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Low‑data interpretable deep 
learning prediction of antibody 
viscosity using a biophysically 
meaningful representation
Brajesh K. Rai 1*, James R. Apgar 2 & Eric M. Bennett 2

Deep learning, aided by the availability of big data sets, has led to substantial advances across many 
disciplines. However, many scientific problems of practical interest lack sufficiently large datasets 
amenable to deep learning. Prediction of antibody viscosity is one such problem where deep learning 
methods have not yet been explored due to the relative scarcity of relevant training data. In this 
work, we overcome this limitation using a biophysically meaningful representation that enables us 
to develop generalizable models even under limited training data. We present, PfAbNet‑viscosity, a 
3D convolutional neural network architecture, to predict high‑concentration viscosity of therapeutic 
antibodies. We show that with the electrostatic potential surface of the antibody variable region as 
the only input to the network, the models trained on as few as couple dozen datapoints can generalize 
with high accuracy. Our feature attribution analysis shows that PfAbNet‑viscosity has learned key 
biophysical drivers of viscosity. The applicability of our approach to other biological systems is 
discussed.

Despite substantial advances across many disciplines, application of deep learning to many real-world scientific 
problems has been hampered due to insufficient training data and the difficulty in acquiring such data in a timely 
fashion. The discovery and development of monoclonal antibodies (mAbs)1,2, a therapeutic modality for a wide 
range of diseases and indications, is one such area where deep learning has so far been applied relatively infre-
quently. Due to the time, material, and other resource constraints associated with experimental measurements, 
characterization of various mAb developability  properties3 such as chemical  stability4,5, clinical immunogenicity, 
and viscosity has been limited to a small number of candidate molecules.

In this work, we address the constraint of small data in developing predictive models for antibody viscos-
ity, a key developability attribute for mAb-based therapeutics. Viscosity is an important consideration in the 
development of mAbs because to maintain desired efficacy and avoid the need for frequent dosing, therapeutic 
antibodies are formulated at high concentrations, aiming to deliver subcutaneously > 100 mg of active ingredients 
within a small volume (≤ 1 mL)6. At such high concentration, antibodies are prone to exhibit high viscosity and 
can present significant formulation, manufacturing, and administration challenges. Although higher-throughput 
data collection alternatives such as DLS are available, rheometric measurement of viscosity is a preferred experi-
mental technique. However, rheometric viscosity measurement requires large amounts (> 100 mg) of purified 
proteins, which are generally not available in the early candidate selection stages, and, therefore, can be carried 
out only for the most promising molecules in the later stages of the discovery and development pipeline. There-
fore, only a limited number of public or proprietary molecules have been experimentally characterized for this 
important therapeutic property. Consequently, previous publications on this topic have primarily focused on 
identifying meaningful physicochemical  correlates7–13 of viscosity, with a few others describing  biophysical14 or 
data-driven9,12,13,15 models.

Here, we present PfAbNet-viscosity (Pfizer Antibody Network for viscosity; henceforth referred to as PfAbNet 
in short), a deep learning architecture, which we originally developed to screen mAb candidates for potential 
viscosity liabilities in the early stages of our antibody therapeutic discovery programs. Using the electrostatic 
potential (ESP) surface of the antibody variable region (Fv) as the only input, PfAbNet predicts the viscosity of 
a test antibody in high-concentration solution. We describe the underlying 3D convolutional neural network 
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(3D-CNN), a deep learning technique that has been applied to a wide range of computational  chemistry16–19 
and structural  biology20–22 problems by leveraging large structural datasets. We present the model training 
procedure, assess the generalization accuracy of the models, and discuss the insights generated from our feature 
attribution analysis.

Results
PfAbNet: a 3D‑convolutional neural network to predict antibody viscosity. The PfAbNet archi-
tecture and input representation scheme were developed and refined using our in-house antibodies and viscosity 
data, all measured under standardized conditions, as described  previously23. While a subset of these antibodies 
came from our various mAb therapeutic discovery programs, others were specifically designed as part of an 
internal effort to generate a robust and chemically diverse dataset to enable development of generalizable predic-
tive models of viscosity.

Recognizing the importance of surface charge patches on antibody viscosity from previous  studies10,14,24,25, 
we designed our neural network architecture to operate on the ESP surface. We reasoned that a network trained 
on molecular surface will generalize better compared to a similar network trained on the entire 3D structure 
input, since a surface representation prevents the model from memorizing less relevant structural details that 
may not be particularly important for viscosity but could lead to overfitting. With the surface ESP of the given 
Fv structure as the only input, PfAbNet applies a series of 3D convolution, activation, and pooling operations, 
transforming the input 3D grid to a numerical value that represents the viscosity (η) of that antibody at 150 mg/
mL concentration under previously reported experimental  conditions12,23 (Fig. 1).

PfAbNet models show high generalization accuracy in low‑data regime. We demonstrate PfAb-
Net generalization performance by training and evaluating the models using a dataset containing experimental 
viscosity of 59 IgG1 subtype antibodies. The antibodies in this dataset have been developed against a variety of 
antigens and comprise 21 FDA-approved  drugs12 and 38 publicly available antibody variants that were originally 
developed in a Pfizer-internal  program23. We trained and evaluated PfAbNet by splitting this dataset into two 
groups based on the source of these antibodies, generating (1) a small dataset comprising 38 anti-PDGF anti-
body variants (the PDGF38 set)23 and (2) another small but highly diverse dataset comprising 21 FDA-approved 

