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Mind evolutionary algorithm 
optimization in the prediction 
of satellite clock bias using the back 
propagation neural network
Hongwei Bai 1,2*, Qianqian Cao 3 & Subang An 2

Satellite clock bias is the key factor affecting the accuracy of the single point positioning of a global 
navigation satellite system. The traditional model back propagation (BP) neural network is prone to 
local optimum problems. This paper presents a prediction model and algorithm for the clock bias of 
the BP neural network based on the optimization of the mind evolutionary algorithm (MEA), which 
is used to optimize the initial weights and thresholds of the BP neural network. The accuracy of the 
comparison between clock bias data is verified with and without one-time difference processing. 
Compared with grey model (GM (1,1)) and BP neural network, this paper discusses the advantages 
and general applicability of this method from different constellation satellites, different atomic clock 
type satellites, and the amount of modeling data. The accuracy of the grey model (GM(1,1)), BP, and 
MEA-BP models for satellite clock bias prediction is analyzed and the root mean square error, range 
difference error, and the mean of the clock bias data compared. The results demonstrate that the 
prediction accuracy of the three satellites significantly increased after one-time difference processing 
and that they have good stability. The prediction accuracy of four sessions of 2 h, 3 h, 6 h, and 12 h 
obtained using the MEA-BP model was better than 0.74, 0.80, 1.12, and 0.87 ns, respectively. The 
MEA-BP model has a specific degree of improvement in the prediction accuracy of the different 
sessions. Additionally, the prediction accuracy of different models has a specific relationship with 
the length of the original modeling sequence, of which BP model is the most affected, and MEABP is 
relatively less affected by the length of the modeling sequence, indicating that the MEA-BP model has 
strong anti-interference ability.

The global navigation satellite system (GNSS) is a wireless signal propagation-based radio navigation and posi-
tioning system that provides navigation, positioning, and timing services1. The influence of time bias cannot be 
ignored among other factors affecting the accuracy of navigation and positioning2. The time bias of 1 ns, which 
corresponds to a 3d m distance bias, significantly affects the positioning accuracy of the navigation system3. 
High-precision time systems are crucial for satisfying users’ needs for centimeter positioning4. The accuracy 
of real-time dynamic positioning is improved because of the prediction of satellite clock bias, which is helpful 
for obtaining the historical information required by satellite autonomous navigation5. To improve the real-time 
positioning accuracy, the accuracy and timeliness of satellite clock bias data must be urgently resolved.

Several models are currently available for predicting satellite clock bias, including the polynomial model, the 
grey model (GM)6, the quadratic polynomial (QP)7 model, the autoregressive moving average model (ARMA)8, 
the spectral analysis model9, the kalman filter model10,11, the wavelet neural network model12, and the empirical 
mode decomposition-support vector machine (EMD-SVM)13. Because the satellite clock is easily affected by 
its external environment and complex characteristics, the satellite clock bias presents nonlinear characteristics, 
making it challenging for the linear prediction model to accurately represent the change in bias. However, neural 
networks are more sensitive to nonlinear problems and can overcome the limitations of conventional models for 
more accurate predictions. Reference14 proposed the genetic algorithm back propagation model (GA-BP). The 
optimized BP neural network is used to make short-term prediction of BDS clock bias, and the results show that 
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its accuracy is better than that of the BP neural network and GM (1,1) model, which shows the feasibility and 
effectiveness of genetic algorithm optimizing BP neural network for clock bias prediction. However, the optimiza-
tion model is not used for medium and long term clock error prediction. Reference15 proposed a wavelet neural 
network model based on one-time difference and found that, compared with IGU-P clock products, the average 
prediction precision for 6, 12, and 24 h was improved by approximately 13.53, 31.56, and 49.46%, respectively. 
Reference16 proposed that the number of hidden layer nodes of the elm network is adaptively adjusted using the 
concept of an art network and that the prediction accuracy is better than both the quadratic polynomial model 
and GM in the prediction of 30 days. Reference17 proposed that the average prediction errors of the nonlinear 
autoregressive model with exogenous input recurrent neural network (NARX) in the 6 h and 24 h of the proposed 
method for all four clocks are equivalent to 23.2%, 17.9%, 36.6%, 16.6%, 20.3%, and 12.5% of the prediction 
error than those for the three commonly used models. Reference18 proposed that the improved back propaga-
tion (BP) neural network optimized by heterogeneous comprehensive learning and the dynamic multi-swarm 
particle swarm optimizer (HPSO-BP) model and its prediction performance is superior to traditional models. 
Compared with the traditional linear polynomial (LP) model, QP model, GM (1,1) model and ARMA model, 
the prediction precision can be improved by more than 80%. Reference19 used the wavelet neural network to 
predict the BeiDou satellite clock offset The experimental results show that the prediction accuracy of 6 h can 
reach 1–2 ns, and the prediction accuracy of 24 h can reach 2–4.6 ns, which is better than the traditional quadratic 
polynomial model and grey model. However, the improper selection of wavelet basis function in the network will 
affect the prediction accuracy, and the initial parameters of the wavelet neural network are randomly selected. 
Reference20 constructed a combined prediction model of grey model and BP neural network model to predict 
satellite clock bias, and the prediction result was better than that of two single models. However, the BP neural 
network has shortcomings such as slow convergence speed and easy falling into local optimum, which affects 
the final convergence accuracy.

