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A model of behavioural response 
to risk accurately predicts 
the statistical distribution 
of COVID‑19 infection 
and reproduction numbers
Fintan Costello 1*, Paul Watts 2 & Rita Howe 3

One clear aspect of behaviour in the COVID‑19 pandemic has been people’s focus on, and response 
to, reported or observed infection numbers in their community. We describe a simple model of 
infectious disease spread in a pandemic situation where people’s behaviour is influenced by the 
current risk of infection and where this behavioural response acts homeostatically to return infection 
risk to a certain preferred level. This homeostatic response is active until approximate herd immunity 
is reached: in this domain the model predicts that the reproduction rate R will be centred around 
a median of 1, that proportional change in infection numbers will follow the standard Cauchy 
distribution with location and scale parameters 0 and 1, and that high infection numbers will follow 
a power‑law frequency distribution with exponent 2. To test these predictions we used worldwide 
COVID‑19 data from 1st February 2020 to 30th June 2022 to calculate 95% confidence interval 
estimates across countries for these R, location, scale and exponent parameters. The resulting 
median R estimate was 95% CI = [0.99, 1.01] (predicted value 1) the proportional change location 
estimate was 95% CI = [−0.01, 0.02] (predicted value 0), the proportional change scale estimate 
was 95% CI = [0.99, 1.08] (predicted value 1), and the frequency distribution exponent estimate 
was 95% CI = [1.97, 2.15] (predicted value 2); in each case the observed estimate agreed with model 
predictions.

In simple epidemiological models of disease spread, infection numbers at time t are a function of disease trans-
missibility p, incubation rate α and recovery rate γ (properties of the disease), of the proportion of infectious 
and susceptible individuals in the population at time t, and of behaviour: in particular, of the average number 
of contacts individuals make with others at that time. In some  models1 this contact number is taken as to be 
constant; in others is treated as a free parameter, varying with time in a way that is not described within the epi-
demiological model but instead is estimated via fitting the model to  data2–4 by using mobility or contact tracing 
 datasets5–7 or by using assumed seasonal changes in  behaviour8,9.

It is clear, however, that contact rates between individuals in a population will tend to vary as a function of 
infection risk, with people reducing contacts and changing behaviour when risk is high in what has been termed 
a ‘behavioural immune response’10,11. Capturing this relationship between human behaviour and infectious 
diseases is seen as ‘the hard problem of epidemiology’12 and a wide variety of behavioural response models have 
been proposed which link infection numbers and behavioural response in different and often complex  ways13–19.

A critical problem for research in this area is that of validation: many models are not tested (they give purely 
theoretical presentations), and when testing is done, it is almost exclusively carried out by fitting the model to 
existing data; that is, by varying model parameters until model and data agree to some  extent11,12,20. Such model 
fits do not act as confirmatory evidence in favour of a model, for at least three reasons. First, a good model fit 
may arise, not because the model is a useful description of the underlying process, but because parameter varia-
tion gives the model flexibility to fit any data. Second, quite different models can often give good fits to the same 
data; because of this, a good model fit leaves the underlying process unclear. Third, because model fit is specific 
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to both the parameters and the data used, the fact that a model gives a good fit to one specific set of data with a 
particular choice of parameter values does not imply that this fit will generalise.

Our aim here is to address this problem of validation by presenting a simple and generic behavioural response 
model (an extension of the standard SEIR compartmental model) and by showing that this model leads to 
three parameter-free numeric predictions about infection numbers; predictions that, if the model describes the 
underlying process well, should hold across all sets of data. The first prediction is that the effective reproduction 
number R prior to herd immunity will have a median of 1; the second is that proportional changes in infection 
numbers will follow the standard Cauchy distribution C(0, 1); the third is that the frequency of high infection 
numbers will follow a power-law distribution x−k with exponent k = 2 . We show that these predictions do, in 
fact, hold in a large COVID-19 dataset covering 190 countries: the mean estimated R value across all countries 
is statistically indistinguishable from 1, relative changes in new infection numbers follow a standard C(0, 1) 
distribution very closely, and fitting a power law to the frequency distribution for infection numbers for each 
country, the estimated exponent is statistically indistinguishable from 2.

ASEIR model of behavioural response to infection risk
Models of behavioural response assume that when people are aware of infection risk, they will change their 
behaviour (their level of risky contact) with the aim of balancing the risk of infection associated with contact 
against the various (economic, social, and psychological) gains associated with contact. Our model assumes that 
each person has a certain constant risk or probability of infection per day, X, which they are willing to accept 
(a level which balances gains from contact with risks from contact), and when they become aware of increased 
infection risk, they will reduce their number of contacts per day until their overall estimated risk that day is at 
that level. In a pandemic situation, we expect that awareness will spread as the infection itself spreads, rapidly 
reaching some saturation level where a large proportion of the population are responding to infection risk. 
Once this point is reached the probability of infection, and so the overall number of new infections arising in 
the population, will tend to vary around some constant value or set-point depending on X (being pushed away 
from that point by changes in the infection itself or in various other factors, and being returned to that point by 
behavioural response to those changes). Assuming that infection confers immunity, this pattern of behavioural 
response will continue until the total number infected reaches some ‘herd immunity’ level; after this point the 
number of new infections will necessarily decline irrespective of behavioural changes.

To adjust their behaviour in response to infection risk, people must have some way of estimating risk; as in 
most behavioural change models, we assume that people estimate the risk of infection at time t based on (some 
approximation of) the number of infections in the population at a previous time t − L , where L is the lag between 
an infection occurring and it being known or reported. We express these ideas of homoeostatic behavioural 
response to risk, spreading awareness of risk, and risk estimation with lag, in an extension of a standard SEIR 
compartmental model where St represents the number of susceptible individuals, Et the number of exposed 
individuals (who are incubating infection but not yet infectious), and It the number of infectious individuals in 
a population of size N at time t, and where it represents the number of individuals who were newly infected at 
that time. Assuming that infection confers lasting immunity, we also have a recovered or removed compartment 
containing N − St − Et − It immune individuals: to avoid confusion with Rt , the effective reproduction number 
at time t, we do not refer to this removed compartment here. In this model we have

