step the Fast-
q dump tool https:// rnnh. github. io/ bioin fo- noteb ook/ docs/ fastq- dump. html# fastq- dump was implemented for 
downloading sequencing reads from NCBI-SRA database and 10 × Genomics datasets. The sequence reads were 
downloaded and stored as FASTQ files. As the initial phase of pre-processing, the quality of all raw sequencing 
reads was inspected adopting FASTQC quality control tool for high throughput sequence  data36. Subsequently, 
so as to process the reads along with reference annotations, the essential gene annotations were downloaded 
for both human and mouse genomes besides transcriptome sequences from Ensemble FTP server i.e. Genome 
assembly GRCh38.p6 release 97 for human and GRCm38.p6 release 97 for mouse. Hitherto, refinement and 
interlacing of expression data in a uniform format has been executed besides rescaling for data ranges exceeding 
100 log transformation (base 2). Normalization of the expression matrices data was conducted by dividing each 
read count in each cell by its total count, and the median read count across the cells were added. In each set of 
expression matrix, the top genes with the highest variance were retained for imputation and subsequent down-
stream functional analysis. Besides reduction of dimensionality of the expression datasets, random attributes 
were too removed in the pre-processing phase.

Deep generative autoencoder network (DGAN). Characteristically autoencoders belong to self-
supervised neural networks that learn to model identity, i.e. by training itself to learn one segment of input from 
a different segment of the same input eventually both input and output are anticipated to be  identical37.

However, a key difficulty with autoencoders pertaining to generate the output data is that the bottleneck 
vector converts their inputs where their encoded vectors lie, consequently, the input may not be continuous nor 
may permit easy interpolation of the  output38.

While prior investigations have established collaborative  filtering39,40 as a probable solution in the ameliora-
tion of the problem to a certain extent, however here we have considered an adapted alternative i.e. to imple-
ment variational autoencoder based imputation to capture data distribution of noisy gene expression data and 
consequently, reconstruct a comprehensive denoised version of the same implementing DGAN.

Mathematical model development. The architecture of DGAN entails a simplified expression matrix 
m = {x1,  x2,…,  xn} as input, where cells are denoted by rows likewise genes / transcripts are represented by col-
umns. DGAN comprises three components namely a probabilistic encoder (E), a compressed bottleneck vector 
(b) and a probabilistic decoder (D). The input matrix m is thereby transformed in to a gaussian distribution 
comprising of mean ( µ ) and covariance ( σ ) by means of the probabilistic encoder (E). Moreover, the bottle-
neck vector (b) is sampled from the gaussian distribution which is in essence a compressed version of the input 
expression matrix. The probabilistic encoder (E) is denoted in the form of a mathematically expression below.

where ψ is the number of weights and biases. µ and σ are the mean and covariance respectively.
It may be noted that in the above mathematical expression, discerning sampling from a gaussian distribution 

is unattainable due to the non-existence of obligatory parameters in the mathematical expression. This is achieved 
by implementing reparameterization of the above expression which permits restructuring of the mathemati-
cal model path to the extent that the random variables are moved outer of the derivative, otherwise inherent 
randomness of these variables can lead to much larger errors. The reparametrized mathematically expression of 
bottleneck vector (b) is given below:

E = p�(m)

b = µ(m)+ σ(m)

Table 1.  List of datasets selected for representational downstream functional analyses.

Dataset tags Platform Organism No. of genes No. of cells References

Karen 10 × Genomics H. sapiens 21,193 1024 31

Zeisel STRT-Seq M. musculus 14,499 3005 32

Basile 10 × Genomics H. sapiens 18,967 2366 33

PBMC NovaSeq H. sapiens 15,223 1150 34

HEK293T-NIH3T3 10× Genomics H. sapiens M. musculus 32,545 1007 35

https://www.ncbi.nlm.nih.gov/sra
https://www.10xgenomics.com/resources/datasets
https://www.10xgenomics.com/resources/datasets
https://rnnh.github.io/bioinfo-notebook/docs/fastq-dump.html#fastq-dump
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Further, the probabilistic decoder (D) attempts to obtain the denoised version of the input matrix m from 
the compressed bottleneck vector (b), the probabilistic decoder (D) is denoted in the form of a mathematically 
expression below.

where δ is the number of weights and biases. Subsequently the probabilistic decoder (D) deploys the denoised 
version of the input matrix m.