Figure 1.  The PfAbNet pipeline and the datasets. (A) The starting Fv domain structure or homology model. 
(B) Training data augmentation and inference ensemble generation through random rotation of the starting Fv 
structure. (C) Generation of molecular surface and ESP. (D) Cubic grid with ESP surface shell. (E) Illustration 
of the 3D-CNN architecture. (F,G) Experimental viscosity of the Ab21 (F) and PDGF38 (G) antibodies at 
150 mg/mL concentration. The horizontal line in these panels represent the 20 cP threshold that defines the 
low- and high-viscosity classes. (H,I) Amino acid variability in the Ab21 (H) and PDGF38 (I) datasets at 
different Chothia positions across the variable region sequence. (J–L) Minimum Levenshtein distance between 
the variable region sequence of the Ab21 antibodies with respect to the PDGF38 set (J), PDGF38 antibodies 
with respect to the Ab21 set (K), and Ab21 antibodies with respect to the other antibodies in the same set (L). 
(M) The coloring scheme used in depicting the contribution from the framework and CDR loop regions to the 
distributions in (H–L).
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antibody therapeutics (the Ab21 set)12. As shown in Fig. 1F,G, the antibodies in these two test sets, though each 
strongly biased towards the opposite ends of the viscosity distribution, span a wide range of viscosity at 150 mg/
mL concentration. The Fv sequences in the two test sets show variability at a large number of  Chothia26 sites 
across the framework and CDR regions (Fig. 1H,I). We also note significant variability, both with in Ab21 as 
well as across the two sets (Fig. 1J–L), with very high minimum Levenshtein distances (20–70 with in the Ab21 
set and 80–120 between Ab21 and PDGF38). Given such large diversity of our datasets, we believe that our data 
splitting approach will provide an accurate assessment of PfAbNet generalization performance.

A different group of 8 IgG1 antibodies from a previous  publication27 was included as an additional test set (6 
of the 14 antibodies in this study are already included in Ab21; we refer to the remaining unique 8 antibodies as 
Ab8 set). While Ab8 sequences are highly diverse and show variability across a large number of Chothia sites, 
due to the small size and a narrow viscosity range (Fig. S1), this dataset alone is not suitable for either train-
ing or evaluation. However, together with the PDGF38 antibodies, the Ab8 set can be used to further validate 
PfAbNet, as we show later.

The network was trained from scratch, generating two separate PfAbNet models that we refer to as: (1) 
PfAbNet-PDGF38 (trained on the PDGF38 set) and (2) PfAbNet-Ab21 (trained on the Ab21 set). We trained 
additional models, referred to as PfAbNet-LOOCV, to test leave-one-out cross-validation performance, where 
each Ab21 antibody is left-out once as the test set while the model is trained on the remaining 58 antibodies (38 
from the PDGF38 and 20 from the Ab21 set; see Methods).

The performance of PfAbNet-Ab21 models were evaluated on the corresponding held-out test set, PDGF38 
and a combined test set comprising PDGF38 and Ab8 antibodies. Whereas the performance of PfAbNet-PDGF38 
and PfAbNet-LOOCV models were evaluated on the same set of Ab21 antibodies (Fig. 2, see “Methods”). 
Remarkably, despite the small amount of training data and low sequence similarity between the training and 
the test sets, these models produced high Spearman rank-order correlation and  R2 between the predicted and 
experimental viscosity (Fig. 2A,E,I, Fig. S2A). PfAbNet predictions for the test set antibodies are provided in 
Tables S1, S2, and S3.

We further tested the ability of PfAbNet models to discriminate between high and low viscosity antibodies. 
The classification performance was assessed using Receiver Operating Characteristic (ROC) curve and the asso-
ciated Area Under the Curve (AUC). We used 20 centipoise (cP) as the threshold to define two classes: viscous 
(> = 20 cP) and non-viscous (< 20 cP). The 20 cP cutoff was chosen because high concentration solutions of 
mAbs with viscosity near this threshold are known to present formulation, manufacturing, and administration 
 challenges2,6. As illustrated by the ROC plots in Fig. 2B,F,J, and Fig. S2B, all three models can reliably distinguish 
between viscous and non-viscous antibodies in the corresponding left-out test sets. While the classification 
performance of LOOCV and PfAbNet-PDGF models, as measured by ROC-AUC, are identical (AUC = 0.82), 
the LOOCV models, which were trained by incorporating fewer than two dozen additional data points, can 
recover true positives more efficiently compared to the PfAbNet-PDGF model. For example, the LOOCV models 
were able to retrieve over 50% true positives (Fig. 2J) compared to < 40% (Fig. 2F) that could be retrieved by the 
PfAbNet-PDGF model before these models made any false positive prediction.

Despite the strong correlation shown in Fig. 2, the PfAbNet models either systematically underestimate 
(PfAbNet-Ab21) or overestimate (PfAbNet-PDGF) the experimental values, primarily due the skewed distri-
bution of the measured viscosity in each training set. Therefore, the optimal operating point (OOP) on the 
ROC curve, which defines the most appropriate cutoff to discriminate between the two viscosity classes, vary 
significantly between different PfAbNet models (22 cP for PfAbNet-Ab21, 72 cP for PfAbNet-PDGF, and 33 
cP for PfAbNet-LOOCV). Nonetheless, the confusion matrix generated using the OOP-based cutoff for each 
PfAbNet model correctly identifies the majority of the low and high viscosity antibodies in the corresponding 
test set (Fig. 2C,G,K).

We further compared the classification accuracy of PfAbNet-Ab21 and PfAbNet-PDGF models against a null 
model that assigns all test set antibodies to a single viscosity class (either low- or high-viscosity), corresponding 
to the majority class represented in that set. As shown in Fig. S3, PfAbNet-PDGF outperforms the null model 
(classification accuracy, 76% ± 4% vs. 62% ± 5%,), even though the Ab21 test set is slightly skewed towards the 
low-viscosity class (13 out of 21). Since the PDGF38 test set exhibits an even greater imbalance (34 of the 38 
antibodies are from the high-viscosity class) and thus highly favorable to the null model used here, PfAbNet-
Ab21 underperforms the null model (classification accuracy, 82% ± 2% vs 89% ± 2%). On a combined test set, 
comprising PDGF38 and Ab8 antibodies, PfAbNet-Ab21 marginally outperforms the null model (classification 
accuracy 80% ± 2% vs 78% ± 2%), since incorporating Ab8 antibodies reduces the test set imbalance.

