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Majority networks and local 
consensus algorithm
Eric Goles 1,4, Pablo Medina 2,3,4 & Julio Santiváñez 1,4*

In this paper, we study consensus behavior based on the local application of the majority consensus 
algorithm (a generalization of the majority rule) over four-connected bi-dimensional networks. In this 
context, we characterize theoretically every four-vicinity network in its capacity to reach consensus 
(every individual at the same opinion) for any initial configuration of binary opinions. Theoretically, 
we determine all regular grids with four neighbors in which consensus is reached and in which ones 
not. In addition, in those instances in which consensus is not reached, we characterize statistically 
the proportion of configurations that reach spurious fixed points from an ensemble of random initial 
configurations. Using numerical simulations, we also analyze two observables of the system to 
characterize the algorithm: (1) the quality of the achieved consensus, that is if it respects the initial 
majority of the network; and (2) the consensus time, measured as the average amount of steps to 
reach convergence.

Several new technological and social collective phenomena have emerged as a consequence of many interact-
ing elements’ dynamics. An example of this is consensus, a phenomenon in which the macroscopic state of 
the whole system is produced when all elements of the system exhibit the same microscopic state, which may 
explain the emergence of the leading majority over a population of individuals. In this sense, blockchain-based 
 applications1–4, dynamics of opinion  formation5–12, physiological and ecological  systems13–15, gene  networks16–18, 
and  transportation19–21, among others, are examples of the landscape of systems in which these majority dynam-
ics emerge.

Even though there are various approaches to modeling these dynamics in the literature, the most com-
mon mechanisms are related to considering the local majority. Henceforth, there are two possible opinions (or 
states) that every individual (represented by an agent or a node in a network or cellular automata model) may 
assume, namely +1 and −1 in a mathematical formulation; in a resemblance to the Ising spin model of Statistical 
Mechanics to study  magnetism22. Then, every individual interacts locally with individuals in his/her neighbor-
hood, assuming the most common opinion in this set, and in case of a tie, the individual keeps his/her status 
unchanged. This procedure is carried out by selecting one individual randomly and repeating until dynamics 
reach an asymptotic state. Two of the most interesting asymptotic states are those in which the whole population 
assumes the same state, namely the states +1∗ (all individuals have +1 state) and −1∗ (all individuals have −1 
state), in our notation. We denote any of these situations as consensus. In addition, other fixed points different 
from the consensus ones may emerge, namely for this work spurious points, in which the two opinions appear 
once the asymptotic state is reached.

Beyond different variations of the evolution rules and other algorithmic details, in a nutshell, the body of 
research that considers the majority rule algorithm may be divided roughly into two wide categories: one in which 
agent connections are changing as the system  evolves23–25, and the other that considers static networks, in which 
vertex’s neighborhoods remain invariant in  time6,7,26. In a physical interpretation, the first category represents 
the interaction of particles in a “gas”, where individuals are colliding with others varying their interactions as the 
system evolves. This model has been studied experimentally in NKN’s white  paper25, in which every individual 
interacts only with a fixed number of individuals chosen randomly in each simulation step. The recurrent evolu-
tion of the system under this rule guarantees the capacity to achieve consensus. As for the second category, it may 
be thought of as a “crystal model”, where particles interact in a fixed network, so with fixed vicinity. This approach 
may be interpreted as automata networks with the local majority  function27–30. Research of these models has 
provided a variety of important results attained to complex topologies (i.e., Erdos–Renyi graphs, Watts–Strograts 
graphs, Barabasi–Albert graphs, cellular automata), which show how consensus dynamics appear in every type of 
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network. Results related to these topologies are useful to provide an explanation based on statistical descriptors 
like centrality measurements probability distributions, distance descriptors, clustering domains, etc.