(newly infected individuals at time t move from the S to the E compartment, αE individuals move from the E 
to the I compartment at time t, and γ I individuals recover at time t). In a standard SEIR model new infection 
numbers are given by

where the (KIt/N) term approximates the probability of contact with an infected individual given K contacts at 
time t (assuming contacts take place at random) and so p(KIt/N) gives the probability of a susceptible individual 
becoming infected given that they make K random contacts, and the expected number of new infections is this 
probability times St . In our extension of this approach we assume that at time t = 0 (before the introduction of a 
new infectious disease), this contact number K is set relative to the risk of infection from pre-existing diseases at 
that time: letting e represent the risk of infection from any of those diseases, we then have eK = X (the number 
of contacts is set so that the risk of infection is approximately X) and so e = X/K . Susceptible individuals who 
are not aware of a new infection risk at time t > 0 maintain this level of contact K, so their risk of infection from 
the new disease remains at pKIt/N as in the standard SEIR model. Individuals who are aware of and actively 
responding to infection risk will adjust their number of contacts Kt so that their estimated probability of infec-
tion is, on average, X. Let Iest(t) represent the estimated number of infectious individuals in the population at 
time t. Then for these aware individuals, their total estimated probability of infection from a single contact is

and so, these individuals will adjust their contacts so that
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Letting At represent the number of individuals who are aware of and actively responding to infection risk at time 
t, then since awareness rises when individuals hear about infections among people they know, but falls where 
there are no such infections, we have

where b represents the average number of people an individual hears from on a given day and f represents the 
rate at which low risk of infection causes individuals to cease responding. Given this, the average number of 
contacts at time t for the population as a whole is

The evolution of this ASEIR model depends on the estimated number of infections Iest(t) . Individuals can only 
observe or find out about an infection after a certain observation lag L (necessarily greater than the incubation 
time for the infection), and so we simply take Iest(t) = It−L (the estimated number of infections at time t is equal 
to the actual number of infections at time t − L ), where L is within that range. Given this the expected number 
of new infections at time t is

We assume that there is initially no awareness ( A0 = 0 ). This means that if b = 0 then At = 0 for all t, and so 
it = pKStIt/N and this model includes the standard SEIR approach as a special case. This model depends on 4 
parameters from the standard SEIR model (p, K, α and γ ) and 4 behavioural awareness parameters (b, f, X and 
L). Here we treat b as a switching parameter taking on values 0 or K, where 0 gives a standard SEIR model while 
b = K gives an ASEIR model with behavioural response to infection (and where the number of people an indi-
vidual hears about on a given day is, on average, equal to their number of pre-pandemic contacts).

Assuming that p, K and γ are such that the initial reproduction number R0 = pK/γ > 1 , this model shows a 
characteristic pattern of evolution in which infection numbers initially rise until awareness A reaches a certain 
level, at which point infection numbers return towards some relatively stable value, with this stability continuing 
until a point at which herd immunity is reached (after which infection numbers necessarily decline). Figure 1A,B 
compare the evolution of new infection numbers in a standard SEIR model against their evolution in an ASEIR 
model (with parameter values selected for demonstrative purposes). Where in the standard SEIR model new 
infection numbers rise to a high level and then decline to 0, in the ASEIR model infection numbers rise to a 
much lower level and then tend to oscillate around a constant number of new infections.

The parameters used in the ASEIR model were selected to roughly reflect knowledge about COVID-19 at 
an order-of-magnitude level: the intention here was not to ‘fit’ data explicitly, but simply to illustrate the ASEIR 
model’s behaviour with relatively plausible parameter values. Note that the ASEIR model is relatively insensitive 
to values of these parameters: tests varying α , γ , K, b, x and f around these values did not produce any appreciable 
change in model behaviour. In setting model parameters we took the incubation and infectious periods to be 
10 (so that α = γ = 1/10 ) reflecting the observation that incubation and infectious periods for COVID-19 can 
fall between 2 and 14  days21, and took the lag L to be around 20 (assuming that infections are typically reported 
after the infectious period). We set the average number of contacts per day to be around 5, motivated by contact 
number  estimates22 and set b (the average number of people an individual hears about on a given day) to the same 
value. We set the probability of transmission per contact, p, for each variant based simply on the assumption that 
this value was low but increased with each new variant, allowing that variant to spread to dominance (selecting 
values p1 = 3/100 , p2 = 7/100 , p3 = 25/100 ). Parameter x (acceptable risk level) was set at 1/5000 based on 
the observation that infection rates in Ireland tended to stabilise at values somewhere between 200 and 2000 per 
day: taking 1000 as an order of magnitude estimate, and noting that the population of Ireland is approximately 
5 million, this gives an acceptable risk level of 1000 over 5 million, or 1/5000. The forgetting parameter f was set 
at 1/100 on the observation that protests against COVID-19 lockdown or mask measures typically arose around 
3–5 months after first introduction of those measures (again, to an order of magnitude): in Ireland, for example, 
lockdowns were first introduced in March 2020, with first protests in August of that year. Finally, entry times for 
variants 1, 2 and 3 in Fig. 1D were selected at 0, 250 and 750 to approximately represent the major COVID-19 
waves in Ireland, in March 2020, December 2020, and January 2022.

Modelling disease variants. This stabilisation of new infection numbers assumes no other perturbations 
or shocks affecting infection numbers. We can extend this simple model to account for such perturbations by 
considering the emergence of new disease variants, each with different transmission rates p. Assuming variants 
j ∈ {1 . . .m} each with transmission rate pj and each entering the population at time Tj , we define Ej,t and Ij,t to 
be the number of exposed/infectious individuals with variant j at time t and let

[
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be the weighted average transmission probability at that time. Then we have

as the number of new cases of variant j at time t, and so

(and At as before).

pt =
1

It

∑

j

pjIj,t
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Figure 1.  Number of new infections it over time generated in simulation runs of the standard SEIR model 
( b = 0 ) and the ASEIR behavioural response model ( b = K ). All simulations with population size N = 106 , 
incubation rate α = 1/10 , recovery rate γ = 1/10 , fixed contact number K = 10 and with behavioural 
response parameters x = 1/5000 , b = K , f = 1/100 , and lag L = 1/α + 1/γ = 20 ; initial values are S0 = N 
and E0 = I0 = A0 = 0 . (A) SEIR model with a single disease variant with transmission rate and entry time 
(p1 = 3/100,T1 = 1) . Identical graphs are produced for the SEIR model with 2 or 3 disease variants entering 
the population (not shown). (B) ASEIR model with a single disease variant (p1 = 3/100,T1 = 1) ; (C) ASEIR 
model with two variants (p1 = 3/100,T1 = 1) and (p2 = 7/100,T2 = 500) ; (D) ASEIR model with three 
disease variants (p1 = 3/100,T1 = 1) , (p2 = 7/100,T2 = 250) and (p3 = 25/100,T2 = 750) . In these graphs 
t = 1 is the first time-step on which i ≥ 1 (there is at least one infectious individual in the population), and 
new infection numbers it < 1 are not shown. Note: data in this figure is illustrative and generated solely by the 
simulation given the described parameters.
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Figure 1C,D illustrate ASEIR model simulations with the same parameters as before but with 2 or 3 disease 
variants with different transmission probabilities entering the population at various times. We also ran the SEIR 
model with these variants: however, the introduction of these variants had no effect on SEIR infection numbers 
(since herd immunity had been reached by the time these variants entered the population). For the ASEIR model, 
by contrast, these new variants have a substantial effect on new infection numbers, with ‘plateaus’ in new infec-
tion numbers between variant arrival (in Fig. 2C there is a plateau of around 300 new infections per time-step 
between times t = 300 and t = 600 , for example).