Assessment of DGAN’s ability in predicting the outcome. Subsequent to model development and 
optimization were executed by minimizing the error function. DGAN’s error function is composed of two com-
ponents, namely (1) generative loss and (2) bottleneck loss. While generative loss equates input and output of 
the model, conversely bottleneck loss which is denoted by Kullback–Leibler divergence (KL-D)41 compares the 
gaussian distribution and the bottleneck vector, i.e. bottle neck loss specifies the similarities between the two 
distributions.

where KLD
[

p�(m)�qδ(b)
]

= Eb∼p

[

log(p�(m))− log(qδ(b))
]

DGAN implementation and hyperparameters. DGAN was executed adopting Python3 with 
 TensorFlow42 as backend. To perform imputation, we have implemented  Adam43 optimizer with hyperparame-
ters including learning cost (0.001), batch size (100), number of epoch (50), besides encoder’s dimension, hidden 
dimension, vector dimension, and decoder’s dimension. For the model development, the value of hyperparam-
eters were set as per the obligation of real dataset. Masking was introduced to manage missing, invalid/unwanted 
entries in the datasets. The hardware specification of the system configured is as follows: Intel(R) 8-core proces-
sor, 16-GB RAM, 500-GB hard drive and × 64 base system.

Relative downstream functional analysis of scRNA‑seq data. Data visualization. Data visualiza-
tion was executed by deploying the Violin plot function from the ggplot2 package in  R44. Violin plot integrates 
both box plots and histogram together to illustrate the distribution and median of data. Additionally, Violin plot 
represents data of models in terms of log of coefficient of variation. Violin plot illustrates parameters including 
interquartile range, median and whiskers that demonstrate larger interquartile ranges.

Cell clustering. For Cell clustering analysis  Seurat45 package which was implemented in R. Seurat is capable 
of predicting both spatial cell clustering and localization. For this study, Seurat was adopted for rendering the 
spatial location of the entire transcriptome besides detecting rare subpopulations within the expression matrix 
including the numerical count of genes, cells and genes expressed in each cell. Three evaluation metrics includ-
ing Adjusted rand index (ARI)46, Fowlkes mallows index (FMI)47, Silhouette coefficient (SC)48 were considered. 
ARI is a modified version of the Rand index defined by ARI = (RI − E[RI])/(1− E[RI]) , where E denotes 
expected and the R and index (RI) measures similarities between the two data clusters and ARI is an adjust-
ment for chance groupings. Likewise, FMI pertains to clustering performance metric for evaluating the cluster’s 
similarities obtained and calculated based on false negatives (FN), false positives (FP) and true positives (TP).

FMI has been explained as follows: 
√

TP
TP+FP .

TP
TP+FN

To conclude, the silhouette score was adopted to estimate the mean silhouette coefficient with a range between 
-1 and 1 and the mean of intra-cluster (x) and nearest-cluster distance (y) as 

(

y − x
)

/max
(

x, y
)

 was calculated.
Non-linear dimension reduction methods, such as Principal Component Analysis (PCA)49, t-Distributed 

Stochastic Neighbor embedding (t-SNE)50 and Uniform Manifold Approximation and Projection (UMAP)51 
predominantly intend at grouping similar cells in a low-dimensional space. Subsequently, Cluster identifica-
tion was executed in the following stages (1) normalizing and scaling of data (2) linear dimension reduction by 
PCA (3) calculating the dimensionality of datasets and (4) clustering of cell subpopulations applying Louvain 
algorithm optimization.

Classification. We implemented multi-class classifiers to classify scRNA-seq data into different  categories52. 
Both linear and non-linear models were considered for classification including Logistic Regression (LR)53, Sup-
port Vector Machine (SVM)54, Random Forest (RF)55, Naive Bayes (NB)56, K-Nearest Neighbor (KNN)57, Deci-
sion Tree (DT)58 and Gradient Boosting (GB)59. Subsequent division of the input gene expression matrix data 
into training and testing data all the aforementioned classification algorithms were implemented. As part of each 
analysis scenario, dataset was divided into 70% training and 30% testing in classification model. Training data 
were used to determine the most effective composition of hyperparameters by the grid-search manner and to 
estimate their performance, while independent predictors were based on testing data.

