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Impact of air pollution on running 
performance
Marika Cusick 1*, Sebastian T. Rowland 2,3 & Nicholas DeFelice 4,5

Air pollution exposures during training may impact race performances. We aggregated data on 334 
collegiate male track & field athletes from 46 universities across the United States over 2010–2014. 
Using distributed lag non-linear models, we analyzed the relationship between race time and PM2.5, 
ozone, and two versions of the Air Quality Index (AQI) exposures up to 21 days prior to the race. We 
observed a 12.8 (95% CI: 1.3, 24.2) second and 11.5 (95% CI: 0.8, 22.1) second increase in race times 
from 21 days of PM2.5 exposure (10.0 versus 5.0 μg/m3) and ozone exposure (54.9 versus 36.9 ppm), 
respectively. Exposure measured by the two-pollutant threshold (PM2.5 and ozone) AQI was not 
significantly associated with race time; however, the association for summed two-pollutant AQI 
(PM2.5 plus ozone) was similar to associations observed for the individual pollutants (12.4, 95% CI: 
1.8, 23.0 s). Training and competing at elevated air pollution levels, even at exposures within AQI’s 
good-to-moderate classifications, was associated with slower race times. This work provides an initial 
characterization of the effect of air pollution on running performance and a justification for why 
coaches should consider approaches to reduce air pollution exposures while training.

High air pollution events such as wildfires have impacted numerous sporting events such as cancellation of 
several collegiate and professional running races including the Twin Peaks Mile and SF Bay Half Marathon and 
discussion of relocating a professional National Football League (NFL) game after practice was shortened due to 
smokey conditions1. Exposure to wildfire smoke is experienced throughout the world, creating concerns about 
whether athletes should train during a period when air pollution levels are high2. United States Environmental 
Protection Agency (USEPA) suggest limiting physical activity during periods of high air pollution3, 4; however, 
little is known about the impact of lower air pollution levels on athletes’ performance or health2. These concerns 
are not limited to wildfires, as there are many other environmental factors, such as vehicle emissions or nearby 
power plants, that can influence air quality. During exercise, an athlete’s pulmonary tidal volume increases relative 
to rest5 and breathing patterns transition from being nasal to predominantly oral, which bypasses air filtration6, 7;  
with greater airflow velocity, pollutants are carried deeper into the respiratory tract, potentially diffusing into 
the bloodstream or inflaming the cardiovascular system8, 9. Thus, training under moderate air pollution may 
counteract the benefits of exercise.

Athletic performance suffers in environments with high air pollution10. Evidence suggests that the effects of 
some pollutants are acute; for example, exposure to ozone can immediately impact athletic performance, due to 
respiratory discomfort11–13. Other pollutants like PM2.5 (particulate matter smaller than 2.5 microns) have been 
shown to yield impaired performance up to several days after the high exposure event14, 15.To decide when it is 
safe to train and compete, sports committees such as the National Collegiate Athletic Association (NCAA)16 
and National Federation of State High School Association (NFHS)17 use the Air Quality Index (AQI), a metric 
developed by the USEPA to communicate air quality risk levels to the public18. While these sports committees 
use the AQI to assess the safety of high pollution events19–21, little is done for repeated exposure to moderate 
levels of air pollution. Recent health studies have found evidence that even repeated low exposure, far below the 
AQI thresholds of NCAA, has health effects in the general population22–24.

Here, we provide a statistically-rigorous assessment of the impact of repeated exposure (i.e., exposure during 
training) to particulate matter (PM2.5) and ozone on race performance of high-caliber track & field collegiate 
athletes in the United States. We used three different metrics of exposures: (1) pollutant concentrations of PM2.5 
and ozone, (2) a two-pollutant version of the risk communication index (two-pollutant threshold AQI), and (3) 
a mixture of exposures by summing together the AQI values (summed two-pollutant AQI) over 21 days prior 
to their race outcome.
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Methods
Study design and population.  We conducted a retrospective observational study to estimate the asso-
ciation between repeated pollutant exposure and 5-km race times among NCAA collegiate track & field male 
athletes. To obtain race observations, we used the following procedure: (1) identified universities with top-tier 
running programs by identifying universities with at least one member who competed in the NCAA Division-1 
5-km final race during the years 2010–2014; (2) selected athletes from these universities who competed in iden-
tified NCAA sanctioned outdoor track & field 5-km race between March and June during the 2010–2014 NCAA 
track & field season. The study population was restricted to male subjects due to the time-intensive nature of the 
manual data collection. Our analysis was exempt from institutional review as all data was publicly available, and 
our research activity did not involve any interaction with individuals.