The classical majority rule over finite graphs and regular lattices (“crystal” model) has been extensively studied 
from dynamic and complex points of view. According to Goles et al.31,32, dynamically, the synchronous update 
converges to fixed points (i.e., invariant configurations under the application of the majority rule) and two-period 
cycles; while the asynchronous update converges only to fixed points, but not necessarily the consensus ones. This 
last one has also been verified for iteration over Erdos–Renyi  graphs33–36, obtaining the same outputs, something 
that let us think that eliminating the regularity does not produce better consensus results.

Given this, in this paper, we introduce the Majority Consensus Algorithm (MCA), which is a variation of the 
usual majority rule. Unlike the classical majority where the local rule is applied always over the whole vicinity of 
a site, in the MCA the majority rule is applied over randomly chosen subsets in the vicinity of a site; therefore, 
this algorithm can be understood as a generalization of the majority rule. In this work, we study MCA in regular 
grid-type graphs, allowing us to characterize whether or not the MCA achieves consensus in two-dimensional 
lattices with four-individuals neighborhoods. When there is no consensus (i.e., the system evolves to spurious 
fixed points), we measure the proportion of those configurations in an ensemble of initial ones characterized by 
a magnetization-type quantity (the sum of individual states in a configuration) that do not achieve the ±1∗ states. 
It is important to mention that our analysis is developed exhaustively in the framework of every two-dimensional 
grid with variants of the Von Neumann Neighborhood. Actually, after applying the MCA over subsets of two or 
more individuals in arbitrary size grids, we prove analytically in which cases it converges to consensus, as well as 
in which cases the system converges to spurious fixed points. It has to be pointed out that, despite the regularity 
and low density of the regular grids considered in our approach (every individual has only four neighbors), one 
may observe a consensus-type behavior like those that appear in dense complex  networks7. We then analyze two 
observables of the MCA model: (1) the quality of the achieved consensus, that is if it respects the initial major-
ity of the network (like in the Density Classification Task in Cellular  Automata37); and (2) the consensus time, 
measured as the average amount of steps to reach consensus. All cases that reach perfect consensus exhibit similar 
quality among them; i.e., there is no significant sacrifice in classification performance among all studied grids. 
Regarding the consensus time, “crystal” models have slower convergence times than the “gas” ones, especially 
for balanced initial configurations (similar initial amount of the two opinions).

This paper is written as follows. After this brief introduction, we present some definitions, metrics and intro-
duce the algorithm. Then, we present our theoretical and simulation results. Finally, we present a discussion 
and final remarks.

Model, algorithm and metrics
The model and opinion formation rules. Consider a finite graph G = (V ,E) , where V is the set of ver-
tices (or individuals) and E is the set of edges (possible communications among individuals). Denote the set of 
neighbors of a vertex v ∈ V  as Nv . For the purposes of this work we use a two-dimensional n×m grid; i.e. a graph 
G = (V ,E) where V =

{(

x, y
)

: 1 � x � n ∧ 1 ≤ y ≤ m
}

 and E = {(x1, y1)(x2, y2) : |x2 − x1| + |y2 − y1| = 1} 
(the nearest neighbor). Figure 1 shows its structure and two classical neighborhoods. Let’s define the vertex-
degree k of a node as the number of individuals connected to this node.

Over the grid, in this study, we consider every non-equivalent four individuals’ vicinity between the eight 
nearest ones (as shown in Fig. 2). The reader may note that Case G14 corresponds to the Von Neumann’s 
Neighborhood.

At time step t, each node v in V holds a state sv(t) ∈ {−1,+1} , representing its opinion. As mentioned in the 
Introduction, the update operator is the Majority Rule over the neighborhood Nv of vertex v, which is math-
ematically described as:

The majority consensus algorithm. At the beginning of the opinion dynamics each vertex is endowed 
with an initial state sv(0) drawn from {−1,+1} at a certain distribution. At each time step, a node is randomly 
chosen and its state is updated following the Majority Consensus Algorithm (MCA): (1) randomly select subsets 

(1)sv(t + 1) = f (su(t) | u ∈ Nv) =
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Figure 1.  (A) Two-dimensional grid, (B) Von Neumann’s and (C) Moore’s Neighborhoods.
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of k > 1 individuals within its neighborhood (see an example in Fig. 3); and (2) apply the Majority Rule on the 
selected individuals.