It is useful to consider the effective reproduction number, Rt , produced in these simulations. Rt represents the 
number of new infections generated by existing infections at time t, and can be calculated from simulated data 
as Rt = it/(γ It) ; Fig. 2 shows the Rt values calculated at each time-step from the it and It values generated for 
each simulation in Fig. 1 (with 3 disease variants for the SEIR model simulation, and 1, 2 and 3 disease variants 
for the ASEIR model). The median Rt value for the SEIR model is low (around 0.18) while the median Rt value 
for the three ASEIR simulations are all almost exactly 1 (even when there is significant variability in Rt due to 
the arrival of disease variants in the population).

A median R value of 1 is clearly predicted in the ASEIR model with a single infection (Graph B in Figs. 1 
and 2) because in that situation behavioural response acts to maintain infection numbers at a relatively constant 
‘plateau’ level after the initial wave, necessarily maintaining R = 1 . Similar predictions of R ∼ 1 arising from such 
‘plateaus’ have been made in a number of other models. However, even with multiple infection waves and no 
plateaus (Graphs C and D), the ASEIR model still predicts a median R value of 1. This more general prediction 
arises because each individual infection variant, in this model, will be returned to a relatively stable level after its 
initial wave, and so the total number of new infections (made up of a ‘superposition’ of these individual infection 
variants) will similarly return to a relatively stable level (until herd immunity is reached).

As these figures illustrate, infection and effective reproduction numbers Rt produced by the ASEIR model have 
a number of general characteristics: infection numbers do not immediately rise to herd immunity levels and then 
decline to 0; reproduction numbers, similarly, do not rise and then decline monotonically, but instead vary over 
time around a median of 1; infection numbers can show various ‘plateaus’ of relatively constant numbers of new 
infections over long time periods; and both infection and reproduction numbers show noticeable effects of new 
variants and other stochastic shocks. These characteristics are evident in reported infection and reproduction 
numbers for the COVID-19  pandemic15,16,23,24.

Figure 2.  Effective reproduction numbers Rt for the SEIR and ASEIR simulations in figure and 2. Effective 
reproductive number is calculated from simulated data as Rt = it/(γ It) . The dashed line shows the median 
of the r values calculated from it and It values in each simulation. For the ASEIR simulations, the median Rt 
was approximately 1; for the SEIR model, the median Rt was 0.18. Note: data in this figure is illustrative and 
generated solely by the simulation given the parameters, see “Modelling disease variants” section.
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Comparison with observed reproduction numbers. The model described above assumes a single 
initial exposed individual and random homogeneous spread in a single population. As such, the most natural 
points of comparison are to patterns of infection spread at the origin of a new disease, and to patterns of spread 
when that new disease enters a comparatively isolated and relatively small population: in these cases the ASEIR 
model predicts that the same trends in infection and R numbers will be seen, at least in the initial period of 
infection. To test this prediction, we selected 4 countries matching these criteria (the origin country China and 
3 island countries selected because they have relatively small populations: Ireland, Iceland, and New Zealand), 
and compared estimated R numbers for COVID-19 in those countries against each other and against R num-
bers produced by the ASEIR model in Fig. 2D. Estimated R numbers were taken from the Our World in Data 
COVID-19  Hub25 accessed June 30, 2022 (see ‘Availability of Data and Materials’). The ASEIR model parameters 
used were the order-of-magnitude estimates described earlier: the model parameters were not changed to fit the 
data in any way.

Since COVID-19 arrived at different dates in China, Ireland, New Zealand, and Iceland (first R estimates 
for these countries were on 23/01, 25/03, and 27/03 and 05/04/2020, respectively) for comparison purposes we 
aligned the first R number estimate for Ireland, Iceland and New Zealand with the closest reported R number for 
China in the initial phase of the pandemic. Rt numbers produced by the ASEIR model in Fig. 2D were aligned 
with these numbers by taking day 1 for the ASEIR model to be time t = 110 in Fig. 2D (the point at which R 
numbers generated by ASEIR begin declining rapidly). Figure 3 shows the aligned R values: at the initial stage 
of infection (up to around 150 days after the first reported Rt number for each country), R values for these 
countries show very similar patterns of steep decline in R followed by ‘rebound’ at around Rt ≈ 0.5 , followed 
by oscillation around approximately 1 in all cases. The ASEIR model follows this pattern closely: over the initial 
≈ 150 day period the correlations between ASEIR Rt values and country Rt values were strong (all r > 0.8 , all 
significant at p < 10−15).

Predictions
This fit between predicted and observed Rt values is suggestive, demonstrating as it does that the ASEIR model 
with the selected parameter values can match the observed evolution of Rt for these countries to at least some 
degree. This fit does not, however, give support for the behavioural response approach to infectious disease 
modelling in general; evidential support for a given model is not obtained by fitting a parametrized model to 
specific data. Instead, evidential support is obtained by testing hypotheses derived from that model which are 
independent of the model parameters, and which should apply to all observed data, not just to specific fitted 
data. Because the behavioural response approach assumes that infection and reproduction numbers will return 

Figure 3.  Reported effective reproduction numbers Rt per day for China, Ireland, New Zealand, and Iceland 
(taken from the OWID COVID dataset and aligned on initial reproduction number; see “Methods”) and 
reproductive numbers Rt generated by the ASEIR model (from graph D in Fig. 2, aligned by taking day 1 to be 
t = 110 in that graph). Horizontal lines show the median Rt value for each country/the model calculated across 
the entire period (all are almost exactly 1). Model and country Rt values show a common pattern of decline 
and rebound over the first ≈ 150 days, and agree closely: in the period up to day 146 (the first ASEIR peak) the 
Pearson product-moment correlations between ASEIR Rt values and country Rt values were r = 0.81 (China), 
r = 0.96 (Ireland), r = 0.9 (New Zealand), and r = 0.94 (Iceland), with all correlations significant at p < 10−15.
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to a given acceptable level and because, like all compartmental models, these are ‘mean field’ predictions (based 
on and describing expected means, with observed values expected to vary around these means following some 
error distribution) this approach leads to various predictions about the distributions of Rt , it , and related values.