Race observations.  Race results and athlete information was obtained from the Track & Field Results 
Reporting System (TFRRS) database, maintained by the Direct Athletics Incorporation25. Details on the data-
base and process of obtaining data are in the supplement (Supplement section A).

Pollutant exposures.  Exposure profiles were developed for the 21 days: 20 training days prior to meet and 
day of the meet. This exposure profile accounts for the potential cumulative impact of pollutant exposure on 
cardio-respiratory system during training. Daily air pollution concentrations were assigned to census tracts of 
each athlete’s home university for 20 days prior to meet and meet location on meet date using the EPA down-
scaler model26, 27. The 21-day period accounts for dates spent training at the home university and competing at 
races away from the home university. Further details are provided in the supplemental sections B and C.

To calculate the AQI, the EPA designates pollutant-specific concentration breakpoints and provides a linear 
piecewise function18. The AQI breakpoints signify the level of health concern: good, moderate, unhealthy for 
sensitive groups, unhealthy, very unhealthy, and hazardous. When multiple pollutants are measured, the reported 
AQI is the highest index value among all pollutants. While AQI is traditionally reported based on five pollut-
ants (carbon monoxide, ozone, lead, PM2.5, and sulfur dioxide), we calculated the two-pollutant threshold AQI 
using PM2.5 and ozone, which drove 91% of observed AQI values in our study, further analyzed in the supple-
ment section D. Additionally, we hypothesized that the impact of air pollution exposure on performance is not 
independent between pollutants, so we evaluated the combination of two pollutants as additive rather than 
substitutionary, defined as the summed two-pollutant AQI value (addition of PM2.5-specific and ozone-specific 
AQI values). We compared the two-pollutant AQI values with the two-pollutant summed AQI values using 
Kendall’s tau, a measure of correspondence between two measurement approaches.

Confounders.  The meteorological conditions during the meet were measured by matching track race loca-
tion data to the corresponding grid and time for North American Land Data Assimilation Systems (NLDAS) 
project-228, 29. The NLDAS data is a 0.125°(~ 13 × 13 km grid cells) gridded product that provides hourly values of 
temperature measured in Kelvin 2-m above ground (°K), specific humidity measured in kilograms per kilograms 
2-m above ground (kg/kg), and 10-m zonal wind speed (m/s) and 10-m meridional wind speed (m/s)—wind 
speed was calculated as the hypotenuse of these values.

In addition to meteorological variables, we controlled for several performance variables specific to each 
athlete-race combination. We controlled for the athlete’s personal record prior to the 5-km race being evaluated 
and the athlete’s previous 5-km race time, both of which represent the athlete’s ability. We also controlled for the 
number of days since the previous 5-km race, athlete’s year in schooling, and number of days into the calendar 
year as a proxy for how athletes develop over a season. We included random effects for (a) the athlete’s home 
university and (b) race.

Non‑linear distributed lag model.  We employed distributed-lag non-linear models (DLNMs) to char-
acterize the lagged effects of exposure30. DLNMs can capture complex exposure-lag-response relationships by 
simultaneously adjusting for exposure at each lag, via non-linear terms such as natural splines. This type of model 
has been used in other studies on the lagged effects of air pollution and temperature on health outcomes31–36. In a 
DLNM, lagged exposure is represented as a crossbasis term, a combined basis matrix for the exposure dimension 
and lag dimension. For each exposure, the constraints of its basis matrix, i.e., its functional form, were chosen 
via Akaike information criterion (AIC). We tested varying degrees of freedom (df = 3, 4, 5) and equal and loga-
rithmic lag placements for both exposure and lag dimensions.