We say that the previous procedure converges to a fixed point if and only if every state in the grid does not 
change under the application of the MCA. Further, we say that the procedure converges to a consensus state if 
and only if the fixed point is either −1∗ or +1∗.

It has to be mentioned that the one-neighbor choice is intentionally forbidden. This is done to disconnect our 
algorithm from the Voter  Model38 which has been already studied and proved to have poor quality consensus 
regarding its respect to initial majority and time of convergence, (see Fig. 4). Moreover, it has to be said that MCA 
includes the possibility to choose k = 2, 3 or 4 neighbors for the algorithm to obtain faster times of convergence 
(see Fig. 5 for a comparison example among MCA using k = 2, 3 or 4 neighbors and MCA using just k = 2).

Numerical simulations’ metrics. For numerical simulations, we compute the following metrics: consen-
sus efficacy, classification efficacy, and convergence time. All of these metrics are defined as functions of the initial 

Figure 2.  Non-equivalent (by rotations or reflections) four individuals’ vicinities and their associated 3× 3 
grids.

432
1Nv =

{1,2}, {1,3}, {1,4}, {2,3}, {2,4}, {3,4}
{1,2,3}, {1,2,4}, {1,3,4}, {2,3,4}
{1,2,3,4}

Figure 3.  Possible selections of k individuals, formed by k = 2, 3 or 4 nodes. At each iteration, one of the sub-
neighborhoods must be selected and the majority rule applied.
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magnetization m = (N+1 − N−1)/N , where N+1 and N−1 are the number of +1 and −1 individuals respectively. 
Note that magnetization in our context is an operator over a state. In this sense, m ∈ {−1,+1} , such that when 
all nodes in the network have state sv = −1 (i.e., for all v), m = −1 , and when all nodes in the network have 
state sv = +1 , m = +1 . To describe the three metrics mathematically, let’s define the ensemble Sm(0) a set of �s(0) 
configurations with initial magnetization m. Then, we define the following subsets: 

1. Sm+1(∞) the set of the configurations that evolve from Sm(0) and converge to �s∞ = +1.
2. Sm−1(∞) the set of the configurations that evolve from Sm(0) and converge to �s∞ = −1.
3. Sm∗ (∞) the set of the configurations that evolve from Sm(0) and converge to any other attractor different to 

�s∞ = ±1.
4. Sm>0(∞) the set of the configurations that evolve from Sm(0) and converge to a configuration which magneti-

zation is greater than zero.
5. Sm<0(∞) the set of the configurations that evolve from Sm(0) and converge to a configuration which magneti-

zation is less than zero.

Let || · || be the cardinality of a set. Then, we define the consensus efficacy ξ as:

and the classification efficacy ζ as:

We take the expected amount of time steps for convergence of Sm(0) as the convergence time.

Four-vicinity two-dimensional grids and consensus
Proposition. From the consensus point of view, by considering any regular grid associated with four individuals of 
Fig. 2, we have the following results:

(2)ξm =
||Sm+1(∞)|| + ||Sm−1(∞)||

||Sm(0)||

(3)ζm =

{

||Sm>0(∞)||

||Sm(0)|| , if m > 0
||Sm<0(∞)||

||Sm(0)|| , if m < 0.

Figure 4.  Consensus efficacy ξm and classification efficacy ζm of the evolution of a set of initial configurations 
characterized by a magnetization m considering the Von Newmann vicinity, from which at each step only one 
neighbor is chosen and the majority rule applied. This result was obtained for a grid of N = 441 nodes with 
asynchronous iterations. The reader may note that even if all configurations reach consensus ( ξm = 1 ), this 
approach has poor quality regarding its classification metric, i.e. ζm  = 1 for all instances.

