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Entanglement detection 
with artificial neural networks
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Quantum entanglement is one of the essential resources involved in quantum information processing 
tasks. However, its detection for usage remains a challenge. The Bell-type inequality for relative 
entropy of coherence serves as an entanglement witness for pure entangled states. However, it does 
not perform reliably for mixed entangled states. This paper constructs a classifier by employing the 
relationship between coherence and entanglement for supervised machine learning methods. This 
method encodes multiple Bell-type inequalities for the relative entropy of coherence into an artificial 
neural network to detect the entangled and separable states in a quantum dataset.

There has been considerable advancement in the emerging quantum information technologies that offer many 
promising applications in communication and computation. Similarly, significant progress has also been achieved 
in the inter-disciplinary field of quantum information and machine learning1. There are two sides to this particu-
lar field of study. The first is using quantum information to improve classical machine learning algorithms. In 
contrast, the second corresponds to the use of classical machine learning algorithms to find innovative solutions 
to various challenges in quantum information science. Some of the methods that have already been proposed 
and implemented include techniques to solve the problem of quantum state preparation2, tomography3, quantum 
control4, and experiment searching5. Furthermore, research in quantum information for machine learning has 
also been investigated; some of which include entanglement for feature extraction6 and tensor network quantum 
states for supervised learning7.

Quantum entanglement, a peculiar property in quantum mechanics, enables us to achieve tasks impossible 
for classical systems. These tasks include ensuring secure communications and the speed-up of various hard 
computational tasks8. Therefore, an important question arises; “Given an unknown quantum state, how can we 
efficiently detect the presence of such a feature?” For high dimensional quantum systems, this is indeed a chal-
lenging task since quantum features usually indicate some correlated patterns concealed within sub-systems9–11. 
Typically, the most robust methods to detect entanglement involve full quantum state tomography. However, 
this method is experimentally demanding as the number of required projections increases with the number of 
qubits12–14. Entanglement can also be detected reliably through the positive partial transpose (PPT) criterion for 
lower-dimensional systems, that include the 2⊗ 2 and 2⊗ 3 systems, but it is generically an NP-hard problem15.

Moreover, the aforementioned criteria fails to work for higher-dimensional quantum states, such as bound 
entangled states. In addition, other measures for the detection and quantification of entanglement have been 
presented, such as the covariance matrix criterion and the concurrence criterion. However, these also come 
along with their set of limitations16–19.

To find the solution to this problem, many researchers have turned to machine learning techniques capable 
of extracting features and recognizing patterns hidden in large-dimensional datasets. Several methods have been 
devised and tested for the problem of entanglement detection20–24. As performing full quantum state tomogra-
phy becomes resource-consuming with the increase in the number of qubits, the concept of building classifiers 
using partial information of quantum states has been widely studied. For instance, training Bell inequalities as 
entanglement witnesses with artificial neural networks provide a suitable classifier25. The extended version of 
Bell’s inequality, i.e., Mermin’s inequality, also provides favorable results for the case of tripartite quantum states 
and bound entangled states26,27. Deep quantum neural network techniques have also been demonstrated to detect 
entanglement in high-dimensional quantum states28.

In addition, other machine learning techniques such as support vector machines and decision trees can also 
serve the purpose of building an entanglement-separability classifier29. Comparative studies between artificial 
neural networks and witness-based methods for classifying quantum states have demonstrated that artificial 
neural networks perform significantly better than witness-based methods30. Unsupervised learning techniques 
have also been studied for quantum state classification along with supervised learning. These techniques have 
also successfully detected entanglement in a multipartite quantum dataset31.
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Another property of a quantum state, a basis dependant quantity, coherence, is identified by the presence 
of the off-diagonal terms in the density matrix representation of a quantum state. Many coherence measures 
have been proposed to quantify the coherence in a given state. These include the l1 norm of coherence and rela-
tive entropy of coherence32. The relationship between the two properties, entanglement, and coherence, has 
also been discussed33. Inequality based on Bell’s inequality and the relative entropy of coherence has also been 
proposed34,35. These studies show that coherence and entanglement have some intricate relationships between 
them for different classes of quantum states.