Although the BP neural network has good adaptability, robustness, and associative memory function, it 
easily falls into local optimization during the process, and the convergence speed is slow, which affects the final 
convergence accuracy21,22. Because of the characteristics of satellite clock bias and the limitations of the BP neural 
network, the good global search ability and strong convergence of the mind evolutionary algorithm (MEA) are 
used. Reference23 proposed a BP neural network clock bias prediction model and algorithm optimized by MEA. 
The prediction performance of the new model is better than that of the three traditional models. However, there 
is no in-depth study on different consistency satellites, different atomic clock type satellites, or the amount of 
modeling data. In this study, the MEA is introduced to optimize the weight and threshold value required by 
the BP neural network, and a clock bias prediction model based on MEA-BP neural network is established. The 
satellite clock bias data are processed using a one time difference, after which the data are used for modeling and 
the advantages and general application of this method from different construction satellites, different atomic 
clock type satellites, and the amount of modeling data are discussed. Following this, the new one time difference 
is predicted, and the one-time difference is restored to obtain the predicted clock bias data.

Materials and methods 
One time difference processing.  In the two adjacent epochs before and after, the same satellite’s clock 
bias data vary slightly, indicating an overall linear trend. The BP neural network is well suited for use with 
nonlinear data and is not sensitive to the original clock bias data sequence. As the prediction accuracy will be 
impacted when the BP neural network forecasts the unprocessed data, this study put the original clock bias data 
through difference processing and transformed the phase data into frequency data. These processed data have 
good nonlinear characteristics and are suitable for neural network modeling and prediction. A set of n-dimen-
sional satellite clock bias sequences is defined as follows:

where x(i), i = 1, 2, 3, . . . n represents the clock bias data of the different epochs. By making a difference between 
the data of adjacent epochs, a new one time difference clock bias data sequence is obtained. This sequence is 
defined as follows:

Among �x(i) = x(i + 1)− x(i).

GM (1,1) model.  Create the differential equation of the GM(1,1) model as follows:
Set the original number sequence as X0 = [x0(1), x0(2), . . . , x0(n)] . Under the initial conditions, the approxi-

mate solution of the differential equation can be obtained as

Among k = 1, 2, . . . , n.
Parameter estimation b̂ =

[

â û
]T can be solved by the least square principle, and the satellite clock bias of the 

prediction epoch can be obtained by substituting the obtained parameters into the above Eq. (3). However, the 

(1)X = {x(1), x(2), x(3), . . . x(n)},

(2)�X = {�x(1),�x(2),�x(3), . . . �x(n− 1)}

x̂(1)(k + 1) =

[

x(0)(1)−
b

a

]

e−ak+
b

a
, k = 1, 2, . . . , n, the predicted value of x̂(0)(k+ 1) is

(3)x̂(0)(k + 1) = x̂(1)(k + 1)− x̂(1)(k) = (1− ea)[x(0)(1)−
u

a
]e−ak
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GM(1,1) is vulnerable to the influence of exponential parameters. As it will enter local optimization, the accuracy 
of the satellite clock bias is poor when solving the parameters using the least square method.

BP neural network model.  A BP neural network is a multilayer feedforward neural network with error 
back propagation, including input, hidden, and output layers. The neuron state of each layer only affects the neu-
ron state of the next layer24. If the output layer cannot obtain the expected output, it will switch to back propaga-
tion and adjust the network weight and threshold value according to the prediction bias, so that the prediction 
output of the BP neural network continues to approach the expected output25. The topology of the BP neural 
network is shown in Fig. 1.