Final model.  We estimated the association between air pollutant exposure and race times using mixed-
effects linear models. First, we used the backwards stepwise AIC function to select the covariates of the base 
mixed-effects linear model without the crossbasis terms for air pollution exposure. Next, for each of the four 
exposures, we ran the model with selected covariates and compared AIC values, while varying functional forms 
of the cross-basis matrix. Our final model is represented by the following Eq. (1).

In this equation, i, j, k represent the race, athlete, and athlete’s home university of interest, respectively; Oij 
represents the 5-km race outcome of interest in total altitude-adjusted seconds; Tl is the air pollution expo-
sure matrix obtained by applying the basis functions to either PM2.5, ozone, two-pollutant threshold AQI, or 

(1)E[Oi,j,k] =

21∑

l=1

βlTl + �Xi + δi + γk
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summed two-pollutant AQI; βl represents the coefficients for the lagged air pollution exposure matrix Tl dif-
ferentiated by the lag day (l), which ranges from 0 to 21 days. For each of our four exposures, according to the 
AIC, we identified the optimal form of the cross-basis matrix for both the exposure–response and lag-response 
functions to be a natural cubic spline with 5 degrees of freedom (df) at equally spaced knots. The covariates in 
our equation are represented by Xi , and � is the vector of coefficients. Random intercepts for both the race and 
the athlete’s home university are represented by δi and γk , respectively. In the final model, the backwards AIC 
algorithm selected all covariates except for the previous 5-km race time. We estimated lag-response relationships 
and cumulative effect estimates for comparing exposure at the 80th percentile with the 20th percentile.

All analyses were conducted using R version 4.0.3 and the following packages: dlnm version 2.4.6 for the 
distributed lag model, lme4 version 1.1–27.1 for linear mixed-effects models, and MLmetrics version 1.1.1 for 
evaluation metrics30, 37, 38. All included data are publicly available; data and code used for analysis is available on 
Github (https://​github.​com/​marik​amaec​usick/​Runni​ngAP).

Sensitivity analyses.  First, given uncertainty of the impact that different lagged exposures may impose, 
we considered alternative number of lags by running the models using 14-day and 28-day lags for all four of our 
exposures. Second, we fit 1000 negative exposure models, which evaluate the impact of a perturbed exposure 
matrix randomly sampled from exposures in our study, on race outcomes. If we detected statistically significant 
associations for more than 5% of the models, this would suggest that our confidence intervals are overly con-
fident (i.e., too narrow)39, 40. We assessed the percentage of perturbed exposure matrices that had a statistically 
significant cumulative effect for each of our exposures when comparing the 20–80th percentile exposure.

Results
Summary statistics of the NCAA Division I Outdoor Track & Field 5-km race observations included in our study 
are presented in Table 1. After eliminating race results with missing information (n = 604), we identified a total 
of 1,104 performances at 143 races run by 334 elite male collegiate athletes from 46 different universities. The 
average altitude-adjusted race time was 14 min: 17 s (857.3 s) with a standard deviation of 26.2 s, and race times 
ranged from 13 min: 15 s (795 s) to 16 min: 9 s (969 s).

PM2.5 and ozone concentrations.  Figure 1a,b illustrate the distribution of observed pollutant (PM2.5 and 
ozone) exposures. 88% were within the good category for PM2.5 (0–12.0 µg/m3 ), 12% were within the moderate 
category (12.1–35.4 µg/m3 ), and less than 1% were within the unhealthy for sensitive groups category (35.5- 55.4 
µg/m3) (Fig. 1a). Of the ozone exposures in our study, 79% were within the good category (0–54 ppm), 20% 

Table 1.   Descriptive statistics. *6 athletes transferred to another region within study period.