The ASEIR model’s predictions about the distribution of these values typically hold only in the long run, when 
infection numbers have reached approximate stability after stochastic shocks (clearly, the model does not predict 
R ∼ 1 will hold during an initial infection wave). These predictions also do not hold when herd immunity has 
been reached (because at that point R < 1 necessarily holds independent of any behavioural response). To test 
these predictions, we must specify the domain where they apply, which we refer to as the ‘oscillatory’ domain.

Assuming that recovery from infection confers lasting immunity, herd immunity is reached at some time t 
where St ≈ 1/R0 , and infection numbers necessarily decrease after that time. In the standard SEIR model, this 
point is reached relatively quickly, because infection spreads exponentially through the population. In the ASEIR 
model, this point is reached more slowly: with a single infection and taking X to be the acceptable probability 
of infection, approximately XN individuals will be infected per day, and herd immunity will be reached at time 
t = h where

We distinguish between the herd immunity and the oscillatory domains by noting a quantitative difference 
between these two domains: in the herd immunity domain Rt must necessarily remain below 1 (because infec-
tion numbers must decrease in this domain), while in the oscillatory domain Rt can go from below 1 to above 1. 
Taking h to be the highest value for which Rh−1 ≤ 1 ≤ Rh holds, we see that the region t ≤ h must be in the oscil-
latory domain. Similarly, since Rt can go from below 1 to above 1 only after the initial wave of a new variant (or at 
the start of that initial wave), we see that all variants should have reached approximate stability by time h. These 
ASEIR model predictions are thus expected to hold only in the oscillatory domain t ≤ h (that is, in the period of 
time from the start of pandemic infection up to the most recent date at which Rt moved from below to above 1).

The median value of R
t
 is 1. We can state the ASEIR model’s specific prediction for R as follows: For a 

given country c we take Rt,c to be the reproduction number in that country on day t. Defining hc for that country 
as the most recent day on which Rt−1,c ≤ 1 ≤ Rt,c , this model predicts that Rt,c will vary around 1 in the oscil-
latory domain 1 ≤ t ≤ hc . This prediction holds both in situations where there are clear plateaus in the num-
ber of new infections (when these numbers are flat for a long period of time) and also in cases where no such 
plateaus are observed: in both cases this homoeostatic return is active. Letting Rt≤hc be the median value of R 
in the region t ≤ hc for country c, random between-country variability means that country medians Rt≤hc will 
themselves vary across countries around an overall expected mean of 1. More formally, letting M1 represent the 
mean value of Rt≤hc across a set of different countries, our hypothesis is that the 95% confidence interval for M1 
will contain the predicted value 1.

Note that various forms of this general prediction Rt ∼ 1 have been derived in various behavioural response 
models and supporting results have been seen in various  countries15,16 . The main novelty in our proposal is 
a formal statement of the domain in which this prediction is expected to hold, a formal statistical test of the 
hypothesis, and a general application of this test to data from all countries worldwide.

Proportional change in i
t
 follows Cauchy distribution C(0, 1). In the oscillatory domain infection 

numbers it will tend to vary, in the ASEIR model, in a way that depends on the lag L between an infection occur-
ring (at time t − L ) and that infection being observed by others and causing a behavioural response (at time t). 
This lag is necessarily greater than the incubation period for the infection (an infection becoming observable 
only after incubation) and means that the observed rate of new infections at time t is equal to the actual rate of 
new infections at time t − L . If it−L > X , the acceptable risk level, then the overall behavioural response at time 
t will reduce contact numbers, pushing it downwards, while if it−L < X then the overall behavioural response at 
time t will increase contact numbers, pushing it upwards, and so the difference it − it−L varies around 0. Since 
this overall behavioural response is the sum of all individual responses in the population, from the Central Limit 
theorem this difference it − it−L will follow a Normal distribution it − it−L ∼ N (0, σ 2

t ) with some variance σ 2
t  

(which may change over time). The difference it−2L − it−L will follow the same distribution (albeit with variance 
σ 2
t−L ). Defining a measure of proportional change in new infection numbers from time t − 2L to time t,

we see that DL is the ratio of two standard Normal variables (sums of common standard deviations cancelling), 
and so follows the standard Cauchy distribution C(0, 1) (the Cauchy distribution with location parameter 0 and 
scale parameter 1). The ASEIR model thus predicts that in the oscillatory domain this measure DL will follow 
C(0, 1) for values of L in a region greater than the incubation period of the infection.

We can assess this prediction informally via measures of goodness-of-fit, by asking to what extent the dis-
tribution C(0, 1) gives a close fit to the distribution of DL values in the t ≤ hc domain. More formally, we note 
that, if a set of numbers is drawn from some Cauchy distribution C, the median of those numbers is an unbiased 
estimate for the location parameter of C, and the median of the absolute values of those numbers is an unbiased 
estimate for the scale parameter of C. Defining dc to be the median value of DL for country c in the domain t ≤ hc , 
and |d|c to be the median of the absolute values of DL in that domain, we thus expect that dc will be distributed 
around 0 and |d|c around 1. Letting M2 be average value of dc across a set of different countries and M3 be the 

N − hXN ≈ 1/R0 → h ≈
1

X
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1
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DL(t) =
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(it − it−L)+ (it−2L − it−L)



8

Vol:.(1234567890)

Scientific Reports |         (2023) 13:2435  | https://doi.org/10.1038/s41598-023-28752-4

www.nature.com/scientificreports/

average value of |d|c across those countries, our specific hypotheses are that the 95% confidence interval for M2 
will contain the predicted location parameter value 0, and that the 95% confidence interval for M3 will contain the 
predicted scale parameter value 1, for values of L in a region greater than the incubation period of the infection.

Frequency distribution of i
t
 follows a power law with k = 2. In the ASEIR model the degree of 

response to infection risk depends on the degree to which current estimated risk is above the acceptable level X: 
the higher the current value of Iest(t) , the greater the behavioural response to risk. Here we consider the distribu-
tion of values it in this model when Iest(t) is high: specifically, where

(where the probability of infection given K contacts and the estimated number of infections in the population 
is much greater than the acceptable level of risk, X).