While plenty of metrics such as accuracy, recall, confusion matrix, precision, F1-score and ROC curve prevail 
two most frequently implemented metrics namely accuracy and AUC-ROC curve were implemented. While 
accuracy measures how often the classifier correctly predicts, i.e. the proportion of true results among the total 
number of cases examined. Consequently, both accuracy and Area Under the Curve- Receiver Operating Charac-
teristic (AUC-ROC) curve was considered for the model’s classification performance evaluation  metrics60. Based 

b = µ+ σ ∗ ǫ; sample ǫ from N(0, 1)

D = qδ(b)

em(� , δ) = −KLD
[

p�(m)�qδ(b)
]

+ Ep�(m)

[

log(qδ(b))
]
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upon the confusion  matrix61, we calculated true negative (TN), TP, FN, and FP and then computed accuracy 
was calculated as follows:

where number of correct predictions was calculated as [TP + TN] and total number of predictions was calculated 
as [FN + FP + TN + TP].

AUC-ROC curve was implemented to visualize the multi-class classification model performance. ROC curve 
was designed by plotting True Positive Rate (TPR) on the y-axis and False Positive Rate (FPR) on the x-axis.

Differential gene expression analysis. Differential gene expression (DGE) analysis is one of the most detailed 
methods to identify dysregulations of gene/transcript under different subpopulations or cell  types62. DGE analy-
sis was adopted utilizing a negative binomial generalized linear model  DESeq263. Read count data in the form 
of matrix were programmed as input for DESeq2 package. The raw counts were normalized implementing size 
factors and the estimated gene-wise dispersions were contracted to generate more accurate estimates of Log2 
Fold Change (Log2FC) for the model adopting Wald test.

As a result, a matrix of differentially expression genes was generated encompassing Log2FC, basemean, 
adjusted values (padj) and pvalue. For visualization of the topmost differentially expressed genes (DEG) identi-
fied by DESeq2 in R, we have implemented a scatter  plot64 to exhibit the correlation between numeric variables, 
a whisker  plot65 to display the summary of the dataset and a  heatmap66 to graphically represent the selected 
(DEG) in an assortment of colours.

Results
Enhancement in visualization of imputed data. In order for an imputation to be equitable, the gene 
expression should be reduced within subpopulations. We scrutinized cellular gene expression variance from a 
randomly selected Basile dataset. The gene expression levels are displayed via violin  plot44 that include a marker 
for the median and as in a normal box plot, the box indicates the interquartile range, which allow users to 
compare how each gene is expressed across a wide range of diverse cellular subtypes and determine its kernel 
probability density easily. A reasonable DGAN imputation done on real dataset to recover the expressive tran-
scriptome dynamics in biological single cells. It was found that DGAN and  GSCI28, the variance in gene expres-
sion within subpopulations has almost been stabilized for  Basile33 performs better than all imputation methods 
except  DeepImpute27,  DCA24 and  PBLR29 in Fig. 2. It depicts the summary statistics and the peak density of each 
variable of Basile for all comparative models. It found that DGAN gives a reasonable improvement in coefficient 
of variation. More outlier has been seen in  DeepImpute27,  DCA24 and  PBLR29 likened with DGAN model which 
clearly indicates our DGAN model removed the noise data present in input scRNA-seq data. Similarly, the gene 
expression levels of the other datasets with DGAN model are included separately in Fig. S1.

Denoising improved in clustering analysis. Dropouts and missing values are a key concern in large 
scRNA-seq datasets including those attained from whole tissues. Besides resulting in inappropriate expression 
 levels67 dropouts and missing values also cause hassle in clustering of the data as most clustering algorithms are 