In Fig. 1,x1, x2, . . . , xn are the input values of the BP neural network.y1, y2, . . . , ym are the prediction values 
of the BP neural network, and wij and wjk are the weights of the BP neural network.

The hidden layer of the BP neural network can have multiple layers, and the hidden layer is set as five layers 
in this study. During the training process, calculate hidden layer output H as follows:

where l  is the number of hidden nodes, f  is the hidden layer activation function, and the activation function 
adopts sigmoid function.

According to the output H of the hidden layer, connect the weight value wjk and the threshold value b , and 
calculate the predicted output O of the BP neural network.

Calculate network prediction error according to network prediction output O and expected output Y .

Update the network connection weights, wij and wjk , according to the network prediction error e.

where η is the learning rate.
Update network node thresholds a and b according to the network prediction error e.

Mind evolutionary algorithm.  Chengyi et al. 1998 proposed the MEA, which follows the "population," 
"individual," and "environment" of the genetic algorithm, and advances the concepts of "convergence" and "alien-
ation." The MEA algorithm is a learning method that is optimized through iteration where every individual in 

(4)Hj = f
(

∑n

i=1
wijxi − aj

)

, j = 1, 2, . . . , 5,

(5)f (x) =
1

1+ e−x

(6)Ok =

l
∑

j=1

Hjwjk − bk , k = 1, 2, . . . ,m

(7)ek = Yk − Ok , k = 1, 2, . . . ,m

(8)wij = wij + ηHj(1−Hj)x(i)

m
∑

k=1

wjkek , i = 1, 2, . . . , n; j = 1, 2, . . . , l

(9)wjk = wjk + ηHjek , j = 1, 2, . . . , l; k = 1, 2, . . . ,m

(10)aj = aj + ηHj(1−Hj)

m
∑

k=1

wjkek , j = 1, 2, . . . , l

(11)bk = bk + ek , k = 1, 2, . . . ,m

Figure 1.   BP neural network topology structure diagram.
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every generation of the evolutionary process becomes a group. A group is divided into several subgroups, and 
each subgroup includes two types: winning and temporary.

The MEA has a faster training speed than genetic algorithms, which significantly reduces the training time 
of neural networks and is thus more practical. First, the individuals in the subgroups are optimized by the con-
vergence operation, and then the mature subgroups compete globally through the alienation operation, which 
significantly improves the efficiency of optimization12. The structure of the MEA is shown in Fig. 2.

Clock bias prediction algorithm based on MEA‑BP.  The BP neural network is a multilayer feedfor-
ward neural network. The main characteristics of the BP are signal forward transmission and bias back propaga-
tion. Through repeated training, the network weight and threshold are adjusted according to the prediction bias, 
resulting in a prediction output that is close to the expected output. However, the selection of the initial weight 
and threshold significantly affects the convergence and accuracy of the BP neural network, and the outcome is 
prone to local optimization. This study uses the MEA to optimize the weight and threshold in light of the abnor-
mal results of the BP neural network algorithm, which can prevent the BP neural network from entering a local 
minimum and improve the prediction accuracy of the satellite clock bias.

The satellite clock bias data are set as {x1, x2, x3, . . . , xn} , using the N times data to model and predict the 
clock bias at the next time. To achieve multi calendar satellite clock bias prediction, the sliding window concept 
is used, where new prediction data are continuously used to replace the previous known data on the basis of 
ensuring the same number of samples. Figure 3 depicts the MEA-BP algorithm flow.

Results
To confirm the practicability of the algorithm, the multi-day GPS precision clock bias product data from the 
international gnss service (IGS) data center are selected for experimental analysis. Because of limited space, this 
study only lists the satellite clock bias data of GPS system week 2167 on the fourth day (corresponding to July 
22, 2021), and the sampling interval is 30 s. In this study, ten satellites, PRN01, PRN02, PRN03, PRN04, PRN10, 
PRN17, PRN24, C01, C07 and C13 are selected, and the data of the first 12 h are used to model how the satellite 
clock biases in the next 2 h, 3 h, 6 h, and 12 h. By comparing the predicted clock difference with the real value 
released from the IGS, the root mean squares error (RMS) and the range difference and mean value of bias are 
determined using Eqs. (12–14), and the accuracy of prediction results is analyzed18.

where xpre,i represents the prediction clock bias of i time model,xigs,i represents the i time real clock released 
by IGS, n represents the number of clock bias predicted, xpremax represents the maximum value of on bias, and 
xpremin represents the minimum value of prediction bias.