Figure 5.  Comparison among MCA over Grid G1 using k = 2, 3 or 4 neighbors and MCA using just k = 2 . 
Both algorithms achieve perfect consensus and their classification efficacies do not present a significant 
statistical difference; the reader may note the latter in the left figure. However, MCA using k = 2, 3 or 4 obtains 
statistically faster convergence times (right figure).
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• For arbitrary size grids G1 , G2 , G3 , G5 , G11 and G13 the application of MCA converges always to consensus.
• For arbitrary size grids G4 , G6 , G7 , G8 , G9 , G10 , G12 and G14 there is not consensus. It means that there exist 

spurious fixed points different from −1∗ or +1∗.

Proof. We must prove that, for any initial configuration of opinions considered, the application of the MCA 
algorithm reaches one of only two fixed points −1∗ or +1∗.

Let us consider a finite grid of arbitrary size defined by the neighborhood G1 (refer to Supplementary Informa-
tion Annex III online for other cases, for the rest the proof is similar) and let us suppose that there is a fixed point 
other than −1∗ or +1∗ , i.e., a stationary state in which there are opinions −1 and +1 . Then, there must necessarily 
exist somewhere in the grid two different opinions in the same neighborhood, like its shown in Fig. 6. Since it is a 
fixed point then, by application of MCA for every two sites, the −1 has to be invariant. So, if a = +1 or b = +1 or 
c = +1 , then there will be two +1s in the vicinity; hence, by applying the MCA over these two individuals the −1 
will change to +1 which is a contradiction since we supposed the configuration was a fixed point. Now consider 
a = b = c = −1 . In this case a and b are in the +1 neighborhood and clearly, by applying the MCA over these 
two individuals, the +1 will change to −1 ; which is a contradiction. For other initial positions of the opinion +1 
in the neighborhood, the demonstration is the same. Therefore, the only fixed points are those of consensus. We 
have thus proved that, apart from the two consensus configurations, all the others are not stationary, i.e., they 
vary by applying the algorithm.

On the other hand, given an arbitrary configuration, there is always a way to apply the algorithm that leads to 
a fixed point of consensus. For example, apply the procedure to all nodes in state +1 until some subset is fixed, 
then, as the remaining −1 opinions cannot be fixed (there would be a spurious fixed point) there will necessarily 
be a choice of neighbors that carry them to opinion +1 . Due to the monotony of the majority rule, we obtain, 
in this case, the convergence to the consensus state +1∗ . The same can also be done starting by applying the 
procedure to the nodes in state −1 . The important thing is that every configuration will at some point reach one 
of the consensus states.

For grids with spurious fixed points we exhibit the following configurations: for cases G4 and G12 , the chess 
configuration is invariant for the MCA algorithm (Fig. 7). For cases G6 , G7 , G8 and G14 , the upper/right border 
is invariant for the MCA algorithm (Fig. 8). Finally, for cases G9 and G10 , the diagonal border is invariant for the 
MCA algorithm (Fig. 9).

Figure 6.  (A) Grid G1 ’s vicinity. (B) Supposed stationary state other than −1∗ or +1∗.

Figure 7.  Chess configuration: spurious fixed point for grids G4 and G12 . State +1 is represented by color black 
and −1 is represented by color white.
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Numerical experiments
We study the evolution of the MCA algorithm for all grids of Fig. 2. We perform simulations over 21× 21 toruses 
with an ensemble of initial configurations binomially distributed in terms of magnetizations. For each simula-
tion, we compute the following observables: Consensus Efficacy, Classification Efficacy and Convergence Time; 
all as a function of the initial magnetization m (see definitions in a previous section).