In this situation we assume that At = At+1 ≈ N  (because infection numbers are high, almost everyone is 
aware of infection risk); this gives

Similarly, in this situation we can assume

giving

Finally, assuming that estimated infection numbers are to some degree realistic (that the ratio It/Iest(t) varies 
around 1) we can approximate the change in values of i at time t as

and the rate of change in i at time t is proportional to the value of i at that time. In the continuous case, this 
corresponds to

and given that some number of infections i has occurred, the amount of time infection numbers will remain in 
some region � around i will be proportional to �/i . Assuming that infection numbers are ‘measured’ at some 
constant rate and the true infection number has reached a value i some time since the last measurement, this 
means that the probability of obtaining a measured infection number in the region � around i will also be pro-
portional to �/i ; in other words, the conditional probability of recording a new infection count in the region � 
around i (given that there were i new infections at some time since the last measurement) is expected to follow 
a power law p(i) ∼ i−� with exponent � = 1.

Given some fixed bin size � , let nj be the number of recorded new infection counts i that fall into bin j (that 
is, where �j < i ≤ �(j + 1) ). Similarly, let φ� be the frequency distribution for values nj > 0 , so that φ�(n) gives 
the number of bins for which nj = n . Since infection numbers in each bin in this distribution have occurred at 
least once, the probability of observing an infection i that falls into any one of these bins is approximated by the 
conditional probability p(i) ∼ i−� with � = 1 . If a variable’s probability distribution follows a power law with 
exponent � , then the associated frequency distribution φ will follow a power law with exponent k = 1+ 1/�26,27; 
since probabilities p(i) for these bins follow a power law with exponent � = 1 , our prediction is the frequency 
distribution φ� will follow a power law with exponent k = 1+ 1/� = 2 . Note that, unlike our predictions about 
R and DL (both of which describe long-run oscillatory behaviour and so are limited to the oscillatory domain), 
this power-law prediction is focused on the tail of high infection numbers (primarily caused by the arrival of 
new variants in the population), and thus holds generally, and not just in the oscillatory domain.

As before, this prediction can be assessed informally via measures of goodness-of-fit: by asking to what extent 
the frequency distribution for i (given a certain value of � ) is fit by a power-law distribution with exponent 2. 
More formally, fitting a general power law to the frequency distribution of i for a given country c and letting kc be 
the best-fitting exponent value obtained for that country and then taking M4 to be mean value of kc across a set of 
different countries, our hypothesis is that the 95% confidence interval for M4 will contain the predicted value 2.

Methods
We tested these predictions about M1 , M2 , M3 and M4 using publicly available data from the Our World in Data 
COVID  hub25 for the period from the start of the pandemic up to June 30, 2022 (see ‘Availability of Data and 
Materials’). This dataset gives the number of new COVID-19 infections reported each day for 231 countries under 
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the variable name new cases, from the Johns Hopkins University COVID-19 Data  Repository28, and a smoothed 
version of this measure under the variable name new cases smoothed (alongside a population-normalised measure 
new cases smoothed per million). This dataset also gives the estimated reproduction number each day under the 
variable name reproduction rate, with estimation carried out using a Kalman Filter  approach23. Some countries 
in the dataset had no values associated with one or more of these variables on any day: we cleaned the dataset 
by removing all such countries, leaving data from 190 countries for analysis.

One problem with the OWID COVID-19 data arises because countries frequently reported 0 new case 
numbers on certain days: around 25% of new case numbers reported in the OWID dataset were 0, with many 
countries having reliable patterns of 0 new case numbers on weekend days only. These 0 values clearly do not 
reflect a change in infection numbers; instead, they simply indicate gaps in reporting. Derived measures such as 
reproduction rate and smoothed new case numbers are calculated from these reported values and so are similarly 
affected by these gaps, but to a lesser degree. In an attempt to avoid these gaps in our analysis we further clean the 
dataset by excluding, for each country, any day with 0 new case numbers reported for that country. Our analysis 
thus considers the evolution of infection numbers over consecutive reporting days, with reporting gaps removed.

For a given country c and day t we take Rt,c to represent the value of the OWID reproduction rate variable for 
that country on that day. Taking hc to be the highest value (the latest day) for which Rh−1,c ≤ 1 ≤ Rh,c holds for 
country c, the oscillatory domain for that country is t ≤ hc and our predictions concern the value and confidence 
intervals for M1 , M2 and M3 calculated from the cleaned dataset in that domain. There were 6 countries where 
Rt,c < 1 held for all reported days: these countries were excluded from analysis of oscillatory domain results, 
leaving 184 countries giving oscillatory domain data.

In assessing predictions about M2 (the mean proportional change in new infection numbers, dc ) and M3 (the 
mean of the absolute value of that change, |d|c ) we take it for a given country c to represent the OWID variable 
new cases for that country, and calculate dc and |d|c from values of this variable in the oscillatory domain. Note 
that, while the OWID variable new cases smoothed gives a more accurate estimate of new infection numbers at 
a given time (because the smoothing process reduces the variability caused by reporting gaps), we cannot use 
this smoothed variable to assess the distribution of proportional changes in new infection numbers over time 
(because the smoothing process itself removes some proportional changes from the data, and so systematically 
alters this distribution).

In assessing our prediction about M4 (the mean estimated power-law exponent kc ), we take it for a given coun-
try c to represent the OWID variable smoothed new cases for that country, and calculate kc from the frequency 
distribution of this variable in the entire dataset (not just the oscillatory domain). We use the new cases smoothed 
variable for this analysis because that variable gives a more accurate estimate of new infection numbers, and 
because the smoothing process has no particular effect on exponent estimation.

Since we do not know the statistical distributions for values of interest M1,M2,M3 and M4 , we estimate 
confidence intervals for these values using both the assumption of normally distributed error (via a t-test) and 
using a standard non-parametric bootstrapping method. Our analysis of the power-law prediction M4 applies to 
frequency data, which is produced by placing numbers it into bins of a certain size � . A central problem for such 
frequency analysis arises with the choice of bin size � : different choices for � will produce different numbers of 
bins for a given set of infection numbers it , making the resulting frequency data easier or harder to fit (depending 
on whether the number of bins obtained is small or large). We deal with this problem by automatically setting 
a bin size �c for each country so that each country’s infection number data falls into the same number of bins 
B, where B is the largest number such that every country’s data can be placed into at least B distinct bins. This 
procedure ensures that power-law fits to frequency data for different countries are not affected by artefacts aris-
ing from the choice of bin size.

All statistical and modelling analysis was carried out RStudio using R version 4.0.529, using packages 
data.table, ggplot2, lubridate and patchwork for general analysis and  graphing30–33 and using 
packages qqplotr34 for quantile-quantile plots, nptest35 for non-parametric confidence intervals; and pow-
eRlaw36 for power-law fits. A complete R script that implements the ASEIR model, downloads the OWID 
COVID-19 data, carries out all statistical and data analysis, and generates all figures reported here is available 
online (see ‘Availability of Data and Materials’).