PfAbNet-Ab21 classification accuracy relative to the null model improves systematically as test sets get more 
balanced in their composition of low- and high-viscosity antibodies. This is illustrated in Fig. S3 (bars D and E) 
using two groups of test sets, each generated with different levels of down sampling of the high-viscosity class 
in the combined PDGF38 and Ab8 set (see Supplementary Note 1). These additional evaluations show that the 
gap between the classification accuracy of PfAbNet-Ab21 and null model increases as the test sets become more 
balanced (82% ± 3% vs 67% ± 3% on a test set with 2:1 ratio of high- to low-viscosity antibodies and 80% ± 4% vs 
50% ± 5% on a test set comprising equal number of high- and low-viscosity antibodies).

Comparison with previous methods. We next compared PfAbNet with two previously reported meth-
ods: Sharma  model15 and Surface Charge Model (SCM)14. These methods were chosen because they differ sig-
nificantly in their choice of features (sequence- vs structure-based) and modeling (data driven vs biophysical) 
approach. While the Sharma model was derived from a linear regression over three sequence-derived features 
(Fv net charge, VL-VH charge asymmetry, and hydrophobicity), SCM is a structure-based, non-parametric bio-
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physical model that quantifies negative charge distribution over Fv surfaces to predict antibody viscosity at 
150 mg/mL concentration.

The predictions based on the Sharma model with default parameters, as reported in the original publication, 
were significantly off from the actual measurements and showed negative correlation with experimental data 
from both the PDGF38 and Ab21 test sets. This was not unexpected, since the original parameters were derived 
by fitting to measured viscosity at 180 mg/mL concentration from a set of 14 therapeutic antibodies that likely 
covered a very different sequence space than the antibodies studied in this work. Therefore, we re-trained the 
Sharma model separately using the PDGF38, Ab21, and LOOCV training set following the same dataset split 
procedure we used to train and evaluate the PfAbNet models (PfAbNet-PDGF38, PfAbNet-Ab21, and PfAbNet-
LOOCV). Each resulting model was then used to predict viscosity of corresponding left-out test set antibodies. 
Since SCM does not have any adjustable parameters, it was not necessary to re-train this model for each specific 
dataset. We used the previously reported SCM predictions for the  PDGF3823 and  Ab2112 antibodies for the model 
comparisons presented here.

As shown in Fig. 2, Table 1, and Table S4, PfAbNet achieves significantly better performance compared to the 
two baseline methods on each test set, both in the regression and the classification settings.

Figure 2.  Performance of PfAbNet and previous sequence- and structure-based methods. All predictions and 
experimental values correspond to viscosity at 150 mg/mL concentration. (A) PfAbNet-Ab21 predictions for 
the PDGF38 antibodies. (B,C) Classification performance of PfAbNet-Ab21 on the PDGF38 test set: ROC 
curve (B) and confusion matrix (C). (D) Performance of PfAbNet-Ab21 and previous methods (re-trained 
Sharma model and SCM) on the PDGF38 test set based on Spearman rank-order correlation,  R2, and ROC-
AUC metrics. (Middle row) The performance of PfAbNet-PDGF and previous methods on the Ab21 test set: 
(E) PfAbNet-PDGF prediction vs experimental viscosity, (F) classification performance using ROC curve, (G) 
confusion matrix, and (H) Spearman rank-order correlations,  R2, and ROC-AUC. (Bottom row) The leave-
one-out performance of the PfAbNet, SCM, and re-trained Sharma models on the Ab21 test set: (I) PfAbNet-
LOOCV prediction vs experimental viscosity, (J,K) classification performance shown using ROC curve (J) and 
confusion matrix (K), (L) Spearman rank-order correlation,  R2, and ROC-AUC. The error bars represent the 
95% confidence interval estimated with 500 bootstrap samples. Each confusion matrix was calculated using the 
optimal operating point, derived from the corresponding ROC curve, as the cutoff for viscous vs. non-viscous 
class.
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In our internal validations using a larger set of antibodies that were separated into training and test sets based 
on therapeutic programs (and as a consequence grouped by sequence families), PfAbNet showed similar ability 
to rank-order and distinguish between low- and high-viscosity antibodies (data not shown). The PfAbNet per-
formance presented here is particularly remarkable since the training and test set antibodies share little sequence 
similarity and were developed against very different antigen targets (Fig. 1J–L). Thus, these results suggest that 
PfAbNet can be an effective tool to screen and select mAb candidates with desirable viscosity characteristics.

PfAbNet interpretability assessment using surface feature attribution. We analyzed the trained 
networks to understand the patterns our models have learnt. We used Integrated  Gradients28, a deep learn-
ing model interpretability technique. Given a trained PfAbNet model and an ESP grid, this method was used 
to assign an attribution score for each input grid point that quantifies how important that grid point is to the 
predicted viscosity. A grid point with a positive attribution score indicates that the underlying structural feature 
contributes, according to the model, to an increase in viscosity. Conversely, a motif that overlaps with grid points 
with negative attribution score reduces viscosity. To simplify the analysis, we focus on a subset of “significant 
attribution” points (approximately 0.14% and 0.21% of all input grid points in the Ab21 and PDGF38 test sets, 
respectively) with attribution magnitude greater than 1σ (one standard deviation of the attribution point distri-
bution in test set molecules, see Methods) from the zero-attribution baseline.