Accuracy =
Number of correct predictions

Total number of predictions

Figure 2.  Violin plot depicting real and imputed data of Basile dataset attained from implementing all 
paralleled models in terms of log of coefficient variation computed for individual genes across the cells. The 
interquartile range is represented by the box, in addition the median is represented by horizontal line and 
whiskers demonstrate larger interquartile ranges.
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vulnerable. To investigate this problem, the impact of denoising on clustering were examined. While clustering 
of real data is inherently difficult due to noisiness of data therefore, we executed clustering evaluation metrices 
on imputed data to define the robustness and effectiveness of paralleled methods. A systematic comparison of 
denoising attained by DGAN as compared to  DeepImpute27,  DCA24,  GSCI28 and  PBLR29 is enclosed in Table S1. 
To obtain gene expression projections using t-SNE50 as observed it gives better visualization than  PCA49 and 
 UMAP51, we compared the  Karen31 dataset having 21,193 genes and 1024 cells with different selected denoised 
models, and clustered the cells using the Louvain algorithm as shown in Fig. 3A. Through visualization, the 
clusters obtained from  DeepImpute27,  DCA24and  PBLR29 methods were mixed with each cluster where DGAN 
separated the four clusters clearly. Although  GSCI28cope to split numerous cell clusters, its dispersion of data in 
Fig. 3A is highly distorted. Moreover, the precision of clustering assignments has been calculated using numer-
ous evaluation metrics counting the Adjusted Rand Index (ARI)46, the Fowlkes-Mallow Index (FMI)47, and Sil-
houette Score (SC)48 to exam t-SNE50 clusters (Fig. 3B). On the divergent,  DeepImpute24,27 and  DCA24 decrease, 
rather than improving the clustering outcome. As shown in Fig. 3B, DGAN attained 0.92, 0.89 and 0.71 for ARI, 
FMI and SC values. These results are better than the results achieved by  DeepImpute27,  DCA24,  GSCI28 and 
 PBLR28. Based on the evaluation metrics, DGAN achieves virtually perfect scores for ARI, FMI, and SC which 
is significantly higher than the other models. Although both  DeepImpute27 and  PBLR28 have a small amount of 
cells varied together, DGAN clearly separates four types of cells. The real data can’t parse out the cells. In both 
clustering and metrics methods DGAN outperforms than other.

Figure 3.  Clustering analysis; (A) Representative visualization of clusters determined by t-SNE 2D visualization 
method for pre-imputed (Real) Karen scRNA-seq dataset. Imputed matrix via DeepImpute, DCA, GraphSCI, 
PBLR and DGAN. The cells colours are assigned according to their cell groups. (B) ARI, FMI, and SC signify 
clustering evaluation performance of scRNA-seq data of DeepImpute, DCA, GraphSCI PBLR and DGAN 
respectively.
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Retrieval of mRNA signals in scRNA‑seq real data. Another important factor to appraise the cluster-
ing techniques is their capability to recuperate mRNA gestures in real scRNA-seq data set to show improvisa-
tion of clustering with DGAN. Therefore, we have chosen other two different real scRNA-seq datasets named 
 Zeisel32 and HEK293T/NIH3T335 with different number of cell counts and sequencing protocols used for our 
method for clustering structures. We tested the visualization performance of DGAN along with three non-linear 
dimension reduction techniques, including  PCA49, t-SNE50 and  UMAP51 together in Seurat  package45. For this 
analysis, we compared the clustering results of both real and DGAN dataset in Fig. S2(A) to (C). While identify-
ing the dimensionality of the dataset, extract the significant principal components (PCs) with higher standard 
deviation which help to find which cells exhibit similar expression patterns for clustering and resolution. With 
all datasets, a parameter resolution in Seurat setting between 0.6 and 1.2 produces good outcomes. However, 
increasing the resolution increases the number of clusters. Cells are color-coded according to their PCA scores 
for each respective PC during cell visualization. The Fig. S2(A), (B), (C) of  Karen31 DGAN,  Zeisel32 DGAN and 
HEK293T/NIH3T335 DGAN shows data representation clearly, which consists of cells of the same type grouped 
together and of the different types separated from each other, along with we discovered that it has a good num-
ber of markers which could be used for further downstream analysis. On the other hand, in Fig. S2(A), (B), 
(C) of real data we can observe that most cells are overcrowded, low quality, and overlapping. Also, the overall 
result was undesirable since the cells of different types did not compactly cluster together and therefore could 
not provide better visualization in the dataset. In overall, the DGAN disentangles many clusters, leading in the 
most enhanced clustering metrics compared with the scenario without DGAN. According to the experimental 
results of each datasets in clustering analysis, we found that for  Karen31 our model has better outcome than other 
dataset.

Improvisation of cell classification in scRNA‑seq datasets. In order to prove our method’s principle 
and investigate its properties, we tested the classification on imputed scRNA-seq data generated using different 
imputation models such as  DCA24, GSCI,  PBLR28,29 and our DGAN.  DeepImpute27 was excluded from the com-
parison, due to insufficient processing time and memory.