Variable Count

Performance Athlete School Year

Freshman 101

Sophomore 257

Junior 355

Senior 391

Mean (SD) [minutes:seconds]

Previous 5-km Time (s) 855.9 (26.5) [14:15.9]

5-km Personal Record (s) 844.5 (26.3) [14:04.5]

Days since Previous 5-km 20.4 (11.0)

Days into the year 131.7 (19.8) (5/11)

Race Temperature (C) 16.8 (7.1)

Race Specific Humidity (kg/kg) 8.7 (3.8)

Race Wind (m/s) 3.7 (1.8)

EPA regions* Number of athletes

Region 1—Boston (serving CT, ME, MA, NH, RI, and VT) 23

Region 2—New York City (serving NJ, NY, Puerto Rico, the U.S. Virgin Islands and 8 federally recognized 
Indian Nations) 52

Region 3—Philadelphia (serving DE, DC, MD, PA, VA, WV and 7 federally recognized tribes) 57

Region 4—Atlanta (serving AL, FL, GA, KY, MS, NC, SC, and TN) 40

Region 5—Chicago (serving IL, IN, MI, MN, OH, and WI) 49

Region 6—Dallas (serving AR, LA, NM, OK, and TX) 38

Region 7—Kansas City (serving IA, KS, MO, and NE) 4

Region 8—Denver (serving CO, MT, ND, SD, UT, and WY) 17

Region 9—San Francisco (serving AZ, CA, HI, NV, American Samoa, Commonwealth of the Northern 
Mariana Islands, Federated States of Micronesia, Guam, Marshall Islands, and Republic of Palau) 40

Region 10—Seattle (serving AK, ID, OR, WA and 271 native tribes) 20

https://github.com/marikamaecusick/RunningAP
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were within the moderate category (55–70 ppm), and less than 1% were within the unhealthy for sensitive groups 
category (71–85 ppm) (Fig. 1b).

Figure 1c,d (maps) illustrate the variability of exposure across home university locations. PM2.5 and ozone 
exposures differ across university locations, as evident by the percentage of days with pollutant exposures higher 
than AQI’s pollutant-specific good threshold during the study period.

Associations of PM2.5 and ozone.  We observed a cumulative 12.8 (95% CI: 1.29, 24.2) second increase in 
5-km race times from 21 days of exposure to the PM2.5 concentration at the 20th percentile (5.0µg/m3 , AQI = 20) 
compared to the 80th percentile (10.0µg/m3 , AQI = 43) (Fig. 2a). Cumulative PM2.5 exposure at levels higher 
than 8 µg/m3 were associated with higher overall race times, and associations were statistically significant at 
levels higher than 10 µg/m3 but below AQI’s good threshold (Fig. 2c).

There was a cumulative 11.5 (95% CI: 0.8, 22.1) second increase in 5-km race time during the 21-day period of 
exposure when comparing the 20th percentile (36.9 ppm, AQI = 33) with the 80th percentile (54.9 ppm, AQI = 50) 
(Fig. 2b). We observed a positive cumulative association between ozone exposure and race time increases at 
a range of levels higher than 36 ppm, yet associations were only statistically significant above the AQI good 
threshold (54 ppm) (Fig. 2d).

Associations of two‑pollutant threshold AQI and summed two‑pollutant AQI.  In comparing 
the two AQI decision indices using the Kendall-Tau measure, we reject the null hypothesis that the two indices 
are statistically independent with a statistic of 0.68 and a p-value of 0.0. Cumulative exposure over the 21-day 
period measured by the two-pollutant threshold AQI was not significantly associated with race time (95% CI: 
− 5.23, 16.60) when comparing the 20th percentile (AQI = 36.1) with the 80th percentile (AQI = 55.1) (Fig. 3a). 
This result is emphasized by the Fig. 3c—while increases in the two-pollutant threshold AQI are associated with 
higher race times (Fig. 3d), there is no value at which the cumulative association is statistically significant at the 
95% confidence level.

The cumulative association of increased exposure at the 80th percentile (93.5) vs. the 20th percentile (58.5) 
measured by the summed two-pollutant AQI was similar to that seen of the individual pollutants (12.4 s, 95% 
CI: 1.76, 23.03) (Fig. 3b). We observed an increasing cumulative association between summed two-pollutant 
AQI exposure and slower race times at levels higher than 60.