Positive attribution patches cover large surface areas in very high viscosity antibodies. Our 
analysis based on visual inspections of the attribution maps in the context of the corresponding Fv domain 
structures shows that (1) test set antibodies contain several spatially distinct surface patches, composed of attri-
bution points with predominantly positive or negative scores, (2) positive-attribution patches in a molecule are 
more common and cover wider surface area compared to negative-attribution patches and (3) higher viscosity 
antibodies generally contain greater number of positive-attribution points that span over wider surface area 
compared to lower viscosity molecules. This is illustrated in Fig. 3 by attribution maps and underlying variable 
region structure of the lowest- and highest-viscosity antibodies in the Ab21 and PDGF38 sets.

Further quantitative analysis of attribution maps confirmed the trends we observed by visual inspection. The 
dependence of viscosity on positive-attribution patch areas, as shown in Fig. 3I,J, where bars are arranged accord-
ing to the experimental viscosity, is particularly notable. This trend is more prominent in the Ab21 set, where 
the five highest-viscosity antibodies (η > 90 cP, five rightmost bars in Fig. 3I) have substantially larger attribution 
patch area compared to the other lower-viscosity (η < 25 cP) antibodies in this set (991 vs. 565 attribution points, 
p-value 7e−4). In the case of the PDGF38 set, however, since all, except 4 antibodies, exhibit high viscosity, this 
trend is not as definitive as in the Ab21 set. Nonetheless, the same subset of highest-viscosity PDGF38 antibodies 
(η > 90 cP, bars on the right half in Fig. 3J) also have substantially higher patch area relative to the other lower-
viscosity antibodies (bars on the left half in Fig. 3J) in this set (1328 vs. 876 attribution points, p-value 5e−8). 
Thus, the patch-area analysis presented in Fig. 3I,J strongly suggests that specific structural and chemical motifs 
contribute to increasing viscosity and they are more likely to be present in high-viscosity antibodies.

Proximal positive charges significantly reduce sidechain carboxyl attributions. Our qualitative 
analysis further showed that positive-attribution patches often overlap with sidechain carboxyls. However, the 
attribution around the sidechain carboxyls of some negatively charged residues is either negligible or is com-
pletely missing, as illustrated by the attribution maps of two highest-viscosity antibodies in Ab21 and PDGF38 
sets (Fig. 4). In particular, we note that the carboxyl groups that are in the vicinity of a positive charge center 
generally receive little positive attribution.

We examined the generality of this observation by comparing the average attribution score of carboxyl grid 
points that are in the proximity of a positive charge (proximal set, d ≤ 3.5 Å) vs. those that are farther away (distal 
set, d ≥ 5 Å). For each test set molecule, we calculated the average attribution score of the proximal and distal set 
(see Methods). A striking contrast between the average attribution score of the two sets can be seen (Fig. 4C,D). 
The carboxyl groups in the distal set of nearly all test set antibodies have significantly greater average positive 
attribution compared to those in the proximal set, where the average attribution score is either significantly 
closer to zero or in many cases it is negative. This analysis clearly demonstrates that positive charges have a 

Table 1.  Performance of PfAbNet and the baseline models. Regression performance based on  R2 are shown 
in Table S4. ^ Performance on each test set was evaluated using parameters that were derived by fitting to 
the corresponding training set data. ^^ values in parentheses represent the 95% confidence interval based on 
bootstrap standard error.

Training set (N) Test set (N)

Spearman rank-order  correlation^^ ROC-AUC ̂ ^

Sharma^ SCM PfAbNet

p-value

Sharma^ SCM PfAbNet

p-value

PfAbNet vs. 
Sharma

PfAbNet vs. 
SCM

PfAbNet vs. 
Sharma

PfAbNet vs. 
SCM

Ab21 (21) PDGF38 (38) 0.67 (0.02) 0.75 (0.02) 0.80 (0.02) 7e−174 1e−37 0.73 (0.03) 0.80 (0.03) 0.84 (0.02) 2e−84 5e−18

PDGF38 (38) Ab21 (21) 0.65 (0.07) 0.49 (0.07) 0.75 (0.06) 2e−27 6e−118 0.78 (0.05) 0.63 (0.06) 0.82 (0.04) 1e−6 8e−96

PDGF38 + Ab21 
(LOOCV) (58) Ab21 (21) 0.55 (0.07) 0.49 (0.08) 0.71 (0.06) 4e−54 5e−72 0.74 (0.06) 0.63 (0.06) 0.82 (0.04) 1e−25 2e−81
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strong neutralizing effect that reduces positive attributions due to the nearby Asp/Glu carboxylates and that 
introduction of such positive charges can be an effective viscosity reduction strategy, as demonstrated  recently23.

Key structural and biophysical determinants of high viscosity. To determine the relative impor-
tance of different variable region segments, we calculated the contribution of the framework region and each 
CDR loop to the largest positive-attribution patches. Our analysis shows that positive-attribution patches are 
not localized to any particular Fv segment but are distributed throughout the framework and CDR loop regions 
(Fig. S4).

We performed similar analysis to determine the relative importance of the following biophysical features 
to the largest positive-attribution patches in the test set antibodies: (1) Asp/Glu sidechain, (2) hydrogen bond 
acceptor, (3) aromatic sidechain, (4) hydrogen bond donor and positive charge groups, and (5) lipophilic (see 
Methods). The contribution of each feature to the largest and the five largest positive-attribution patches in the 
Ab21 and PDGF38 antibodies are shown in Fig. 5.

We found that two features, Asp/Glu sidechain and hydrogen bond acceptor together make the majority of the 
contribution to the positive-attribution patch areas in the test set antibodies, with 89% of all positive attributions 
in the Ab21 and 68% in the PDGF38 set. Furthermore, the mainchain carbonyl oxygens contribute to nearly 
73% of all attributions due to acceptors (Fig. S5). Since the negatively charged residues along with the acceptor 
atoms with negative partial charges largely define the negative electrostatic surface, these findings are consist-
ent with the previous  studies9,14,15,23,24 that have identified negative charge patches as the major determinant of 
antibody viscosity.