The modeling uses 12 h data with a total of 1440 data and a sampling interval of 30 s for satellite clock bias 
data. The MEA algorithm has a population size of 1440, and there are five superior and temporary sub popula-
tions. For the algorithm to fully find the optimal individual, the number of iterations is set to 100. As the hidden 

(12)RMS =

√

∑n
i=1

(

xpre,i − xigs,i
)2

n

(13)Range = xpremax − xpremin

(14)Mean =
1

n

∑n

i

(

xpre,i − xigs,i
)

Figure 2.   MEA algorithm structure.
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layer setting lacks a theoretical foundation, this study sets the input layer to two (epoch and corresponding clock 
bias). The number of hidden layer elements is selected with reference to the Kolmogorov theorem.

where M and N represent the number of hidden and input layers, respectively.
In this study, the input layer node is set to two (epoch and clock bias). The output layer node is set to one, 

and the hidden layer node is calculated as three according to Eq. (15); hence, the BP network structure is 2–5–1.

Test 1.  Both the BP and MEA-BP models are compared for their ability to predict satellite clock bias with 
accuracy. Satellite 10 (other satellites) is selected as an example. To fully compare the prediction effect, the clock 
bias data of the first 12 h of the day are used to predict the clock bias of the 12 times in the following 3 h, 6 h, 
and 12 h, respectively. In this test, the BP and MEA-BP models are used to predict the three sessions. Figure 4 
shows that the accuracy of multiple forecasts does not vary significantly, demonstrating the viability and stability 
of the two model’s network structures. During the three sessions, the accuracy of the MEA-BP was better than 
that of the BP model. This demonstrates that the MEA can optimize the initial weight and threshold of the BP 
neural network, preventing the BP neural network model from falling into local optimization. Additionally, this 
effectively improves the prediction accuracy. In general, this shows that the MEA-BP model is reliable for clock 
bias prediction and is a relatively stable prediction model.

Test 2.  The accuracy of the comparison between clock bias data is verified with and without one-time differ-
ence processing. For a neural network, the prediction accuracy increases with the degree of data nonlinearity. 
The GM must accumulate and reduce the data because it is difficult to provide a qualitative conclusion on the 
impact of one-time difference processing on the model. Three satellites were randomly selected for prediction: 
satellites 1, 10, and 17. These satellites use the clock bias data of 12 h before the training day and forecast the clock 
bias in the next 2 h. The unoptimized BP neural network model is used to predict 20 times, and the changes in 
the RMS value are compared, as shown in Fig. 5.

According to Fig. 5, when the data without one time difference processing is modeled, the RMS values of 
satellites 1, 10, and 17 change significantly, and the accuracy is poor. The prediction accuracy of the three satellites 
significantly improved after one-time difference processing, and the 20-time prediction accuracy was equivalent 
and had good stability. In conclusion, the BP neural network model uses the one-time difference processing 
method, which significantly improves the prediction accuracy and stability and is suitable for the network 
structure used in this study. The following experiments were conducted on the basis of one-time difference.

(15)M = N × 2+ 1,

Figure 3.   MEA-BP algorithm.
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Test 3.  To analyze the impact of modeling sequence length on clock bias prediction accuracy, GM (1,1) 
model, BP model and MEA-BP model were built, respectively, from the clock error sequence of 2 h–24 h of the 
previous day to predict the clock bias of PRN02, PRN10, and PRN17 satellites in the next 24 h, and the predic-
tion was repeated for 20 times, with the mean value and root mean squares error as the accuracy evaluation 
index. See Fig. 6 for the statistics of the results of satellite prediction using clock difference sequences of different 
lengths.

The prediction accuracy of different models has a specific relationship with the original modeling sequence. 
Among them, BP model is the most affected. GM (1,1) and MEA-BP are relatively less affected by the length of 
the modeling sequence; the models have strong anti-interference ability, and the prediction results are relatively 
stable. This also shows that the GM (1,1) model and MEA-BP model have a better modeling effect in the case of 
less data, but the prediction effect of the MEA-BP model is better than the GM (1,1) model. Taking PRN10 as 
an example, when the modeling sequence length is 2 h, the mean value and root mean square error of predic-
tion error statistics of the GM (1,1) model, BP model and MEA-BP model are 0.399 ns, 1.188 ns, 0.278 ns and 
4.211 ns, and 3.508 ns and 3.5 ns, respectively. When the modeling sequence length is 24 h, the mean value and 
root mean square error of prediction error statistics of the GM (1,1) model, BP model, and MEA-BP model are 
0.892 ns and 1.325 ns, 0.275 ns and 1.155 ns, and 4.213 ns and 0.755 ns, respectively. Compared with the predic-
tion results of 2 h modeling sequence, the prediction accuracy of the GM (1,1) model is increased by 72.57%; the 
prediction accuracy of the BP model is decreased by 20.10%, and the prediction accuracy of the MEA-BP model 
is increased by 78.43%. In addition, the precision of the MEA-BP model is 0.22% and 81.82% higher than that 
of the BP model, respectively, for the modeling and prediction results of 2 h and 24 h clock difference series, and 
the precision of the MEA-BP model is 16.88% and 34.63% higher than that of the GM (1,1) model, respectively.