To examine DGAN’s classification ability, we compare it with seven methods that are predominant in machine 
learning: Logistic Regression (LR)53, Support Vector Machine (SVM)54, Random Forest (RF)55, Naive Bayes 
(NB)56, K-Nearest Neighbor (KNN)57, Decision Tree (DT)58 and Gradient Boosting (GB)59. We tested these 
methods on  Zeisel32 dataset. In this 3005 cells and 14,499 genes were profiled from the STRT-Seq platform. The 
scalability and robustness of DGAN were demonstrated on the large-scale scRNA-seq dataset by applying all 
four imputation models. As part of each analysis scenario, our dataset was divided into 70% training and 30% 
testing in classification model. Based on training data, optimal hyperparameters have been identified and their 
performance has been estimated, while independent predictors were based on testing data. To optimize the 
classification model performance evaluation  metrics60 should be calculated. There are plenty of metrics such as 
accuracy, recall, confusion matrix, precision, F1-score and ROC curve but in this analysis we have applied most 
frequently used accuracy and AUC-ROC curve.

Figure 4A and Table S2 show the accuracy of each method. Accuracy measures how often our classifier 
correctly predicts, it is the proportion of true results among the total number of cases examined. Model with 
accuracy rate of 99% considered a good model and vice versa. Overall, DGAN has an accuracy of 0.90 to 1.0 
across all combinations. With the highest accuracy, DGAN outperforms all other methods. DGAN’s average 
accuracy is 0.96 compared to 0.77, 0.87, 0.89, and 0.85 for real, DCA, GSCI and PBLR respectively. Furthermore, 
the performance of DGAN is consistent, in contrast to existing models, which are not consistently accurate, 
particularly when the training dataset is considerably larger than the testing dataset. AUC-ROC curve of all 
mentioned methods with  Zeisel32 dataset are shown in Fig. 4B. It defined how well the probabilities from posi-
tive classes are separated from negative classes for a range of different cut-off points. Given that the decision 
threshold under AUC default 0.5 suggest that the classifier is not able to distinguish between positive and nega-
tive classes whereas higher the threshold upto 1, better the performance of the model. As a result, it is evident 
that AUC-ROC score is higher for DGAN (Fig. 4B) compared to other models. As we can see, AUC-ROC for 
DGAN is the better model to distinguish the cells by covering the larger area whereas other models are struggle 
to distinguish, the blue line shows the threshold means the classifier predicts either constant or random class 
for whole data points. In Fig. 4B for PBLR model, the  SVM53,54 and  LR53 values fall below the blue line, similar 
behaviour observed for DCA model.

DGAN enriched classification over scRNA‑seq real data. To assess the performance of DGAN over 
different classification algorithms, we experimented on two more scRNA-seq datasets,  PBMC34 and  Karen31 and 
compared their real and DGAN datasets through mentioned seven classification algorithms. Figure S3 shows 
the accuracy score of classification algorithms executed on above declared real datasets and its DGAN data. By 
comparing the real over DGAN datasets (Fig. S3) (Table S3), it clearly seen that classification algorithms gives 
better accuracy results for DGAN data with range of 0.9 to 0.92. In addition, Random Forest (RF)55 outperforms 
other algorithms by having the highest accuracy for DGAN dataset. The average accuracy of DGAN dataset 
covering all classification methods is close to 0.92, whereas for real dataset is 0.79. Moreover, an ensemble voting 
of tools on  PBMC34 DGAN data presented a slightly better accuracy, which provide a new thought to correctly 
classify single cells with high similarity.

To investigate more on accuracies, we performed the ROC analysis to evaluate whether the classification 
capabilities of tools are diverse for different cell types. AUC-ROC curve of all methods for two real and DGAN 
dataset are shown in Fig. S4(A) and S4(B) for  PBMC34 and  Karen31dataset. As a result, it is evident that AUC-
ROC score is higher for  PBMC34 and  Karen31 DGAN data compared to their real datasets. Furthermore, Random 
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Forest (RF)55 topped algorithm for DGAN data among its competitors having on average decision threshold 
of 0.9. Among three used datasets,  Zeisel32 gives good metric under ROC curve. As an inference, based on 

Figure 4.  (A) The performance graph is of Zeisel dataset where individual colour bars represent different real 
data and imputed data from DCA, GSCI, PBLR and DGAN models. (B) AUC-ROC measurements of various 
classification algorithms. AUC-ROC measurements of imputation built on different models and individual line 
colours representative of different algorithms.
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evaluation metrics the classification underwent a greater improvement when using DGAN model rather than 
imputation model.