We also note significant aromatic content in the positive-attribution patches of high-viscosity antibodies. In 
the Ab21 set, the average aromatic content of the positive-attribution patches in the 5 highest-viscosity antibod-
ies (η > 90 cP) is nearly 10% (last five bars on the x-axis of Fig. 5A,B). vs. 4% in the rest of the lower-viscosity 
antibodies (η < 25 cP). We also observe substantial aromatic content in the positive-attribution patches of nearly 

Figure 3.  PfAbNet feature attribution maps and patch-size distributions in test set molecules. (A–H) 
Attribution maps and the variable region structure of four antibodies in the Ab21 (A–D) and PDGF38 (E–H) 
sets. The grid points with “significant attribution” (absolute attribution score greater than one standard deviation 
from the zero-attribution baseline) are shown. The light and heavy chain of each Fv structure are shown in cyan 
and magenta, respectively. Separate depictions of positive- (red dots, top row) and negative- (blue dots, bottom 
row) attribution maps highlight the greater size and density of the positive attribution map compared to the 
negative attribution map in each molecule. These examples were selected to illustrate the differences between the 
lowest- and highest-viscosity molecules in the Ab21 (A vs. B, C vs. D) and PDGF38 (E vs. F, G vs. H) sets. The 
contrast between the positive attribution maps of the highest- and lowest-viscosity (B vs. A, F vs. E) antibodies 
is particularly notable. (I,J) Patch-size distributions of up to five largest positive- and negative-attribution 
patches (contiguous segments of significant attribution grid points) in Ab21 (I) and PDGF38 (J). To highlight 
the dependence of patch size on measured viscosity, the antibodies in these panels are arranged based on their 
experimental viscosity, lowest to highest. The error bars represent the 95% confidence interval estimated using 
an ensemble of 100 predictions for each test set antibody (“Methods”).
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Figure 4.  Influence of proximal positive charges on positive attributions around sidechain carboxyl groups. 
(A,B) Positive-attribution map and variable region structure of the highest-viscosity antibody in Ab21 (A) and 
PDGF38 (B) set. The light and heavy chain of each Fv structure are shown in cyan and magenta, respectively. 
The effect of proximal positive charges on the attribution maps is highlighted by orange, ball-and-stick depiction 
of relevant amino acids. (C,D) Average attribution score of Asp/Glu carboxylates in the proximity of (proximal, 
d ≤ 3.5 Å) or away from (distal, d ≥ 5 Å) a positive charge center (positively charged nitrogen in Lys or the 
Guanidine group in Arg) in Ab21 (C) and PDGF38 (D). The error bars represent the 95% confidence interval 
estimated using an ensemble of 100 predictions for each test set antibody.

Figure 5.  Key biophysical determinants of high viscosity. (A–D) The composition of the largest (A,C) and the 
five largest (B,D) positive-attribution patches in Ab21 (A,B) and PDGF38 (C,D). (E,F) The largest positive-
attribution patch and the variable region structure of two high-viscosity antibodies from Ab21 (E, mAb4) and 
PDGF38 (F, R1-003). Negatively charged amino acids at either ends of each patch combine with the nearby 
surface aromatic residue(s) to form large contiguous attribution patches. The light and heavy chain of each Fv 
structure are shown in cyan and magenta, respectively. The error bars represent the 95% confidence interval 
estimated using an ensemble of 100 predictions for each test set antibody.
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all PDGF38 antibodies (16% average aromatic content), most of which exhibit high viscosity (Fig. 5C,D). It is 
therefore reasonable to infer that the presence of aromatic residues would have a role in imparting high viscosity.

A potential molecular basis of how aromatic residues can exert such influence on viscosity can be understood 
by analyzing the positive-attribution patches in the context of the underlying Fv structure. Figure 5 shows two 
examples of high-viscosity antibodies [mAb4 (93 cP) and R1-003 (523 cP)], where aromatic residues make sub-
stantial (10% in mAb4 and 17% in R1-003) contribution to the largest positive-attribution patch. The attribution 
patch on both antibodies covers a wide area at the interface of the light and the heavy chain, with negatively 
charged amino acids at the opposite ends of both patches, which are separated by > 10 Å in mAb4 and > 20 Å 
in R1-003. Another common feature in these two examples is the presence of aromatic residues in the region 
between the flanking Asp/Glu residues. In the mAb4 example, a tyrosine residue (L-Y50) on the light chain sepa-
rates the negatively charged residues on either end of the attribution patch (L-E53 from H-D100 and H-E100B). 
The attribution patch on R1-003, on the other hand, overlaps with a cluster of surface aromatic residues (H-Y97, 
H-Y50, H-H95, L-H31, L-F32) that separate two pairs of negatively charged residues at the opposite end of the 
attribution patch (L-D50 and L-D51; H-D52A and H-D53). Thus, the two examples presented here point to a 
common mechanism where surface aromatic sidechains enable the formation of a large contiguous negative 
patch by connecting the distant negative charge patches due to Asp or Glu and therefore might contribute to the 
observed high viscosity in these molecules.