This work investigates the classification of quantum states by designing a classifier using an artificial neural 
network. We extract features from the quantum states using the terms of the Bell-type inequality for relative 
entropy of coherence. The Bell-type inequality of the relative entropy of coherence shows the relation between 
coherence and entanglement of quantum states, so the classifier encodes both properties for reliable detection of 
entanglement and classification of quantum states. Moreover, as we use partial information of a quantum state 
as a feature set, quantum state tomography is not required. Since a single entanglement witness cannot operate 
on several states, we encode multiple Bell-type inequalities for relative entropy of coherence into the artificial 
neural network classifier for the reliable classification of quantum states. Our idea is to provide our classifier with 
a large amount of sample data with their corresponding labels and then test the classifier to predict the label of 
new states that it has not encountered before. Furthermore, we demonstrate the significant increase in accuracy 
and capability of a neural network-based entanglement-separability classifier by invoking a hidden layer. The 
approach discussed in the paper for quantum entanglement detection is shown in the Fig. 1.

The paper is organized as follows. We explain the model and methods used in the paper, such as the Bell-
type inequality for relative entropy of coherence, data generation, model training, and testing. Furthermore, we 
explain the results obtained by the experiment. Finally, we conclude the paper.

Methods
This section introduces a method of coherence-based entanglement detection with an artificial neural network. 
Typically, entanglement detection methods require partial information about the underlying quantum states. 
Herein, we obtain partial information about quantum states using relative entropy of coherence and Bell’s ine-
quality. Then, we use this information to construct a classifier that reliably predicts unknown quantum states as 
either entangled or separable. Thus, the classifier employs the coherence properties of unknown quantum states 
to predict its entanglement properties.

Optimizing Bell‑type inequality for relative entropy of coherence with machine learning.  An 
arbitrary quantum state ρ consisting of n qubits is fully separable if we can express it as a convex combination 
of product states as

where 0 ≤ pi ≤ 1 and 
∑

i pi = 1 , otherwise the quantum state is entangled. Now, we consider the following basis

where,

(1)ρsep =
∑

i

pi ρ
1
i ⊗ ρ2

i ⊗ . . .⊗ ρn
i ,

Q : {|0�, |1�}, R : {|R+�, |R−�}, S : {|S+�, |S−�}, T : {|0�, |1�},

Figure 1.   Coherence-based entanglement detection with artificial neural networks.
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For these  obser vables ,  we ca lculate  the relat ive  entropy of  coherence g iven as 
Cr(QS, ρAB), Cr(RS, ρAB), Cr(RT , ρAB), and Cr(QT , ρAB) . Since coherence is a basis dependent quantity, we 
specify the basis we have chosen. In other words, we denote Cr(QS, ρAB) by Cr(ρAB) in the reference basis formed 
by Q and S. Herein, the measure of coherence based on relative entropy for a quantum state ρ with reference 
basis {|i�} is defined as32

where we have Ŵ as the set of all incoherent states in the reference basis {|i�} . The relative entropy between ρ and 
σ is described as S(ρ||σ) = trρ(log ρ − log σ) while the von-Neumann entropy of ρ is S(ρ) = −trρ log ρ . The 
diagonal state of ρ is ρd , that can be expressed as ρd =

∑

i �i|ρ|i�|i��i|.
The Bell-type inequality is formulated for relative entropy of coherence as34

This inequality is generally satisfied for separable states and violated for entangled states, for the considered 
set of observables. However, many cases exist where quantum states do not violate the inequality even though it 
is entangled34. Therefore, for the above inequality to perform as a classifier, we introduce weight factors on each 
of the terms and obtain the following weighted equation for the relative entropy of coherence

where the weights w0,w1,w2,w3, and w4 are obtained by training the machine learning models, namely, artificial 
neural networks. For a given quantum state, the set of the following outcomes

is taken as the features of the supervised machine learning model. Since we focus on bipartite systems, the labels 
are obtained via the PPT criterion15. We observe that the performance relies heavily on the testing data, and the 
primary source of error arises from the data near the boundary between the separable and the entangled states.