Imputation and convalescent gene expression of scRNA‑seq data. DGAN can’t only impute in 
scRNA-seq data effectively, but also enhance differential expression analysis (DEA). To assess whether DGAN 
can identify DEGs more accurately after imputation of scRNA-seq dataset compared to  DeepImpute27,  DCA24, 
 GSCI28, and  PBLR29. These models were applied on healthy donor dataset  PBMC34 extracted from NovaSeq 
including 15,223 genes and 1150 cells and performed DEA on the real versus imputed data correspondingly 
using  DESeq263 package. DESeq2 uses an empirical Bayesian approach to integrate dispersion and fold change 
estimates, and use the Wald test to determine DEGs based on the assumed log-normal distribution for each 
gene. There are plenty of visualization method for DESeq2, out of those we selected whisker  plot65 as it gives 
more information about the outliers. The plot (Fig. 5 and Table S4) depicts the Log2FC, pvalue as usual loga-
rithmic value of the gene covariance across cell subtypes using  PBMC34 data across all the imputation model 
including our DGAN. The whisker plot measures the probability of the data being well distributed by dividing it 
into three quartiles minimum, maximum, median where first quartile, and three quartile are identified. In Fig. 5 
some distribution for models such as  DeepImpute27,  DCA24,  GSCI28 and  PBLR29 are widely spread around the 
medium values in addition there are more data points beyond the limit of minimum and maximum values iden-
tified as triangle with green colour is treated as outlier unlikely in DGAN, data is closely distributed and most of 
the data points fall within the limits.

Data‑driven differential expression analysis with DGAN. For determining whether DEGs identifi-
cation after imputation is more accurate, we used more two scRNA-seq datasets such as  Basile33 and  Zeisel32 with 
DGAN outcomes and compared the available statistical techniques for differential expression analysis (DEA) 
to produce biologically precise results. The visualization of these datasets through DESeq2 package achieved 

Figure 5.  Performance of DGAN on large-scale dataset, whisker plot of gene expression for log2FC and pval by 
differential expression analysis using PBMC data with different models.
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by regularized logarithm transformation tools, namely scatter plot, whisker plot and graphical heatmap in 
Fig. S5(A) to (C). We compared the performance of above methods on real and DGAN dataset which help to 
find the topmost differential expression marker genes. An effective multivariate visualization technique, scatter 
plot matrix, which plots read count distributions across all samples and genes. We plotted Log2FC, pvalue and 
padj for presenting discrete observations.

As compare to real data, in DGAN data most genes should fall in the 3D space within default threshold as we 
expect only a small proportion of them to show differential expression between samples are shown for  PBMC34, 
 Basile33 and  Zeisel32 DGAN in Fig. S5(A) to (C). The  scatter65 plot for DGAN data display a higher correlation 
among the three numerical variable. A set of data variable is distributed over the scatter plot for real but appears 
to cluster for DGAN. Moreover, we applied whisker plot in both real (Basile and Zeisel) and with its DGAN 
data respectively and observation is like seeing less outliers for DGAN data compared to real data of selected 
dataset in Fig. S5(B) and (C). Coming to the last DESeq2 visualization tool, to determine subcategories within an 
experiment, it is often helpful to plot the DEGs as a  heatmap66 where colors are used for graphical representation, 
which allows us to visualize features and samples simultaneously. Using DESeq2, we examined the differential 
expression of genes after removing low expression genes with threshold of fold change ≥ 0.02 between cells, 
alongside with a p value ≤ 0.05 after padj correction.

From Fig. S5(A) to (C), the DEGs in each group were visualized along with all parameters using heatmap with 
real and DGAN data. Then, we likened differences in real gene expression upon DGAN dataset, it is perceived 
more common values or higher activity with brighter colour is more with DGAN data correspond to real data, 
where darker colour indicates less expressive genes. The platter of heatmap related to DGAN data of  PBMC34 
and  Basile33 has darker shade than DGAN data of  Zeisel32. All together, these results show that DGAN allows 
for an advance in downstream DESeq2 functional analysis based on real and DGAN data.