Numerical results show that, as expected, grids G1 , G2 , G3 , G5 , G11 and G13 achieve 100% consensus. On the 
other hand, Fig.  10 shows the consensus efficacy metric for grids G4 , G6 , G7 , G8 , G9 , G10 , G12 and G14 ; where it can 
be noticed that these models can not guarantee perfect consensus. Grid G4 is a special case because, although it 
has the chessboard pattern as a spurious fixed point when the grid has an odd number of nodes (as in a 21× 21 
torus), this pattern (chessboard) can not be obtained under periodic boundary conditions. For all models with 
non-perfect consensus, simulation results show a bounded range of magnetizations m with consensus troubles 
(for m > 0.2 or m < −0.2 this metric has perfect behavior).

Previous results are consistent with the percentage of Initial Configurations that converge to spurious fixed 
points for each model (see Table 1). As it can be observed, grid G12 shows the worst consensus performance. This 
behaviour is explained by the fact that this particular grid can be decomposed into 2 independent Von Neumann 
neighborhood sub-systems (which form a non-connected graph), so its attractors are compositions of the latter.

The quality of consensus, measured through the Classification Efficacy, is meaningful only for models G1 , 
G2 , G3 , G5 , G11 and G13 (which reach perfect consensus). Therefore, Fig. 11 shows results only for those cases. 
As can be observed, MCA acting over a lattice-based “crystal model” achieves similar consensus quality for all 
simulated cases. In effect, results show a bounded range of magnetizations m with classification troubles (for 
m > 0.2 or m < −0.2 this metric has perfect behavior). Additionally, having performed a statistical analysis using 
10 independent realizations for each grid over the same ensemble of Initial Configurations, the overall classifica-
tion performance does not account for significant differences ( p-value = 0.668 , see Supplementary Information 

Figure 8.  Upper/right border configuration: spurious fixed point for grids G6 , G7 , G8 and G14 . State +1 is 
represented by color black and −1 is represented by color white.

Figure 9.  Diagonal border: spurious fixed point for grids G9 and G10 . State +1 is represented by color black and 
−1 is represented by color white.
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Annex I online). It could be interesting to perform a detailed comparison of the classification efficacy between 
grid models and the gas one. For the latter, at each time step, an individual is randomly chosen and two, three, 
or four neighbors are also randomly selected for the majority rule to be applied. Through the statistical analysis, 
we found no significant sacrifice in classification performance when comparing all models for magnetizations 
m > 0.2 or m < −0.2 . However, for balanced initial configurations ( −0.2 < m < 0.2 ) the gas model outperforms 
grid models ( p-value = 0.00001 , see Fig. 12).

As for the quality of consensus, the convergence time analysis is pertinent only for grids G1 , G2 , G3 , G5 , G11 
and G13 (which reach perfect consensus). Therefore, Fig. 13 shows their results also compared to Gas Model for 
k = 2, 3 or 4. As can be observed, grid models have higher convergence times, especially for balanced magneti-
zations. Statistical analysis for global convergence time shows that the gas model is the fastest, and grid 3 is the 
slowest ( p-value = 0 , please refer to Supplementary Information Annex II online, for detailed results).

Table 1.  Percentage of initial configurations that converge to spurious fixed points.

Grid Consensus (%) Classification (%) E [ τ] % ICs cv spurious fixed points (%)

1 100.00 97.34 27.36 0

2 100.00 97.12 30.83 0

3 100.00 97.45 31.25 0

4 100.00 97.56 20.69 0

5 100.00 98.00 31.15 0

6 97.78 95.57 23.76 2.22

7 98.12 96.56 28.36 1.88

8 96.78 94.57 41.27 3.22

9 99.56 96.78 21.16 0.44

10 97.67 96.45 28.5 2.33

11 100.00 97.34 24.4 0

12 96.34 94.46 41.09 3.66

13 100.00 97.56 21.91 0

14 97.23 95.45 42.72 2.77

Figure 10.  Non-perfect consensus efficacy: grids G4 , G6 , G7 , G8 , G9 , G10 , G12 and G14 ; 21× 21 Toruses, Periodic 
Boundary Conditions and Asynchronous Update. Grid G4 has a special condition because the pattern of its 
spurious fixed point (chessboard) cannot be obtained from an odd number of nodes (as in a 21× 21 torus).
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Discussion
In this paper, we introduce the application of the MCA to study consensus in two-dimensional lattices with four-
individuals neighborhoods. In particular, we proved theoretically the situations in which grids of four individuals 
achieve or do not consensus and characterized statistically, from an ensemble of initial configurations with a 
particular magnetization, the proportion in which consensus is not reached. We also proposed two observables, 
the quality of the achieved consensus, and the consensus time to characterize the results of our algorithm.