Generating labeled quantum datasets.  This section describes different procedures used to generate 
quantum data. For the first procedure, we generate 50, 000 quantum states by using random values of θ and φ in 
the following

where 
∣

∣ψθ ,φ

〉

 is given as follows

We also generate 50, 000 quantum states of the following family and use (5) to introduce noise

For the second procedure, 50, 000 entangled states are generated by random density matrices, whereas 50, 000 
separable states are generated by taking the product of two separately generated random density matrices. In 
another procedure, 50, 000 pure quantum states are generated and are mixed by an arbitrary noise factor accord-
ing to (5), where 

∣

∣ψθ ,φ

〉

 denotes the pure state. In addition to the above procedures, we generate 50, 000 samples 
of each of Bell states |ψ+� and |φ+� affected by a random noise factor of p as in (5) where 

∣

∣ψθ ,φ

〉

 refer to the Bell 
states in (8) and (9), respectively.

|R+� =
1√
2
(|0� + ι̇eι̇φ |1�),

|R−� =
1√
2
(|0� − ι̇eι̇φ |1�),

|S+� =
1√
2
(|0� + |1�),

|S−� =
1√
2
(|0� − |1�).

(2)Cr(ρ) = min
σ∈Ŵ

S(ρ||σ) = S(ρd)− S(ρ),

(3)Cr(QS, ρAB)+ Cr(RS, ρAB)+ Cr(RT , ρAB)− Cr(QT , ρAB) ≤ 4.

(4)�ML = w0 + w1Cr(QS, ρAB)+ w2Cr(RS, ρAB)+ w3Cr(RT , ρAB)+ w4Cr(QT , ρAB),

{Cr(QS, ρAB), Cr(RS, ρAB), Cr(RT , ρAB), Cr(QT , ρAB) },

(5)ρθ ,φ = p
∣

∣ψθ ,φ

〉〈

ψθ ,φ

∣

∣+ (1− p)
I

4
,

(6)
∣

∣ψθ ,φ

〉

= cos

(

θ

2

)

|01� + eιφ sin

(

θ

2

)

|10�.

(7)
∣

∣ψθ ,φ

〉

= cos

(

θ

2

)

|00� + eιφ sin

(

θ

2

)

|11�.

(8)|ψ+� =
1√
2
(|01� + |10�),
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In this way, we consider many quantum state families while building the classifier, therefore working towards 
a more general solution. The total size of the generated data consists of 350, 000 samples. The quantum states in 
all the methods mentioned above are generated using the functions of the QETLAB package used in MATLAB 
to explore the theory of quantum entanglement36,37.

We can detect the state as entangled or separable for a bipartite state using the PPT criterion15. Therefore, 
we define ρTB

θ ,φ as the matrix obtained by taking the partial transpose of ρθ ,φ in the second qubit. The label of a 
quantum state is taken as 1, i.e., entangled, if the smallest eigenvalue of the density matrix ρTB

θ ,φ comes out to be 
negative. Otherwise, it is taken as 0, i.e., separable.

For the generated dataset, the labels are obtained by using the PPT criterion function available in the QET-
LAB package, which automatically calculates the partial transpose and computes the minimum eigenvalue to 
determine whether the quantum state in question is entangled or separable36,37. Furthermore, we extract the 
required features given by the relative entropy of coherence, as discussed before. We use this dataset to build the 
most suitable classifier by training our machine learning model.

Training the artificial neural network.  We utilize the artificial neural network to design a classifier as 
our machine learning method. The generated dataset is loaded and divided into 70% training and 30% test sets. 
We construct and train the simplest neural network consisting of linear connection and non-linear output with 
sigmoid as its activation function. We use the loss function given by the binary cross-entropy and the RMSprop 
optimizer with default hyperparameters. In addition, accuracy metrics are used to observe the neural network’s 
performance. Callbacks are used by monitoring the value of validation loss to obtain the best model. The model 
is trained for 100 epochs and tested by the datasets to get the linear weights.