Sensitivity analyses.  Using a thousand iterations of the perturbed exposure values, we observed that less 
than 5% had statistically significant cumulative associations for each of our exposures (PM2.5, ozone, two-pol-

Figure 1.   (a)–(d) Variations in PM2.5 and ozone concentrations (a) histogram of PM2.5 concentrations, the 
dashed line, dotted line and green line represent the 20th percentile: 4.9 µg/m3, 80th percentile: 10.3 µg/m3 
and AQI good threshold (< 50): 12 µg/m3 , respectively (b) histogram of ozone concentrations, the dashed 
line, dotted line, and green line represent the 20th percentile: 36.9 ppm, 80th percentile: 54.9 ppm, and AQI 
good threshold (< 50): 54 ppm, respectively (c) map of university locations colored by percentage of days with 
moderate-to-high PM2.5 according to PM2.5-specific AQI (d) map of university locations colored by percentage 
of days with moderate-to-high ozone according to ozone-specific AQI. Software: python version 3.9.1, 
matplotlib version 3.3.3 (histograms 1a, b), plotly version 5.5.0 (maps 1c, d).
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lutant threshold AQI, and summed two-pollutant AQI) when comparing our reference levels, 20th percentile 
exposure with 80th percentile. Additionally, less than 2% of the perturbed exposures simulations had statistically 
significant cumulative increases in race times, thus providing more confidence that this is a valid model.

Cumulative effect estimates after using 14-day and 28-day lags were consistent with those of the 21-day lags 
for all our exposures (see supplementary Table 1, Figs. S7–S10). Lag-response relationships remained like the 
21-day lag relationships displayed in Figs. 2 and 3 (see supplementary Fig. S3–7).

Discussion
This study estimated the association of repeated air pollution exposure, experienced during training and competi-
tion, with race times of high-caliber male collegiate athletes. Our DLNM models determined that athletes who 
experienced higher levels of PM2.5 and ozone during their 21-day training cycle prior to the race were associ-
ated a slower 5-km race time than expected. Specifically, for PM2.5 and ozone respectively, comparing 21 days 
of exposure at 80th percentile and 20th percentile, was associated with 1.5% (12.8 s) and 1.3% (11.5 s) increases 
in the average race time observed in our study. While these increases may seem small, in races as competitive as 
the NCAA Division I 5 km championships, a 12 second increase can differentiate between 1st and 6th place or 
separate those selected to be on the All-American team.

While repeated exposure measured by the two-pollutant threshold AQI was not associated with a statisti-
cally significant cumulative impact on race times, exposure measured by the summed two-pollutant AQI (PM2.5 
plus ozone) was significant. While the Kendall rank correlation coefficient suggests the two decision indices are 
dependent, our results indicate differential impact of repeated exposure, suggesting these indices still capture 
athletes’ exposure profile differently. The two-pollutant threshold AQI, which takes the maximum of each pol-
lutant’s AQI value, may underestimate the athlete’s exposure profile.

Figure 2.   PM2.5 (a) and ozone (b) lag-response relationship when comparing our reference levels: 20th 
percentile exposure with 80th percentile exposure over a 21-day training period (red line) with 95% confidence 
intervals (grey). Cumulative association of PM2.5 (c) and ozone (d) on race performance (seconds) over the 
21-day training period (red line) with 95% confidence intervals (grey) and AQI good threshold (dashed black 
line). Software: R version 4.0.3 dlnm version 2.4.7.



6

Vol:.(1234567890)

Scientific Reports |         (2023) 13:1832  | https://doi.org/10.1038/s41598-023-28802-x

www.nature.com/scientificreports/

Observed pollutant exposures.  Overall, athletes in our study were training and competing in relatively 
good air quality conditions. No university included in our study had more than 50% of days above the moderate 
threshold, with the largest percentage of days at a single university being 37.2% and 49.8% for PM2.5 and ozone, 
respectively. We observed significant associations with race performances for air pollution increases from the 
20–80th percentile; for both pollutants even the 80th percentile was within the AQI’s good threshold (Fig. 1), 
indicating even increases in air pollution under good air quality conditions may affect performance.

Previous literature.  Results from our analysis align with previous studies on the association between air 
pollution exposure (PM and ozone) on athletic performance10. Prior research has focused mostly on the imme-
diate impacts of hazardous levels of PM and ozone among healthy young adults and athletes in controlled experi-
ments (e.g. results of maximal exercise tests). Most, but not all of these studies found that acute exposures to high 
levels of PM (PM1: 336,700–396,200 particles/cm3) and ozone (120–350 ppb) impair the maximal accumulated 
work on short exercise tests41–44. In the observational context, studies have demonstrated increased air pollution 
to be associated slower marathon race times45–48.