Models trained on surface hydrophobicity input are less generalizable. To assess the role of 
hydrophobicity, which has been described an important contributor to high-concentration viscosity in previous 
 publications13,15,29, we trained additional models using a 3D grid representation of the Fv surface based on Eisen-
berg hydrophobicity  scale13,15,30 of the underlying surface atoms (see “Methods”). Unlike the ESP grid, the Eisen-
berg grid comprised two channels, separately mapping the contributions from hydrophobic (positive Eisenberg 
scale) and hydrophilic (negative Eisenberg scale) surface atoms. As shown in Fig. S6, the generalization accuracy 
of the models trained with Eisenberg grid representation were worse than those trained using ESP input. The 
performance further degraded when the models were trained on a combined ESP-Eisenberg representation 
(cubic grid with 3 channels). While the performance gap between the ESP- and Eisenberg-based models can 
partly be attributed to how the PfAbNet architecture was originally developed and refined with ESP input, these 
results nevertheless demonstrate the importance of electrostatics over hydrophobicity-based features in describ-
ing the high concentration viscosity behavior of mAbs in our datasets.

Sensitivity to ESP representation settings, Fv conformational variability, and data augmen‑
tation. We tested the performance of our models by exploring different settings for the ESP grid resolution 
and the surface shell thickness. As expected, model showed better performance when the network was trained 
with higher resolution ESP grid (Fig. S7). However, the model performance is less sensitive to the surface shell 
thickness (Fig. S8).

Since high-throughput screening of early-stage mAbs, even before any materials are available, is an impor-
tant potential application of our method, we tested the impact of conformational variability in the Fv domain 
homology models on PfAbNet predictions. As shown in Fig. S9 and further discussed in Supplementary Note 2, 
the relative prediction variability due to alternate Fv input conformations is generally small, which gives us the 
confidence that structural variations in different homology models will likely have only limited impact on any 
prioritization and selection of early-stage antibodies based on the PfAbNet models.

We also assessed the impact of data augmentation on model performance by generating up to 10 samples 
by randomly rotating each dataset antibody at training and inference. As shown in Fig. S10, we obtained better 
or comparable performance when models were trained with 10 × augmentation and predictions were generated 
using an ensemble of 10 randomly rotated structure for each antibody compared to the other lower values for 
augmentation and ensemble sizes that we explored.

Discussion
Recognizing the importance of electrostatics as a key driver of antibody viscosity from previous studies, we chose 
the surface ESP map as the only input to our neural network, PfAbNet. This input representation restricts the 
network to focus only on the most important surface characteristics of the antibody variable region, masking less 
relevant structural details that could lead to overfitting. Moreover, as demonstrated by our sensitivity analysis, 
surface representations are generally less sensitive to conformational variability in homology models, which 
further helps improve generalization accuracy and practical utility of our approach.

The PfAbNet generalization performance demonstrated here is particularly notable because these models 
were trained on only a few dozen training examples, whereas the number of network parameters exceeded the 
training set by over 4–5 orders of magnitude. Furthermore, the network was trained only with the given ESP 
surface representation of the Fv region, without incorporating any prior knowledge about any sequence- or 
structure-based features that are known to be relevant for  viscosity14,15. Nonetheless, the network was able to 
learn how features such as negative electrostatics surface patches as well as positive charge centers around those 
patches influence the high concentration viscosity behavior of antibodies.

Although the role of negative charges on antibody viscosity has been recognized and mitigation strategies 
based on the removal of such charge patches have been successfully  applied24, mutation of Asp and Glu can also 
disrupt important electrostatic interactions with the antigen and can result in significant loss of binding affinity. 
Based on the importance of surface aromatic sidechains that can enlarge negative electrostatic patch, as identi-
fied by our attribution analysis, we believe that removing bridging aromatic residues, in some cases, can be an 
alternate strategy for reducing negative electrostatic patch area, and therefore, viscosity.
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While this study confirms the importance of electrostatics in determining antibody viscosity behavior, the 
absence of similar association with hydrophobicity could either be dataset dependent or a more nuanced analy-
sis may be needed to understand their role on viscosity. Protein–protein interaction (PPI) and reversible self-
association, which has been shown to correlate with  viscosity25,29, is known to be driven by a complex interplay of 
electrostatics and hydrophobic interactions, requiring specific spatial organization of charge centers and hydro-
phobic surface patches at the  interface31,32. Attribution analysis presented in this work could be further extended 
to investigate whether similar arrangements of surface ESP patches and intensities, representing distribution of 
charges and hydrophobicity, might also be a driver of high-concentration antibody viscosity.

Since access to large datasets is limited for many biological problems, a major challenge in applying machine 
learning in this field has been to develop generalizable models that can be trained under a low-N setting. Recent 
 publications33,34 utilizing embeddings generated from protein language  models34–36, trained on large corpus of 
protein sequence data, have shown that a high-level of generalization can be achieved in a limited training data 
regime. However, the work presented here demonstrates for the first time that a deep learning model, with p > > n 
can be trained from scratch to produce high-level of generalization.

Geometric deep  learning37,38, an emerging technique that has recently been utilized to learn protein surface 
 representations39,40, could be used as an alternative to the end-to-end 3D-CNN architecture presented here. 
However, unlike 3D-CNN, considerable time and effort is required to identify a relevant set of input features for 
training geometric deep learning models. Nonetheless, this method could be applied to the current problem to 
assess its generalization performance in a low-data regime.

The surface ESP representation, a key feature of PfAbNet, is not specific to antibodies and can be applied to 
other tasks where surface properties play important role, e.g., prediction of DNA-binding sites on DNA-binding 
proteins. We believe that our method can provide a more accurate prediction for this and similar tasks by captur-
ing the ESP surface features in much greater detail compared to the existing methods that utilize pre-computed 
structure-based41 or sequence-based42,43 descriptors.

Methods
Dataset. The heavy and light chain sequences of Ab21 antibodies and the corresponding experimental vis-
cosity at 150 mg/mL concentration were obtained from the previous study by  Lai12. The PDGF38 sequences and 
the corresponding measured viscosity at the same 150 mg/mL concentration were obtained from an earlier pub-
lication by  Apgar23. Although the viscosity profiles of the antibodies in these two sets were measured at slightly 
different pH (6.0 for Ab21 vs. 5.8 for PDGF38), our results demonstrates that models trained on Ab21 can be 
meaningfully evaluated on the PDGF38 set, and vice versa.