Furthermore, we improve the network’s accuracy by inserting a hidden layer to introduce non-linearity. ReLu 
function is taken as activation function for the hidden layer nodes while sigmoid function for the output layer 
node. Moreover, multiple models are trained for the number of hidden neurons in the set {0, 5, ..., 50} for the same 
dataset. This step highlights the accuracy trend with the increase in neurons. Here, all the weights are initialized 
uniformly and are optimized through the learning process. We implement these neural networks using Keras 
and TensorFlow in a Jupyter notebook environment38.

Numerical results
In this section, we discuss our findings and numerically analyze our proposal. To demonstrate the machine 
learning improvement, we first use the inequality as an entanglement witness on our dataset. By this test, we 
obtain an accuracy of 49.12% , with 178, 048 samples out of the total 350, 000 being predicted as falsely separa-
ble. These results show that the entanglement witness has a significant value of type-II error. After training the 
neural networks with the generated dataset, we test with the testing set and newly generated data to obtain the 
performances of the machine-learned classifiers.

Testing with general testset.  On testing the classifiers, we observe that the linear optimization by the 
simple neural network gives us an accuracy of 78.18% for our data. By introducing a hidden layer, i.e., non-linear 
optimization, we observe a drastic increase in accuracy to 94.62% with 50 hidden neurons. Having hidden neu-

(9)|φ+� =
1√
2
(|00� + |11�).

Figure 2.   Bipartite quantum states classified as truly entangled (TE), falsely entangled (FE), truly separable 
(TS), and falsely separable (FS) by testing classifiers with Nh = 0 , Nh = 10 , and Nh = 50 , where Nh denotes the 
number of neurons in the hidden layer.
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rons more than 50 shows no further increase in accuracy value. To further elaborate our results, we obtain the 
confusion matrices by testing the classifiers. Figure 2 depicts these results. By introducing non-linearity in our 
model, the falsely entangled samples decrease from 4699 to 1184 samples, whereas the falsely separable samples 
change from 3008 to 696 samples. Hence, this proves that the classifier constructed by the hidden layer neural 
network outperforms the neural network with no hidden layer.

Moreover, we observe the performance of the classifier by training the models on different quantum dataset 
sample size. On increasing the dataset size from 103 to 105 , the test accuracies of the model increase as given in 
Table 1.

Comparison with entanglement witness.  We test the trained classifier using a newly generated dataset 
based on the quantum states given by

where p ∈ (0, 1) and is known as the noise factor and |ψ� is a bell state given as

We observe how well the classifier performs depending on the noise level corresponding to the value of p. 
The states mentioned are separable states for p < 1/3 and are entangled if the value exceeds 1/3. We observe that 
a model without hidden neurons, i.e., linear optimization, can yield a significant amount of samples classified 
as falsely separable, as shown in Fig. 3. So the model exhibits type-II error. The learning model with 10 neurons 
shows partial improvement. However, some samples are classified as falsely entangled, as indicated by the blue 
dashed line in the Fig. 3, causing the model to display a type-I error. In our model, we can observe a significant 
gain in the classifier’s performance as we further increase the number of neurons to 50.

In the proposed method, we observe that employing the original inequality as an entanglement witness results 
in a high value of type-II error with an accuracy of 49.12% . However, the classifier trained with the simplest 
neural network classifies quantum states with an accuracy of 78.18% , significantly reducing type-II errors. Also, 
introducing a hidden layer improves the classification performance and predicts the results with an accuracy of 

(10)ρ = p|ψ��ψ | + (1− p)
I

4
,

(11)|ψ� =
1√
2
(|00� + |11�).

Table 1.   Effect on accuracy with the increase of sample size.