Test 4.  The satellites in orbit of the BDS satellite navigation system are divided into three categories according 
to their orbit types. In this paper, the clock bias data of one satellite is taken as the test data for each type of satel-
lite, and the satellite numbers are C01 (GEO Rb), C07 (IGSO Rb), C13 (MEO Rb), respectively. Data modeling is 
conducted for the first 12 h of the day to forecast 2 h (240 epochs), 3 h (360 epochs), 6 h (720 epochs), and 12 h 
(1440 epochs), respectively.

See Tables 1, 2, 3 and 4 for the specific accuracy comparison of the MEA-BP model and other two models 
in the prediction of three satellites in the above four sessions. See Fig. 7 prediction bar chart of 12 h clock bias 
of the three satellites.

The prediction accuracy of different models has a specific relationship with the predicted epoch length, among 
which BP model is the most affected. GM (1,1) and MEA-BP models are relatively less affected by the predicted 
epoch length; the model has strong anti-interference ability, and the prediction results are relatively stable. The 

Figure 4.   Variation in RMS using MEA-BP and BP to predict for 10 times.
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prediction effect of the MEA-BP model is better than that of the GM (1,1) model and BP model. Taking C07 
as an example, when the forecast epoch length is 2 h, the root mean squares error of the GM (1,1) model, BP 
model, and MEA-BP model are 0.7802 ns, 0.0357 ns, and 0.0153 ns, respectively. When the prediction epoch 
length is 12 h, the root mean squares error of the prediction error statistics of the GM (1,1) model, BP model, 
and MEA-BP model is 0.8947 ns, 0.4222 ns, and 0.0474 ns, respectively. Compared with the prediction results 
of the prediction epoch length of 2 h, the prediction accuracy of the GM (1,1) model is reduced by 0.1145 ns. 
the prediction accuracy of the BP model is reduced by 0.3865 ns, and the prediction accuracy of the MEA-BP 
model is reduced by 0.0321 ns. In addition, the accuracy of the MEA-BP model is 57.14% and 88.77% higher 
than that of the BP model, and the accuracy of the MEA-BP model is 98.04% and 94.70% higher than that of the 
GM (1,1) model, respectively, for the prediction results of 2 h and 12 h epoch length.

Test 5.  The prediction accuracy of the MEA-BP model was compared with the BP and GM (1,1) models. 
The data of the first 12 h of the day from the PRN01 (Bock IIF Rb) , PRN02 (BockII IIR Rb), PRN03 (Bock IIF 
Rb), PRN04 (Bock IIA Rb), PRN10 (Bock IIA Cs), PRN17 (Bock IIR-M Rb), and PRN24 (Bock IIF Cs) satellites 
are modeled to predict 2 h (240 epoch), 3 h (360 epoch), 6 h (720 epoch), and 12 h (1440 epoch), respectively. 
The accuracy comparison between the MEA-BP model and the other two models in terms of the root mean 
square bias, mean value, and range difference in the prediction of the seven satellites in the above four sessions 
is provided in Tables 5, 6, 7 and 8. To achieve multi calendar satellite clock bias prediction, the sliding window 
concept is used where new prediction data are continuously used to replace the previous known data on the basis 
of ensuring the same number of samples. The root mean square bias, range difference, and mean value of seven 
satellites for 12 h prediction bar chart and the MEA-BP model, GM (1,1), and BP model prediction bias trend 
chart are provided, as shown in Figs. 8 and 9, because the 12 h prediction bias includes the 2 h, 3 h, and 6 h.