Structure modeling and ESP representation. The Fv domain models were generated using Biolumi-
nate software package (2021-2 release, Schrodinger LLC, New York). A single homology model for each sequence 
in our data set was generated using the default Bioluminate settings. By default, the models were generated with 
the Chothia numbering scheme. The sensitivity analysis of PfAbNet to input Fv conformations was based on 10 
homology models that were generated using the “-nmodel 10” option in Bioluminate.

For each homology model representing an Fv region, a 3D grid representing the electrostatic potential surface 
was generated using the following procedure: (1) The coordinates of the protein were moved so that its center 
of mass was located at the cartesian origin, (2) the  Connolly44 molecular surface was generated using OpenEye 
Spicoli toolkit (release 1.5.2.1, OpenEye Scientific Software, Santa Fe, NM) using 0.75 Å grid resolution and 1.4 
Å probe radius, (3) the ESP was calculated using the Poisson-Boltzmann45 method from OEZap toolkit (release 
2.4.1.1, Openeye Scientific Software, NM), using  OPLS_200546 charges with inner and outer dielectric constants 
of 1 and 80, respectively, (4) the ESP around the molecular surface was mapped onto a cubic grid ranging from 
− 36 Å to + 36 Å along each Cartesian axis with a uniform spacing of 0.75 Å between grid points. Grid points 
located inside the molecular surface, where ESP is ill-defined, were masked. Additionally, grid points located 
outside, but > 2 Å distance from the molecular surface were also masked. This resulted in a surface shell of 
approximately 2 Å thickness with non-zero ESP at grid points located within this shell; all other masked grid 
points were assigned a numerical value of zero.

We adopted commonly used techniques (e. g. Poisson-Boltzmann) and parameter settings (e. g. probe sphere, 
dielectric constants, and charges) to generate the input ESP grids. However, the grid spacing and the surface 
shell thickness were determined by independently exploring various reasonable values of these parameters. The 
parameter settings that produced the most performant models (Figs. S7 and S8) were selected.

3D convolutional neural network. 3D-CNN models were defined and trained using the  PyTorch47 (ver-
sion 1.10.0) deep learning framework. The network comprised 6 convolutional layers, each with 3 × 3 × 3 ker-
nel, followed by a rectified linear activation unit (ReLU) and a max pooling layer. The first convolution layer 
comprised 4 filters. The number of filters in each successive layer was doubled and the max pooling operation 
reduced the spatial dimensionality by half. The output of the final convolution layer is flattened to produce a 
1024-dimensional feature vector, which is then passed through a drop out layer with a  dropout48 rate of 0.05, 
and finally to the output layer comprising a single node. The network weights were initialized using the  Glorot49 
scheme. The network was trained by minimizing Huber loss using  ADAM50 optimizer with default parameters. 
The models were trained with a batch size 1 and a fixed learning rate of  10–5.

Hyperparameter tuning. As noted earlier, the PfAbNet architecture was developed using only our inter-
nal data. Hyperparameter tuning was performed to train the most accurate model, as measured by the Spear-
man rank-order correlation and ROC-AUC, across the leave-group-out test sets, where training/test split was 
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done based on the therapeutic program. Individual parameters, including learning rate, batch size, model depth, 
number of convolutional filters, kernel size, pooling type, and weight decay, were adjusted iteratively by sampling 
commonly accepted range of values for these parameters. Learning rate was sampled between 0.01 and  10–6 at 
equally separated points that differed by an order of magnitude. Batch size values of 1, 2, 4, 8, 16, and 32 were 
explored. Model architectures that increased the feature maps by a factor of 2 after each successive layer were 
explored, sampling the following feature map sizes for the first layer: 2, 4, 8, 16, and 32. The depth of the model 
was varied between 2 and 8 convolution blocks. Alternate architectures where the feature map size was initially 
increased for the first few layers than gradually decreased over the next successive layers were also explored. 
Models with the following kernel size for the convolutional layers were trained: 3, 5, 7, 9, and 11. Networks con-
taining L2 regularization of convolutional layers with weight decay values of  10–2,  10–3, and  10–4 were trained. 
Max and average pooling layers with kernel size of 2 and 4 were used as part of the hyperparameter tuning 
exercise. Model architectures comprising fully connected layers of varying width with number of nodes between 
10 and 500 were explored.

Data augmentation. We used data augmentation to overcome the challenges posed by insufficient train-
ing data. Each starting Fv homology model was randomly rotated, generating 10 samples for each training data 
point. The coordinates of each resulting structure were then used to generate the ESP grid. This data augmenta-
tion approach provides an additional benefit for the current task as it can potentially mitigate the well-known 
issue of instability in ESP calculations due to their sensitivity to the separation between charge centers and grid 
points. The same data augmentation procedure was also applied at inference and predictions from each rotated 
structures were averaged to produce viscosity of the test molecule.

PfAbNet training and inference. The network was trained from scratch, generating two separate PfAb-
Net models that we refer to as: (1) PfAbNet-PDGF38 (model trained on the PDGF38 set) and (2) PfAbNet-
Ab21 (model trained on the Ab21 set). We trained additional models, referred to as PfAbNet-LOOCV, to test 
leave-one-out cross-validation performance, where each Ab21 antibody is left-out once as the test set while the 
model is trained on the remaining 58 antibodies (38 from the PDGF38 and 20 from the Ab21 set). The PDGF38 
antibodies were excluded from this LOOCV test because high sequence similarity within this set will result in 
artificially high leave-one-out prediction accuracy for these antibodies. Whereas the Ab21 antibodies are signifi-
cantly diverse (Fig. 1L) and, therefore, a LOOCV performance on this set is expected to be a good indicator of 
the generalization performance of our network.