Sample Size Nh = 0 Nh = 5 Nh = 10 Nh = 50

10
3 74.0 74.5 75.0 80.0

10
4 75.4 82.3 85.85 87.50

10
5 77.86 84.56 88.33 94.07

Figure 3.   Probability of a quantum state in Eq. (10) being predicted as either entangled or separable as a 
function of the noise factor p. Here Nh denotes the number of neurons in the hidden layer. Truly entangled and 
truly separable regions are represented by shaded regions. This also highlights the effect on detection accuracy 
with the increase in the number of hidden-layer neurons.
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94.62% . This shows a significant improvement compared to the original inequality as an entanglement witness. It 
is because the classifier built with the artificial neural network encodes multiple entanglement witnesses, which 
work simultaneously to detect entanglement better than a single entanglement witness.

Detecting entanglement in tripartite quantum states.  In order to scale up our method to a tri-
partite quantum system, we generate a three-qubit dataset and extract the features according to the Bell-type 
inequality for tripartite states given in35

where ρABC denotes the density matrix of a tripartite quantum state and {(a, a′), (b, b′), (c, c′)} are the basis for 
the three qubits respectively. In this case, we consider fully separable states as one class and biseparable and 
fully entangled states as the other class for binary classification. After training several ANN models, we observe 
that the accuracy for the ANN having a single hidden layer with 100 neurons gives us an accuracy of 78.76% . 
By employing a model with three hidden layers, this accuracy improves upto 80.2% . We obtain the confusion 
matrices in Fig. 4 by testing the classifiers with hidden neurons in the set {0, 10, 100} . The results show that the 
method also applies to tripartite quantum states.

However, compared to the bipartite state classification, we observe that four features are insufficient to achieve 
high accuracy for tripartite state classification. It is depicted by the relatively small increase in the correctly labeled 
samples in Fig. 4. Therefore, to increase the classifier’s performance, we have to increase the number of features 
for model training and modify the neural network architecture. In other words, the trade-off between achievable 
accuracy and resources becomes evident for a quantum system’s increased number of qubits. On the other hand, 
this method is computationally less expensive than quantum state tomography as we use partial information 
in which the number of features required is less than the number of terms in a quantum state density matrix.

Conclusions
In this work, we have designed a classifier for detecting quantum states as separable and entangled using super-
vised learning and Bell-type inequality for relative entropy of coherence. We have generated a quantum dataset 
and have observed that using the Bell-type inequality as an entanglement witness on our quantum dataset gives 
us an accuracy of 49.12% having a large amount of type-II error. In order to obtain better performing classifiers, 
we have chosen an artificial neural network as our machine learning method and trained it on a quantum dataset 
generated by linear optimization, i.e., a simple neural network (no hidden layer), and non-linear optimization, 
i.e., a neural network with at least one hidden layer. The classifier trained with the simplest neural network distin-
guishes the quantum states with an accuracy of 78.18% . Furthermore, we have observed a significant increase in 
the classifier’s performance on increasing the number of neurons and have observed that for our data, an artificial 
neural network with 10 to 50 hidden neurons serves the purpose and predicts the results with an accuracy of 
94.62% . In this way, we have obtained a classifier that detects the entanglement using the coherence of a quantum 
state. We have used this classifier to observe its performance on Bell states affected by the noisy channel and have 
obtained favourable results. Moreover, we have tested our method for classifying tripartite quantum states and 
have observed that this approach can be extended to multipartite systems as well. However, the required number 
of features has to be increased along with the modification of the neural network. Our results pave the way for 
devising reliable entanglement detection tools for applications in quantum communication and computation.

(12)Cr(a
′bc, ρABC)+ Cr(ab

′c, ρABC)+ Cr(abc
′, ρABC)− Cr(a

′b′c′, ρABC) ≤ 6,

Figure 4.   Tripartite quantum states classified as truly entangled (TE), falsely entangled (FE), truly separable 
(TS), and falsely separable (FS) by testing classifiers with Nh = 0 , Nh = 10 , and Nh = 100 , where Nh denotes 
the number of neurons in the hidden layer.
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