Figure 11.  Classification efficacy: grids G1 , G2 , G3 , G5 , G11 and G13 ; 21× 21 toruses, periodic boundary 
conditions and asynchronous update.

Figure 12.  Classification Efficacy, 21× 21 Toruses, Grid G1 and Gas model k = 2 , 3, 4. On the left, the 
classification efficacy over the entire range of possible magnetizations. On the right, a point-by-point estimation 
using 103 initial configurations for each exact value of m over a smaller range [−0.2, 0.2] . The simulation results 
are averaged over five independent realizations with error bars representing the standard deviation.
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The fact of considering a regular grid allows us to characterize in which cases consensus is reached and in 
which cases is not. From Fig. 2, we found that when applying MCA over subsets of two or more individuals of 
the grids type G1 , G2 , G3 , G5 , G11 , and G13 consensus is always reached. On the other hand, for grids G4 , G6 , G7 , 
G8 , G9 , G10 , G12 and G14 ; there emerge spurious fixed points different from −1∗ or +1∗.

We proved that one may find consensus in low dense regular grids and we also studied, experimentally, the 
quality of such consensus. Our statistical results show, on average, over 96% of initial configurations regarding 
the initial majority (see the Density Classification Task in  CA10,20), and all the studied grids exhibit similar qual-
ity among them (there are no significant statistical differences). In cases that perfect consensus is not reached, 
other attractors than −1∗ and +1∗ are always fixed points, but “spurious” ones. Experimentally we show that the 
attractor basin of such fixed points is small except for grid G12 which has a special behavior because of being 
formed by the composition of two independent Von Neumann sub-systems. In fact, we have proved (theoreti-
cally as well as experimentally) that small regular lattices (4-vicinity, 2-dimensional ones) may reach consensus 
with similar quality to gas models or dense class of networks.

Previous results could be generalized to other neighborhoods on regular grids, particularly in the two-
dimensional ones studied in this work. In effect, one may consider a neighborhood other than Moore’s vicinity 
and inside of it select a fixed sub-neighborhood with k sites to build new lattices (in the paper lattices are based in 
4 neighbors, as in Fig. 2). However, our characterization technique strongly depends on the regularity of the graph 
(number of neighbors as well as the topology) and it is not possible to extend to arbitrary families of networks. 
A different approach for future work, considering this same class of regular networks, is to study what happens 
when the local transition function, on which our MCA algorithm is based, is not necessarily the majority (which 
is monotone); but some other totalistic function (i.e., that depends only on the sum of the neighbors’ states). In 
general, it could be studied any combination of local rules to improve the quality of the MCA algorithm for some 
consensus network in the sense that a greater proportion of initial conditions converge to consensus in agreement 
with the majority opinion in the initial configuration (as in CA density  problem29,37). Another research question 
is related to the robustness of the consensus algorithms. That is to study how MCA behaves with respect to local 
errors or  attacks25; for instance, by considering a proportion of sites that always consider the minority opinion 
in its neighborhood. How will be its evolution? Does the damage (proportion of individuals with a different 
opinion in steady state) remain bounded or does it propagate all over the network? Another related problem 
is to analyze what happens when in the grid there are distrustful individuals; i.e., to change their opinion they 
require non the majority but rather a greater number of states in the opposite opinion (for example, a cell goes 
from −1 to +1 if and only if all its neighbors are in state +1).

Data availibility
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request. Correspondence and requests for materials should be addressed to J.S.
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