Results
Figure 4 shows the distribution of R values for countries in the OWID dataset on each day t in the oscillatory 
region, with a histogram showing the frequency of individual R values. Both show R centred around 1, consist-
ent with our first prediction.

To test this R ∼ 1 prediction formally, we calculated the median Rt≤hc value for each country c in the OWID 
dataset across the COVID-19 pandemic. The overall mean of these values was M1 = 1.0 with a 95% confidence 
interval for the mean of 0.99 . . . 1.01 both when calculated via a t-test ( t = −0.34, df = 183, p = 0.73 ) and via 
the non-parametric bootstrap estimate, confirming the prediction.

To assess our DL predictions informally we compare DL values calculated from the cleaned OWID dataset 
against the theoretical distribution C(0, 1). For each country, we calculated DL(t) for every day in the dataset 
using the OWID new cases variable in that country’s oscillatory region, for values of L from 7 (assuming the 
incubation period for COVID-19 is approximately 6) to 30 (assuming that the reporting of case numbers will not 
take more than one month). For some days DL(t) could not be calculated because one of the component infection 
numbers was missing or resulted in division by 0; these values of DL(t) were dropped from analysis. Figure 5 
(inset) shows a probability-probability plot comparing the cumulative probability of DL for L = 7 against that 
of C. Correlation of cumulative probabilities is a measure of goodness of fit between observed and theoretical 
values; here the correlation was high ( r = 0.999 ). Since probability-probability plots overweight extreme values, 
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Figure 4.  Median of R values on each day (points) with 2.5% and 97.5% quantiles for country R values on each 
day (lines). The inset shows a histogram of R values (bin size 0.1). There are no quantiles before 21 February 
2020, because only R values for China are reported before that date. Data source: OWID COVID dataset, see 
“Data availability” section for details.

Figure 5.  Histogram of DL for L = 7 calculated from the cleaned dataset in the central −15 . . . 15 range (bin 
size 0.5) with standard Cauchy distribution C(0, 1) (dashed line, C distribution scaled by bin size and total 
histogram frequency for comparison). The inset shows a probability-probability plot comparing theoretical 
and observed cumulative probabilities across the entire range: the solid line in that plot is actually made up of 
over 50, 000 points, one for each DL value calculated in the dataset for L = 7 : the dashed diagonal line (mostly 
hidden by these points) is the line of identity between theoretical and observed cumulative probabilities. Data 
source: OWID COVID dataset, see “Data availability” for details.
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we also analysed the relationship between C(0, 1) and DL for values near the midpoint of the range, by selecting 
the subset of DL values between −15 and 15 ( 93% of the total sample). Figure 5 (main) shows a histogram of 
these values. The correlation between DL and C values for this central-region histogram was r = 0.99 . Similar 
results held for other values of L.

To test prediction M2 formally we obtained, for each country c, location estimates dc for values of L from 7 to 
30 by calculating the median value of DL for that country for each value of L, and setting M2(c) to be the mean of 
these location estimates for that country across all values L. We took M2 to be the average of these M2(c) values 
across all countries. The overall mean of these values was M2 = 0.01 with a 95% confidence interval for the mean 
of −0.01 . . . 0.02 when calculated via a t-test ( t = 1.15, df = 183, p = 0.25 ) and the same confidence interval 
when calculated via the non-parametric bootstrap estimate. This confirms prediction 2.

We similarly obtained, for each country c, scale estimates |d|c for values of L from 7 to 30, by calculating the 
median of the absolute value of DL for each value of L, and setting M3(c) to be the average of these scale estimates. 
The overall mean of these values was M3 = 1.08 with a 95% confidence interval for the mean of 1.04 . . . 1.1 in 
both t-test and non-parametric analysis. While this is very close to the predicted scale estimate of M3 = 1.0 , the 
predicted value falls outside the calculated confidence interval, and so prediction M3 is not confirmed.

The fact that the estimated scale parameter here is marginally higher than the predicted value (1.08 versus 
1) could arise as a consequence of overextension of the oscillatory region for some countries: if the identified 
oscillatory region bound hc for country c in fact included the initial rising section of an infection wave, values 
DL in that region will be biased upwards by that wave, producing an increase in the scale estimate. As a post-hoc 
test of this proposal, we calculated for each country the number of days in the dataset outside the oscillatory 
region (days where t > hc ) and re-ran our analysis excluding any countries where this number of days was 
small. Excluding all countries where |t > hc| ≤ 10 give M3 = 1.04 with a 95% confidence interval for the mean 
of 0.99 . . . 1.08 , supporting prediction M3.

To test our power-law prediction M4 informally, we produced a frequency table of smoothed new cases per 
million across all countries in the OWID dataset, with a bin size of 0.5 (Fig. 6). We found the best-fitting power 
law for this frequency data using the R powerLaw  package37. When fitting a power law to data, it is usually argued 
that only the tails of the distribution (greater than some value xmin ) follow a power law; this assumption is explicit 
in the behavioural response account, where a power law is assumed to hold only for high new infection numbers. 
The powerLaw package returns the best-fitting xmin and k values for the given data; for the OWID data, the best 
fit was obtained with k = 2.08 and xmin = 49 (new infection numbers greater than 49 per million are best fit by a 
power law with k ≈ 2 ). Figure 6 plots the frequency of smoothed new cases per million across all countries in the 
OWID dataset in the first 50 of these bins. A standard way to assess power-law fits informally is via comparison 
of observed and theoretical ‘complementary cumulative distribution functions’ or  CCDFs38; the inset in Fig. 6 
plots the observed CCDF versus the theoretical CCDF predicted for this value of k. Note that the theoretical 
CCDF (solid line) starts at xmin = 49 , and that there is a noticeable ‘turn’ in the observed CCDF at that point. 
In the context of the ASEIR model, this point represents a transition to the ‘high infection numbers’ domain.

Figure 6.  Histogram showing the frequency of smoothed new cases per million (bin size 0.5) across all 
countries in the OWID dataset. For illustrative purposes only the first 50 frequency bins are shown. The 
inset shows a plot of complementary cumulative probability (CCDF) across all bins: the solid line shows the 
theoretical CCDF value for the best fitting power law for this frequency data, with k = 2.08 and xmin = 49 . The 
agreement between the solid line and the CCDF data points gives an informal illustration of the power-law fit.
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To test prediction M4 formally, we first obtained, each country in the cleaned OWID dataset, the number 
Bc equal to the largest integer such that the full set of i data for country c can be placed into Bc equal-sized bins. 
We then set B equal to the minimum value of Bc across all countries, so that B is the largest number such that 
every country’s data can be placed into at least B distinct bins. Given this B we then obtained, for each country 
c, the largest bin size �c such that country c’s data will be placed into B bins and using that bin size �c produced 
a frequency table of smoothed new case numbers for that country. For each country we used the powerLaw 
package to find the best-fitting power law for that country’s frequency table. Letting kc be the best-fitting power 
law exponent for country c, we took M4 to be the mean value of kc across all countries. The overall mean of these 
values was M4 = 2.06 with a 95% confidence interval for the mean of 1.97 . . . 2.15 when calculated via a t-test 
( t = 1.33, df = 189, p = 0.18 ) and via the non-parametric bootstrap estimate. This confirms prediction 4.