Discussion
Seen from the fluctuation of prediction error of the MEA-BP model algorithm, the error fluctuation amplitude of 
the rubidium clock (PRN01, PRN02, PRN03, PRN04, PRN17) is within 0.9 ns. For the BP model and GM (1,1) 
model, the error fluctuation amplitude of rubidium clock is within 6.1 ns, and the error fluctuation amplitude 

Figure 5.   The variation in RMS using BP to predict clock bias before and after one difference about 20 times.
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of the cesium clock is within 4.5 ns. In addition, from Tables 5, 6, 7 and 8, it can be seen that the rubidium clock 
is relatively stable compared with the cesium clock on the whole, but the root mean square error of some satel-
lite prediction results can be seen, The prediction accuracy of the cesium clock using the GM (1,1) model, BP 
model, and MEA-BP model can be comparable to that of the rubidium clock, and even better than the rubidium 
clock in some cases. For example, in 12 h prediction, the RMS of cesium clock (PRN24) and MEA-BP model 
is 0.3576 ns, which is better than the rubidium clock PRN02 satellite, and the gm model is 4.5281 ns, which is 
better than the rubidium clock PRN02 satellite.

Figure 6.   Modeling and prediction accuracy statistics of clock bias sequences with different lengths of three 
satellites.
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Table 1.   Statistics of 2-h prediction results of three satellites (unit: ns).

Satellite Statistics GM(1,1) BP MEA-BP

C01

RMS 0.2498 0.2498 0.0055

MEAN 0.1112 0.1112 0.0054

RANGE 1.1414 1.1414 0.0059

C07

RMS 0.7802 0.0357 0.0153

MEAN 0.2502 0.0150 0.0033

RANGE 4.2040 0.2739 0.1397

C13

RMS 0.9758 1.2991 0.7373

MEAN 0.1495 0.9280 0.7175

RANGE 5.4595 4.1746 0.8153

Table 2.   Statistics of 3-h prediction results of three satellites (unit: ns).

Satellite Statistics GM(1,1) BP MEA-BP

C01

RMS 0.2535 0.0108 0.0106

Mean 0.1291 −0.0153 0.0082

Range 1.1882 0.0267 0.0412

C07

RMS 0.7167 0.0332 0.0267

Mean 0.2698 0.0243 -0.0258

Range 4.2040 0.2196 0.0327

C13

RMS 0.9739 1.8642 0.1945

Mean 0.1686 1.7919 0.1900

Range 5.4595 2.2839 0.1584

Table 3.   Statistics of 6-h prediction results of three satellites (unit: ns).

Satellite Statistics GM(1,1) BP MEA-BP

C01

RMS 0.2581 0.0417 0.0226

Mean 0.0632 0.0211 0.0019

Range 1.7869 0.3513 0.1460

C07

RMS 0.8881 0.0697 0.0249

Mean −0.1662 0.0323 0.0067

Range 5.8441 0.8052 0.2848

C13

RMS 1.0995 0.6332 0.3107

Mean 0.3159 −0.2376 0.3049

Range 8.5284 5.8388 0.4917

Table 4.   Statistics of 12-h prediction results of three satellites (unit: ns).

Satellite Statistics GM(1,1) BP MEA-BP

C01

RMS 0.3646 0.3278 0.0118

Mean 0.0914 0.2025 0.0005

Range 2.1165 1.3296 0.0788

C07

RMS 0.8947 0.4222 0.0474

Mean 0.2816 0.3389 0.0414

Range 6.2927 0.9945 0.4065

C13

RMS 1.2960 1.6628 0.6868

Mean 0.4047 1.5038 0.6839

Range 8.6972 2.6676 0.3528
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Figure 7.   Prediction bar chart of 12 h clock bias of the three satellites.

Table 5.   Statistics of 2 h prediction results of the seven satellites (unit: ns).