Discussion
Besides alleviating computational complexity, imputation efficacy considerably influences downstream functional 
analysis especially when dropout levels are particularly high as is the case with droplet-based  technologies68. The 
larger the proportion of missing values, the more demanding the imputation task. However, scRNA-seq technol-
ogy opens up many possibilities for single-cell resolution analysis using deep learning  algorithms69. Inspired by 
the recent success of artificial neural networks, we proposed an imputation model based Variational Autoen-
coder, the DGAN model. Our model focused on estimating patterns of gene expression levels in individual cells 
by projecting expression profiles into a low-dimensional bottleneck vector, and has advantages in downstream 
functional analyses, including visualization of gene expression landscapes, clustering of cell types, cell classifi-
cation and differential expression analysis. Unlike existing Autoencoders and statistical impute models such as 
 DeepImpute27,  DCA24,  GraphSCI28,  PBLR29and  SAVER16,  scImpute15 and  scMTD21 that was developed for data 
imputation and with a drawback of not applying Gaussian distribution in the bottleneck  vector70, DGAN pro-
vides a complete analysis pipeline from pre-processing to dimension reduction to imputation and downstream 
analysis. The existing imputed methods show limited number of functional downstream analysis. To our finest 
knowledge, this is the first attempt to inherently distribute scRNA-seq data by applying gaussian distribution 
along with reparameterization technique in bottleneck vector of neural network framework for imputation and 
downstream functional analysis using implementing a state-of-the-art deep learning approach. Additionally, 
DGAN is essentially "buoyant" i.e. model trained with a subset of input data, nevertheless still could make out 
decent predictions, which is in a way beneficial, as it can further reduce the overall execution time. As an alter-
native, DGAN assumes only those dropout entries that are most likely to occur across cells based on a mixture 
model. However, because of the non-linear relationships and including structures, the scRNA-seq datasets cannot 
be learned by models such as  scMTD21 and  SAVER16. A given data distribution assumption is normally used 
for above statistical models and scImpute, in case of non-conformance, the completion effect will be degraded.

An important aspect of DGAN is that it is scalable, which makes it more realistic and feasible for large-scale 
variational inference datasets. DGAN is a statistically generative model while other comparable models can be 
considered to be compressor and decompressor models. In addition to single point modeling, DGAN has several 
additional parameters to tune to better fit our latent space (probability distribution). DGAN represents latent 
variables with detangled factors due to their isotropic Gaussian priors, which allow each dimension to grow as far 
away from each other as possible. As well as regularizing the effect of the prior, DGAN also adds a regularization 
coefficient. Further, as paralleled with other imputation models DGAN offers a comprehensive analysis pipeline 
starting off with pre-processing, dimensionality reduction, imputation and follow-up downstream functional 
analysis including visualization, clustering, classification, and differential expression analysis. Based on these 
results, it is clear that DGAN is an extremely effectual and accurate method for imputation, which is likely to 
remain applicable for the foreseeable future due to scRNA-seq data volume growth. Five real scRNA-seq datasets 
were imputed implementing the DGAN model and the performance of the model was evaluated with various 
downstream functional analyses as compared with other contemporary  models71. To test the reliability of our 
model, we randomly nominated three datasets for each functional downstream analysis and while comparing 
with other imputation models, we arbitrarily selected only one dataset from above three. Also, selected only 
those visualization method for DGAN and its other comparative models from each downstream analysis which 
gives better conception about dataset such as t-SNE50 for clustering, AUC-ROC for  classification52 and whisker 
 plot65 for differential expression analysis. As a result, DGAN achieves the better imputation visualization with 
 Basile33 data over other persisting models in Fig. 2 and Fig. S1. Real data also poses alternate challenge as clus-
tering would be problematic due to noisiness and the absence of ground truth. Hence, we evaluated competitive 
methods using clustering evaluation metrics to describe their effectiveness and robustness, as well as visual-
ized the results to make them more comprehensible. Indeed, GE-Impute23 and  SEDIM22 are the most recently 
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published imputation models for scRNA-seq data analysis. While GE-Impute is based on graph embedding neural 
network model, SEDIM proposed an automatic design of deep neural networks architecture. Both the models 
perform imputation, yet they are diversified from DGAN over the algorithms adopted, still we have attempted 
to compare the clustering efficiency evaluation metrics. Since existing scRNA-seq imputation methods focus 
on identifying cells or genes that are similar, they rarely consider gene–gene relationships and correlations into 
account, making it impossible to retain biological variation across cells or genes. Clustering downstream analysis 
is ubiquitous amongst DGAN, GE-Impute and SEDIM, as with evaluation performed based on ARI and UMAP. 
GE-Impute and DGAN performed almost analogously with ARI of 0.9323 and 0.92 respectively, whereas SEDIM 
performed relatively not as much of with 0.7322. In Addition, UMAP clusters seems to be clearly separable in 
DGAN compared with above models. Based on Fig. 3A,B we found that t-SNE50showed better outcomes and 
the performance of DGAN is consistently improved with a variety of clustering approaches. Moreover, using 
a single set of hyperparameters, DGAN imputed data achieves the highest accuracies and AUC-ROC score of 
classification model, amidst existing model,  GSCI28 surpassed and its score lie to DGAN where Random  Forest55 
outperform as compared to different machine learning methods in Fig. 4A,B. Alternative noteworthy aspect 
of our verdicts is the biological relevance of topmost gene expression levels between experimental datasets. To 
find the topmost gene expression levels with different datasets, we performed differential expression analysis 
using Bayesian approach for each datasets (Fig. 5). In addition to that, the results were visualized in three dif-
ferent methods, namely scatter  plot64, whisker  plot65and  heatmap66 graphical representation of colours. The 
DGAN data come out as centred, garner, less skewness in scatter plot, with negligible outliers in whisker plot 
and topmost marker genes in heatmap. As gene expression levels increase in scRNA-seq data, DGAN has been 
perceived to improve a higher number of noisy events than other imputation models and superior enhancement 
in downstream functional analysis.