Discussion and conclusions
In this paper we have presented an extension of the standard SEIR compartmental model of infection to include 
spreading awareness of and behavioural response to infection risk. We have shown that this model can naturally 
account for the effect of various disease variants arriving in a population over time and matches initial patterns 
of rapid decline and rebound in reproduction numbers for the COVID-19 pandemic for selected countries. 
To validate this model, we derive various parameter-free numeric predictions from this approach; analysis of 
COVID-19 data at both aggregate (world) and individual country levels gives explicit confirmation for these 
predictions, validating the behavioural response approach to modelling infection spread, and demonstrating 
some striking statistical regularities in the distribution of infection numbers.

It is useful to specify the situations in which we expect these statistical regularities to hold. First, these results 
assume that a large proportion of the population will become aware of and respond to the risk of infection, and 
so apply to epidemic or pandemic situations only: we do not expect this model to describe infection spread in 
narrower outbreak situations. Second, this model depends on the assumption that people’s estimates of infec-
tion risk at time t will reflect the number of new infections at some recent time t − L . This assumption holds 
for infections with short incubation and recovery periods; for infections where these periods are longer, this 
assumption does not hold. Third: this model makes the simplifying assumption that people are free to limit their 
number of contacts to match their acceptable level of risk. For some demographics this is not the case: people 
in poverty, for example, may be economically unable to limit their contacts in this way, and so will have an esti-
mated risk of infection systematically above their acceptable risk level. Assuming that people’s acceptable risk 
levels are well-calibrated, this predicts increased infections in such demographics relative to the population as a 
 whole39,40. Letting Kmin represent the lowest possible average contact rate for the population as a whole given these 
constraints on contact numbers, then Rmin = pKmin/γ is the minimum possible reproduction number, and if 
Rmin > 1 then the disease will spread exponentially through the population irrespective of behavioural response; 
while if Rmin < 1 then behavioural response will act to maintain R ∼ 1 in the oscillatory period of the infection.

The model makes a number of other simplifying assumptions: no vaccination, perfect and lasting immunity 
after infection, no quarantining or reduction of contact numbers among infected individuals. More realistic 
(and so more complex) versions of the model can be constructed to include vaccination, waning immunity, and 
quarantine responses. However, the statistical regularities described above will necessarily hold in these more 
complex models just as in the simple model described above. This is because while vaccination, waning immu-
nity, and quarantine all have clear effects on infection risk, in the ASEIR model behavioural response to this risk 
will continue to act to maintain R ∼ 1 (with increased vaccination numbers, for example, causing a reduction 
in both perceived infection risk and in infection numbers, and this reduction in risk causing a corresponding 
increase in contact numbers and so a subsequent rise in infections, thus maintaining R around 1). The effect of 
vaccination, in these more complex models, is to shorten the oscillatory period and increase progress towards 
herd immunity, while the effect of waning immunity is to lengthen the oscillatory period and postpone herd 
immunity. An important aim for future research is to test these predictions about the effects of vaccination 
programs and of reinfection rates against data on COVID-19.

Data availability
All data used in this analysis is publicly available online from the Our World In Data COVID hub https:// ourwo 
rldin data. org/ coron avirus in the combined data file https:// raw. githu buser conte nt. com/ owid/ covid- 19- data/ 
master/ public/ data/ owid- covid- data. csv. R code implementing the ASEIR model, downloading this data file 
and running all analyses is publicly available online from the Open Science Foundation repository https:// osf. 
io/ 29ayn/.

Code availability
All code used for analysis is included as a supplementary file.

Received: 4 August 2022; Accepted: 24 January 2023

References
 1. Bertozzi, A. L., Franco, E., Mohler, G., Short, M. B. & Sledge, D. The challenges of modeling and forecasting the spread of COVID-

19. Proc. Natl. Acad. Sci. 117, 16732–16738 (2020).
 2. Ndaïrou, F., Area, I., Nieto, J. J. & Torres, D. F. Mathematical modeling of COVID-19 transmission dynamics with a case study of 

Wuhan. Chaos Solitons Fractals 135, 109846 (2020).
 3. IHME COVID-19 forecasting team. Modeling COVID-19 scenarios for the United States. Nat. Med. 27, 94–105 (2020).

https://ourworldindata.org/coronavirus
https://ourworldindata.org/coronavirus
https://raw.githubusercontent.com/owid/covid-19-data/master/public/data/owid-covid-data.csv
https://raw.githubusercontent.com/owid/covid-19-data/master/public/data/owid-covid-data.csv
https://osf.io/29ayn/
https://osf.io/29ayn/


13

Vol.:(0123456789)

Scientific Reports |         (2023) 13:2435  | https://doi.org/10.1038/s41598-023-28752-4

www.nature.com/scientificreports/

 4. Gleeson, J. P. et al. Calibrating COVID-19 susceptible-exposed-infected-removed models with time-varying effective contact rates. 
Philos. Trans. R. Soc. A 380, 20210120 (2022).

 5. Nouvellet, P. et al. Reduction in mobility and COVID-19 transmission. Nat. Commun. 12, 1–9 (2021).
 6. Badr, H. S. et al. Association between mobility patterns and COVID-19 transmission in the USA: A mathematical modelling study. 

Lancet. Infect. Dis. 20, 1247–1254 (2020).
 7. Russo, L. et al. Tracing day-zero and forecasting the COVID-19 outbreak in Lombardy, Italy: A compartmental modelling and 

numerical optimization approach. PLoS ONE 15, 240–649 (2020).
 8. Liu, X. et al. The role of seasonality in the spread of COVID-19 pandemic. Environ. Res. 195, 110874 (2021).
 9. Bukhari, Q., Jameel, Y., Massaro, J. M., D’Agostino, R. B. & Khan, S. Periodic oscillations in daily reported infections and deaths 

for coronavirus disease 2019. JAMA Netw. Open 3, e2017521–e2017521 (2020).
 10. Schaller, M. The behavioural immune system and the psychology of human sociality. Philos. Trans. R. Soc. B Biol. Sci. 366, 

3418–3426 (2011).
 11. Verelst, F., Willem, L. & Beutels, P. Behavioural change models for infectious disease transmission: a systematic review (2010–2015). 