PRN Statistics GM(1,1) BP MEA-BP

PRN01

RMS 3.0018 0.8228 0.2013

Mean −2.3286 0.7546 −0.0372

Range 2.1298 3.5254 0.2489

PRN02

RMS 9.6819 3.0877 0.2351

Mean −2.0977 −1.8935 −0.1143

Range 1.0641 3.1666 0.3466

PRN03

RMS 1.4018 0.0571 0.0280

Mean −0.7493 −0.0514 −0.0133

Range 1.3963 0.3089 0.2417

PRN04

RMS 0.6896 0.2665 0.2520

Mean −0.3998 −0.2589 0.2433

Range 4.1886 0.3118 0.2008

PRN10

RMS 1.3856 0.6833 0.3759

Mean −0.2000 −0.5988 −0.1651

Range 1.1923 1.3525 0.6325

PRN17

RMS 9.4869 2.4984 0.6630

Mean −5.0606 2.4812 0.6491

Range 7.9242 3.2889 1.5196

PRN24

RMS 2.1439 0.3719 0.2936

Mean 0.6510 −0.3839 −0.1920

Range 3.9153 2.0862 0.3402
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The forecast results demonstrate that of the four sessions shown in Tables 5, 6, 7 and 8, using satellite 1 as an 
example, the prediction accuracy (RMS) of the MEA-BP at 2, 3, 6, and 12 h is less than 0.22 ns. The MEA-BP 
model has a specific anti-interference ability and changes less as the prediction time increases. By comparing the 
mean and RMS values, the accuracy of the MEA-BP model proposed in this study is higher than that of the other 
two common models in clock bias prediction in different periods. This is particularly evident in 12 h prediction, 
with minimum and maximum increases of 16% and 91%, respectively. Additionally, as the forecast duration 

Table 6.   Statistics of 3 h prediction results of the seven satellites (unit: ns).

PRN Statistics GM(1,1) BP MEA-BP

PRN01

RMS 0.9614 0.1392 0.0350

Mean −0.2700 0.1323 0.0345

Range 8.9918 0.3816 0.0753

PRN02

RMS 1.1075 0.6600 0.3695

Mean 3.5702 0.4224 −0.0712

Range 1.1820 0.6105 0.5093

PRN03

RMS 1.2803 0.2353 0.1125

Mean 0.9405 0.2041 0.1110

Range 5.5855 0.4628 0.1343

PRN04

RMS 0.8235 0.1098 0.0634

Mean −0.2840 −0.0855 −0.0572

Range 2.6261 0.2376 0.0994

PRN10

RMS 0.9397 0.1866 0.1497

Mean −0.2700 −0.0986 −0.0324

Range 8.0174 2.2130 1.5479

PRN17

RMS 6.9569 0.8423 0.7995

Mean −2.7411 −0.7716 −0.7572

Range 2.4086 1.2315 0.7922

PRN24

RMS 1.9023 1.0677 0.1855

Mean 0.6506 −0.5762 0.1188

Range 4.9153 2.6862 1.6584

Table 7.   Statistics of 6 h prediction results of the seven satellites (unit: ns).

PRN Statistics GM(1,1) BP MEA-BP

PRN01

RMS 1.8793 0.3355 0.2145

Mean 0.6771 −0.1649 −0.1103

Range 7.5031 5.7073 1.5068

PRN02

RMS 6.1156 2.5032 1.1199

Mean 1.1964 −2.3045 −1.1037

Range 4.2312 4.0006 1.7239

PRN03

RMS 1.0474 0.7156 0.0540

Mean 0.7442 0.6068 0.0436

Range 4.7690 1.3572 0.3245

PRN04

RMS 1.4837 0.3657 0.1388

Mean −0.8993 0.3228 0.0171

Range 5.8229 1.5393 0.8765

PRN10

RMS 4.1697 1.0338 0.2306

Mean −2.9248 0.6100 0.0762

Range 3.7066 3.5804 2.6640

PRN17

RMS 6.7947 2.5631 0.8993

Mean 1.6648 0.9424 0.2740

Range 2.5075 1.7186 0.8284

PRN24

RMS 2.5002 1.6695 0.3364

Mean 1.1004 0.6330 0.3217

Range 5.0064 4.4395 1.7386
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increases, excluding the fact that the forecast accuracy of satellites 2 and 17 is slightly poor, the forecast bias of 
satellites 2 and 17 is within 1.2 ns and 0.9 ns, respectively, and the rest are controlled within 0.4 ns, indicating 
that the MEA-BP has good stability. The range value in the table is smaller than that of the BP and GM (1,1) 
models, indicating that the MEA-BP model has good prediction performance.

The comparison in Fig. 9 shows that the overall change trend of the prediction bias of the MEA-BP and BP 
neural network models is similar but that the MEA-BP model is relatively stable.

Comparing the prediction bias curves of the MEA-BP and BP neural network models in Fig. 9a,c,e,f, when 
the BP neural network prediction has a significant bias, the size and direction of the bias can be changed to a 
certain extent after the optimization of the MEA algorithm, effectively ensuring the prediction accuracy.

Figure 9 shows that, as the prediction epoch increases, the prediction result of the MEA-BP model becomes 
more stable than that of the BP and GM models. When the bias value is small, there is no divergence, and the 
12 h prediction bias of the seven satellites fluctuates around zero. When the prediction time increases, the overall 
bias fluctuates less, and the predicted clock bias value is more consistent with the real clock bias released by IGS, 
indicating good stability. This demonstrates that the BP model optimized by the MEA does not fall into local 
optimization when predicting the increase in epoch, which shows the stability and practicability of the MEA-BP 
model and the feasibility of the neural network structure to a certain extent.