Conclusion
An ever-increasing amount of dropout cells and technical noise, all of which characterize high-throughput 
scRNA-seq data, pose important challenges in downstream functional  analysis70,72. Dealing with very sparse 
expression matrices compromises the accuracy and scalability of the analysis and severely obstruct our ability 
to extract the vast amount of usable information from single-cell data. However, scRNA-seq technology opens 
up several possibilities for single-cell resolution analysis using deep learning  algorithms73. Inspired by the recent 
success of artificial neural networks, we have proposed an imputation model based Variational Autoencoder, 
dubbed DGAN model. Our model focused on estimating patterns of gene expression levels in individual cells 
by projecting expression profiles into a low-dimensional bottleneck vector, and has rewards in downstream 
functional analyses, including visualization of gene expression landscapes, clustering of cell types, cell clas-
sification and DEA. As far as we know, this work is one of a kind and probably the first to inherently distribute 
scRNA-seq data in an artificial neural network framework for imputation and downstream functional analysis 
implementing a state-of-the-art deep learning approach. More importantly, extensive comparative investigations 
were performed on diverse scRNA-seq datasets to demonstrate the influence of our method as compared to con-
temporary state-of-the-art methods. While our focus was set on single-cell analysis, it is our modest opinion that 
with minor amendments DGAN could be implemented for a wide range of high-throughput data applications.

Based on our experimental outcomes, DGAN is a proof-of-concept demonstration that bias could be elimi-
nated adopting a standard matrix recovery method combined with downstream functional analysis besides 
signifying scRNA-seq pipeline can be integrated seamlessly.

Data availability
All the raw ScRNA-seq datasets have been retrieved from NCBI Sequence read archive (SRA) and the 
10 × Genomics webpage. Two of them  (PBMC31 and HEK293T-NIH3T3) were taken from 10 × Genomics that 
is  PBMC34 https:// www. 10xge nomics. com/ resou rces/ datas ets/ 10-k- pbm- cs- from-a- healt hy- donor-v- 3- chemi 
stry-3- stand ard-3- 0-0 and HEK293T-NIH3T335 https:// www. 10xge nomics. com/ resou rces/ datas ets/1- k-1- 1- 
mixtu re- of- human- hek- 293-t- and- mouse- nih-3- t-3- cells-3- v-3- 1-3- 1- stand ard-6- 0-0. Other three datasets were 
downloaded from NCBI SRA such as  SRP24763131 https:// www. ncbi. nlm. nih. gov/ Traces/ study/? acc= PRJNA 
60537 3&o= acc_s% 3Aa,  SRP04545232 https:// www. ncbi. nlm. nih. gov/ Traces/ study/? acc= PRJNA 25809 4&o= 
acc_s% 3Aa and  SRP26097833 https:// www. ncbi. nlm. nih. gov/ Traces/ study/? acc= PRJNA 63151 2&o= acc_s% 3Aa.
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