J. R. Soc. Interface 13, 20160820 (2016).
 12. Perra, N. Non-pharmaceutical interventions during the COVID-19 pandemic: A review. Phys. Rep. 913, 1–52 (2021).
 13. Ajbar, A., Alqahtani, R. T. & Boumaza, M. Dynamics of an SIR-based COVID-19 model with linear incidence rate, nonlinear 

removal rate, and public awareness. Front. Phys. 9, 13 (2021).
 14. Weitz, J. S., Park, S. W., Eksin, C. & Dushoff, J. Awareness-driven behavior changes can shift the shape of epidemics away from 

peaks and toward plateaus, shoulders, and oscillations. Proc. Natl. Acad. Sci. 117, 32764–32771 (2020).
 15. Tkachenko, A. V. et al. Stochastic social behavior coupled to COVID-19 dynamics leads to waves, plateaus, and an endemic state. 

Elife 10, e68341 (2021).
 16. Manrubia, S. & Zanette, D. H. Individual risk-aversion responses tune epidemics to critical transmissibility ( R = 1 ). arXiv preprint 

arXiv: 2105. 10572 (2021).
 17. Steinegger, B., Arola-Fernández, L., Granell, C., Gómez-Gardeñes, J. & Arenas, A. Behavioural response to heterogeneous severity 

of COVID-19 explains temporal variation of cases among different age groups. Philos. Trans. R. Soc. A 380, 20210119 (2022).
 18. Steinegger, B., Arenas, A., Gómez-Gardeñes, J. & Granell, C. Pulsating campaigns of human prophylaxis driven by risk perception 

palliate oscillations of direct contact transmitted diseases. Phys. Rev. Res. 2, 023181 (2020).
 19. Avery, C. A Simple Model of Social Distancing and Vaccination. Tech. Rep., National Bureau of Economic Research (2021).
 20. Funk, S., Salathé, M. & Jansen, V. A. Modelling the influence of human behaviour on the spread of infectious diseases: A review. 

J. R. Soc. Interface 7, 1247–1256 (2010).
 21. Lauer, S. A. et al. The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: Estima-

tion and application. Ann. Intern. Med. 172, 577–582 (2020).
 22. Liu, C. Y. et al. Rapid review of social contact patterns during the covid-19 pandemic. Epidemiology (Cambridge, Mass.) 32, 781 

(2021).
 23. Arroyo-Marioli, F., Bullano, F., Kucinskas, S. & Rondón-Moreno, C. Tracking R of COVID-19: A new real-time estimation using 

the Kalman filter. PLoS ONE 16, e0244474 (2021).
 24. Koyama, S., Horie, T. & Shinomoto, S. Estimating the time-varying reproduction number of COVID-19 with a state-space method. 

PLoS Comput. Biol. 17, e1008679 (2021).
 25. Ritchie, H. et al. Coronavirus Pandemic (COVID-19). Our world in data. https:// ourwo rldin data. org/ coron avirus (2020).
 26. Adamic, L. A. & Huberman, B. A. Zipf ’s law and the Internet. Glottometrics 3, 143–150 (2002).
 27. Hanel, R., Corominas-Murtra, B., Liu, B. & Thurner, S. Fitting power-laws in empirical data with estimators that work for all 

exponents. PLoS ONE 12, e0170920 (2017).
 28. Dong, E., Du, H. & Gardner, L. An interactive web-based dashboard to track COVID-19 in real time. Lancet. Infect. Dis. 20, 533–534 

(2020).
 29. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).
 30. Dowle, M. & Srinivasan, A. data.table: Extension of ‘data.frame’. R package version 1.14.2 (2021).
 31. Wickham, H. Ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).
 32. Grolemund, G. & Wickham, H. Dates and times made easy with lubridate. J. Stat. Softw. 40, 1–25 (2011).
 33. Pedersen, T. L. Patchwork: The Composer of Plots. R package version 1.1.1 (2020).
 34. Almeida, A., Loy, A. & Hofmann, H. Ggplot2 Compatible Quantile-Quantile Plots in R (2018).
 35. Helwig, N. E. Nptest: Nonparametric Bootstrap and Permutation Tests. R package version 1.0-3 (2021).
 36. Gillespie, C. S. Fitting heavy tailed distributions: The poweRlaw package. J. Stat. Softw. 64, 1–16 (2015).
 37. Gillespie, C. S. et al. Fitting heavy tailed distributions: The poweRlaw package. J. Stat. Softw. 64, 1–16 (2015).
 38. Clauset, A., Shalizi, C. R. & Newman, M. E. Power-law distributions in empirical data. SIAM Rev. 51, 661–703 (2009).
 39. Patel, J. et al. Poverty, inequality and COVID-19: The forgotten vulnerable. Public Health 183, 110 (2020).
 40. Little, C. et al. The impact of socioeconomic status on the clinical outcomes of COVID-19; A retrospective cohort study. J. Com-

munity Health 46, 794–802 (2021).

Author contributions
All authors contributed to the study conception and design. Material preparation, data collection and analysis 
were performed by F.C. The first draft of the manuscript was written by F.C., and all authors commented on 
previous versions of the manuscript. All authors read and approved the final manuscript.

Funding
Rita Howe received funding from the SFI funded project “SARS-CoV-2 clusters and superspreading events in 
workplaces in Ireland: a retrospective analysis” (Grant Number 20/COV/8539).

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 023- 28752-4.

Correspondence and requests for materials should be addressed to F.C.

Reprints and permissions information is available at www.nature.com/reprints.

http://arxiv.org/abs/2105.10572
https://ourworldindata.org/coronavirus
https://doi.org/10.1038/s41598-023-28752-4
https://doi.org/10.1038/s41598-023-28752-4
www.nature.com/reprints


14

Vol:.(1234567890)

Scientific Reports |         (2023) 13:2435  | https://doi.org/10.1038/s41598-023-28752-4

www.nature.com/scientificreports/

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2023

http://creativecommons.org/licenses/by/4.0/

	A model of behavioural response to risk accurately predicts the statistical distribution of COVID-19 infection and reproduction numbers
	ASEIR model of behavioural response to infection risk
	Modelling disease variants. 
	Comparison with observed reproduction numbers. 

	Predictions
	The median value of  is 1. 
	Proportional change in  follows Cauchy distribution C(0, 1). 
	Frequency distribution of  follows a power law with . 

	Methods
	Results
	Discussion and conclusions
	References