It can be seen from Fig. 9 that the prediction error of satellite clock bias shows a significant periodic charac-
teristic. This is because of the significant periodic term of satellite clock bias sequence. The periodic term of clock 
bias is different for satellites of different orbital types, while the periodic term of clock bias is also different for 
satellites of the same orbital type. The main period of the satellite clock bias data is approximately 1/2 or 1 time 
of the satellite orbit period. In addition, in the process of simultaneous calculation of satellite orbit and clock 
bias based on multi satellite joint orbit determination, part of the orbit error is absorbed by the clock bias. In 
addition to coupling with the orbit period, the satellite clock may also be related to the changes of the external 
day and night environment. The satellite clock bias results have periodic fluctuations.

Conclusions
As bias accumulates over time, the common model, which is used for clock bias prediction because of the 
nonlinear characteristics of satellite clock bias, has unstable accuracy. To address the issues with the BP neural 
network algorithm in satellite clock bias prediction and obtain better initialization weight, threshold, and other 
parameters, this study adopts the MEA algorithm. The algorithm improves the accuracy of satellite clock bias 
modeling, successfully prevents the BP neural network from falling into local optimization, and increases the 
calculation speed of the BP algorithm. The MEA-BP model, which is suitable for satellite clock bias prediction, 
is then proposed. The paper discusses the advantages and general applicability of this method from different 
constellation satellites, different atomic clock type satellites, and the amount of modeling data. By analyzing the 

Table 8.   Statistics of 12 h prediction results of the seven satellites (unit: ns).

PRN Statistics GM(1,1) BP MEA-BP

PRN01

RMS 2.1009 0.8243 0.1757

Mean 0.6464 −0.2378 −0.1300

Range 5.4990 4.0022 0.4453

PRN02

RMS 6.0756 1.7608 0.8648

Mean 0.5666 −1.2037 −0.4135

Range 18.1817 4.9803 4.0806

PRN03

RMS 0.3298 0.1944 0.1418

Mean −0.1483 −0.0310 0.0092

Range 1.1156 1.0985 0.5536

PRN04

RMS 0.1844 0.1940 0.1541

Mean 0.0202 −0.0391 −0.0098

Range 0.6685 0.6741 0.5885

PRN10

RMS 0.2571 0.18304 0.0500

Mean 0.3070 0.10810 0.0163

Range 0.7139 0.5488 0.1299

PRN17

RMS 0.8321 0.6434 0.1432

Mean 0.0219 0.0313 0.0084

Range 2.4736 0.5038 0.4487

PRN24

RMS 2.5002 1.6695 0.3364

Mean 1.1004 0.6330 0.3217

Range 5.0064 1.7386
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prediction accuracy of the three models, the MEA-BP model has good prediction accuracy and stability. The 
accuracy and bias curves do not vary significantly as the prediction time increases. Compared with the tradi-
tional BP and GM models, the lowest accuracy can be improved by 5.44%, 5.08%, 36.07%, and 16.43% at 2, 3, 
6, and 12 h, respectively, while the highest accuracy can be improved by 98.00%, 96.36%, 94.84%, and 91.64%, 
respectively.

The MEA-BP model has strong adaptability, global search ability, and global convergence. Through multiple 
"convergence" and "alienation" iterative operations, global optimization is performed, and the global optimal 
solution of the initial weight and threshold in the BP neural network is obtained.

The MEA-BP model outperforms the traditional BP model in terms of prediction accuracy and efficiency. 
The optimized value is more accurate because of the competitive learning of different subgroups and individu-
als, which improves the accuracy of the neural network and the prediction accuracy of the clock bias prediction 
model. The model performs well in the short-term predictions and has a strong real-time performance. As such, 
the model can be used for high-precision prediction of satellite clock bias.

Many factors affect the accuracy of neural network clock bias prediction such as data sampling interval, the 
amount of modeling data, and the selection of hidden layer nodes. Additionally, different satellite data have dif-
ferent sequence changes after one time difference processing, necessitating an adjustment to the corresponding 
network structure, which requires further research.

Figure 8.   Prediction bar chart of 12 h clock bias of the seven satellites.
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Figure 8.   (continued)
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Figure 9.   Comparison of the prediction bias of 12 h clock bias of the seven satellites.
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