Each of the three PfAbNet models (PfAbNet-Ab21, PfAbNet-PDGF, and PfAbNet-LOOCV) refer to an 
ensemble of 10 models, each trained using tenfold cross-validation split of the data into training and validation 
sets. In each case, the network was trained for 2000 epochs and the model with best validation loss in the last 50 
epochs of the training was saved for evaluation.

The inference for each test set antibody was obtained using an ensemble of 10 structures that were generated 
through random rotation of the starting Fv structure, as described above. Each structure in the ensemble was 
then used as input to each of the 10 cross-validation PfAbNet models, thus generating a total of 100 predictions 
for each test set molecule. The final prediction was taken as the average of these 100 predictions.

PfAbNet inference time. Given a 3D structure or a model of an antibody variable region, the PfAbNet 
end-to-end pipeline takes approximately 10 min using an Intel Xeon CPU core and an Nvidia Tesla V100 GPU. 
Since molecular surface and ESP calculations take nearly all the compute time, a 10 × higher throughput can be 
achieved simply by running these calculations on each rotation-augmented structure in parallel on a multi-core 
workstation that are commonly used in research settings today.

Model interpretation by integrated gradients attribution. The Integrated Gradients implementa-
tion of PyTorch Captum library was used to compute attribution of predicted viscosity with respect to each 
point in the input ESP grid. We used the PfAbNet-PDGF and PfAbNet-Ab21 models to calculate attribution grid 
for each antibody in the corresponding left-out test sets, Ab21 and PDGF38, respectively. To gain meaningful 
insights, we focus our analysis on a subset of highest magnitude attribution points, calculating separate “signifi-
cant attribution” thresholds for PfAbNet-PDGF and PfAbNet-Ab21 models. To determine significant attribution 
threshold for a given model, we first combined the predicted non-zero attribution scores from each antibody 
in the corresponding test set. The standard deviation of the resulting distribution was taken as the significant 
threshold for that model. Using this approach, we obtained the significant threshold of the PfAbNet-PDGF and 
PfAbNet-Ab21 models as 4.1e−4 and 3.7e−4, respectively. Figure S11 shows the distribution of attribution scores 
of Ab21 and PDGF38 antibodies.

Each antibody contains several spatially distinct patches of attribution points. A patch was defined as a con-
tiguous segment of significant attribution points such that each constituent point was within 1.5 Å (twice the 
grid resolution) from at least one another point in that patch.

The biophysical feature composition of each patch was determined by assigning each constituent attribution 
points to one of the following category, based on the type of the nearest protein atom: (1) Asp/Glu (any sidechain 
atom from these negatively charge amino acids), (2) hydrogen bond acceptor (any Oxygen, except the Asp/Glu 
carboxylate), (3) aromatic (any sidechain atom from His, Phe, Tyr, or Trp residue), (4) hydrogen bond donor 
(any Nitrogen, except those that are part of any previous category) and Lys/Arg (any atom from the Lys amino 
or the Arg Guanidine group), or (5) lipophilic (any Carbon atom, except those included in any other category).
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The same procedure was applied to assign each grid point to a Fv segment: the framework region or a CDR 
loop. Subsequently, the composition of the largest and the five largest attribution patches on each test set antibody 
to different Fv segments were calculated.

The impact of proximal positive charges on sidechain carboxyl attributions was calculated using the following 
procedure. For each test set antibody, we first created a proximal and a distal set, each comprising non-over-
lapping subset of Asp and Glu residues in the molecule. These two sets were constructed based on the distance 
between the carboxylate and the nearest positive charge center (positively charged nitrogen atom in Lys or the 
Guanidine group in Arg): proximal ( dmin,caboxylate−cation ≤ 3.5 Å) and distal ( dmin,caboxylate−cation ≥ 5 Å). Next, 
for each set (proximal and distal), we calculated an average attribution score from the attribution score of grid 
points associated with the sidechain carboxyl atoms in each group. The association between a grid point and the 
corresponding carboxylate was made using the following two criteria: (1) the closest protein heavy atom to that 
grid point was part of the carboxyl motif and (2) the minimum distance between the grid point and at least one 
of the three carboxyl atom was less than 4.0 Å.

Representation of Eisenberg hydrophobicity and hydrophilicity. An Eisenberg representation was 
described by two separate cubic grids, hydrophobic and hydrophilic, each with the same dimension and grid 
spacing as used for ESP grid. Each grid was constructed by mapping either the hydrophobic or the hydrophilic 
atomic densities onto the grid points. The sign of Eisenberg hydrophobicity  scale30 was used to classify an amino 
acid as hydrophobic or hydrophilic. Starting from a given Fv structure, both types of grid were generated using a 
similar procedure, as described here for the hydrophobic grid: (1) hydrophilic amino acids (residues with nega-
tive Eisenberg scale) were removed, (2) van der Waals radius of each remaining atom was set to 3 × the Eisenberg 
scale (absolute value) of the parent amino acid, (3) density at each grid point was calculated as a linear sum of 
the contribution from each atom-centered Gaussian in the molecule, where each Gaussian was described by the 
same height, but the width was determined by the atomic radius (Eisenberg scale) set in step 2, and (4) similar 
to the ESP representation, grid points that were located either inside the molecular surface or those that were 
located > 2 Å distance outside of the surface were masked, setting the value of those grid points to zero.

Data availability
The datasets generated and/or analyzed during the current study are either available in the PfAbNet-viscosity 
github repository or can be reproduced using the code and Jupyter Notebooks available in this repository. pfizer- 
opens ource/ pfabn et- visco sity (github.com).

Code availability
Code for PfAbNet model training and inference as well to reproduce all analysis and figures presented in this 
work is available at pfizer- opens ource/ pfabn et- visco sity (github.com).
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