Literature on the effect of repeated exposures and the timing of these impacts is more limited, particularly in 
the observational context. Healthy athletes exposed to high levels of PM in controlled experiments (ergometer 
trials at PM1 396,200 particles/cm3) and natural environments (urban cities with mean levels of PM2.5 at 65.1 
µg/m3 ) experienced significant impairments in performance several days later, suggesting delayed inflammatory 
effects14, 15. However, some conflicting evidence exists, as male cyclists with 60 min of exposure to 300 µg/m3 
of PM2.5 immediately prior to exercise had no impairments on their time trial49. Similar studies on the effect 
of high ozone environments (controlled: 0.12–0.24 ppm and natural: average: 33.96 ppb) found that athletes 
experienced immediate performance reductions, yet there was a protective effect of pre-race ozone exposure50, 51.

Figure 3.   Two-pollutant threshold AQI (a) and summed two-pollutant AQI (b) lag-response relationship when 
comparing our reference levels: 20th percentile exposure with 80th percentile exposure over a 21-day training 
period (red line) with 95% confidence intervals (grey). Cumulative association of two-pollutant threshold AQI 
(c) and summed two-pollutant AQI (d) on race performance (seconds) over the 21-day training period (red 
line) with 95% confidence intervals (grey) and AQI good threshold (dashed black line). Software: R version 4.0.3 
dlnm version 2.4.7.
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Our analysis adds to the air pollution and athletic performance literature as we used a natural experiment 
design rather than controlled lab-based exposures to estimate the association of repeated exposures at lower, less 
hazardous levels for two different pollutants and provided context for decision-makers who rely on a commonly 
used decision index (AQI) rather than raw pollutant concentrations.

Implications for the athletic community.  Our analysis has implications for the broader athletic com-
munity. Athletes included in our study were among the fittest in the general population, and yet, adverse impacts 
on athletic performance was observed. The association may be more pronounced among more sensitive athletes, 
such as young athletes still in physical development or those with underlying conditions, such as asthma52, 53. 
Thus, when coaches make decisions about their athletes’ training and competition schedules, it may be impor-
tant to also factor in pollutant exposures by understanding pollutant levels within the area and tracking seasonal 
and daily trends of exposures levels and provide appropriate recovery between training sessions.

Limitations
First, we focused on PM2.5 and ozone, and the three other critical air pollutants, carbon monoxide, nitrogen 
dioxide, and sulfur dioxide, may also have impacted race performance. We made this choice for two primary 
reasons: first, these pollutants are the most prevalent in the United States (evidenced by the fact that 91% of the 
AQIs were determined from PM2.5 or ozone), and second, there was a large body of literature on the adverse 
effects of these pollutants on athletic performance5, 10–12, 14, 15, 54. Second, because not all locations in our study 
had a nearby EPA monitor, we relied on outputs from the downscaler model, which extrapolates exposure 
according to the closest monitoring station26, 27. Third, exact location of athlete’s whereabouts during the track 
& field seasons were unable to be captured, leading us to possibly over- or underestimated exposure. Finally, 
our results have limited transportability, as we examined only male athletes competing in a single track & field 
event. Thus, our results can be viewed as an initial finding indicating the importance of this relationship, though 
the magnitude of effect likely varies in athletes outside of this study population. Future research into this topic 
should include female athletes, as well as athletes of any gender, other age ranges and level of fitness, as well as 
consider other athletic events, to understand impacts of air pollution in other populations and other contexts.

Conclusion
This retrospective study quantified the association between repeated exposure to air pollution and athletic run-
ning performance. Training and competing at consistently higher levels of air pollution, even below the EPA’s 
threshold for good air quality and among high-caliber athletes, was associated with slower race times. This first 
step at identifying adverse effects of repeated exposure to air pollution provides a foundation for why coaches 
should consider approaches to minimize exposure among their athletes.

Data availability
Datasets and code used for analysis are publicly available at https://​github.​com/​marik​amaec​usick/​Runni​ngAP.
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