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Identification of osteosarcoma 
m6A‑related prognostic biomarkers 
using artificial intelligence: RBM15
Jie Jiang 1, Haishun Qu 2, Xinli Zhan 1, Dachang Liu 1, Tuo Liang 1, Liyi Chen 1, 
Shengsheng Huang 1, Xuhua Sun 1, Jiarui Chen 1, Tianyou Chen 1, Hao Li 1, Yuanlin Yao 1 & 
Chong Liu 1*

Osteosarcoma has the worst prognosis among malignant bone tumors, and effective biomarkers are 
lacking. Our study aims to explore m6A‑related and immune‑related biomarkers. Gene expression 
profiles of osteosarcoma and healthy controls were downloaded from multiple public databases, and 
their m6A‑based gene expression was utilized for tumor typing using bioinformatics. Subsequently, a 
prognostic model for osteosarcoma was constructed using the least absolute shrinkage and selection 
operator and multivariate Cox regression analysis, and its immune cell composition was calculated 
using the CIBERSORTx algorithm. We also performed drug sensitivity analysis for these two genes. 
Finally, analysis was validated using immunohistochemistry. We also examined the RBM15 gene by 
qRT‑PCR in an in vitro experiment. We collected routine blood data from 1738 patients diagnosed 
with osteosarcoma and 24,344 non‑osteosarcoma patients and used two independent sample t tests 
to verify the accuracy of the CIBERSORTx analysis for immune cell differences. The analysis based on 
m6A gene expression tumor typing was most reliable using the two typing methods. The prognostic 
model based on the two genes constituting RNA‑binding motif protein 15 (RBM15) and YTDC1 had a 
much lower survival rate for patients in the high‑risk group than those in the low‑risk group (P < 0.05). 
CIBERSORTx immune cell component analysis demonstrated that RBM15 showed a negative and 
positive correlation with T cells gamma delta and activated natural killer cells, respectively. Drug 
sensitivity analysis showed that these two genes showed varying degrees of correlation with 
multiple drugs. The results of immunohistochemistry revealed that the expression of these two 
genes was significantly higher in osteosarcoma than in paraneoplastic tissues. The results of qRT‑PCR 
experiments showed that the expression of RBM15 was significantly higher in both osteosarcomas 
than in the control cell lines. Absolute lymphocyte value, lymphocyte percentage, hematocrit and 
erythrocyte count were lower in osteosarcoma than in the control group (P < 0.001). RBM15 and 
YTHDC1 can serve as potential prognostic biomarkers associated with m6A in osteosarcoma.

Osteosarcoma, a highly malignant skeletal tumor that develops primarily in children and adolescents, can be 
treated using neoadjuvant chemotherapy and surgery; however, it still has a high potential for local recur-
rence and  metastasis1,2. It has also been shown that m6A promotes the self-renewal of tumor stem cells and 
the proliferation and differentiation of tumor  cells3. It is owing to the poor prognosis of osteosarcoma and the 
associated physical and emotional trauma that exploring osteosarcoma biomarkers related to prognosis should 
be prioritized.

N6-methyladenosine (m6A) epitranscriptional modification is considered to be the most conserved and 
abundant internal transcriptional modification, particularly in eukaryotic RNA (mRNA). m6A is mainly recog-
nized by m6A methylesterases (METTL3/14, WTAP, RNA-binding motif protein 15 [RBM15]/15B, VIRMA, and 
ZC3H13); demethylases (FTO, ALKBH5, and ALKBH3); and m6A binding proteins (YTHDC1/2, YTHDF1/3, 
IGF2BP1/3, HNRNP, and eIF3)4. In recent years, more and more studies on m6A in cancer have reported that 
β-catenin stimulates m6A modification and subsequent translation of HSF1 mRNA by inhibiting miR455-3p 
production; thus, targeting HSF1 may be a potential therapeutic strategy to intervene in  cancers5. Rui Su et al. 
demonstrated that genetic depletion of FTO Alpha-Ketoglutarate Dependent Dioxygenase (FTO) and drug 
inhibition largely attenuated the self-renewal of leukemic stem cells and inhibited the gene expression of immune 
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checkpoint genes, and reprogrammed the immune response; thus, making cancer therapy targeting FTO a 
potential therapeutic  modality6. Thus, m6A methylation modifications occupy a highly important position in 
tumors; however, their specific role in osteosarcoma is largely unknown.

The tumor microenvironment (TME) comprises mainly of immune cells and tumor cells that infiltrate the 
tumor mixed with stromal  components7. Notably, the immune profile within the tumor is an important factor that 
can affect patient survival and response to  immunotherapy8. Moreover, the ability of tumor cells to continuously 
interact with their microenvironment and the tumor microenvironment composition has been demonstrated 
to block immune checkpoint responses, in addition to the intrinsic biomarkers of tumor cells. Moreover, a 
growing body of research suggests that TME plays an integral role in both guiding the patient’s medications and 
 treatment9. The tumor microenvironment limits the immune response, and T cells must initiate an appropriate 
immune response by consuming large amounts of nutrients. In contrast, TME may be metabolically unfavorable 
owing to insufficient vascular exchange and cancer cell metabolism, leading to nutrient depletion and accumula-
tion of waste  products10. In this study, we used CIBERSROT software to quantify the immune cell typing of the 
osteosarcoma gene expression matrix to explore the relationship between immune cells and osteosarcoma; thus, 
guiding the clinical use of drugs.

In recent years, research on genes and disease prognosis has received increasing attention from scholars 
and is gaining attention from researchers as a new method to predict patient  prognosis11–13. Since the specific 
mechanisms of m6A methylation modification in osteosarcoma are not fully understood, the main objective 
of this study was to explore prognostic biomarkers associated with m6A methylation modification as well as 
immune correlation through a combination of bioinformatics and experiments in order to guide clinical diag-
nosis, treatment and predict prognosis.

Materials and methods
Data download and preliminary processing. The gene expression data for osteosarcoma used for 
analysis were downloaded through the University of California Santa Cauz (UCSC Xena, http:// xena. ucsc. edu/) 
database, which was synchronized using the cancer genome atlas (TCGA, https:// www. cancer. gov/ about- nci/ 
organ izati on/ ccg/ resea rch/ struc tural- genom ics/ tcga) database. This is updated simultaneously, making it more 
convenient for researchers to download and analyze the data. In contrast, the gene expression data of normal 
tissues used for analysis were downloaded from the Genotype-Tissue Expression Project (GTEx, https:// www. 
genome. gov/ Funded- Progr ams- Proje cts/ Genot ype- Tissue- Expre ssion- Proje ct). GSE21257 was downloaded 
from the Gene Expression Omnibus (GEO, https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE21 25714) 
database as a validation cohort. In this study, all statistical analyses, as well as bioinformatics image plotting, were 
performed using the programming language R (version R x64 4.0.2, https:// www.r- proje ct. org/). The down-
loaded data were normalized and processed using log2.

Extraction of m6A‑related genes, differential expression analysis, and correlation analy‑
sis. In this study, we extracted m6A-related genes for a deeper study to analyze the role of m6A-related genes 
in osteosarcoma. We extracted 13 m6A-related genes using the “limma”  package15. Subsequently, we performed 
differential expression analysis of these genes with cut off values set to |logFC| > 0.15, P < 0.05. We also visualized 
these genes as heat maps using the “pheatmap” package. We used the “reshape2” and “ggpubr”  package16 to cor-
relate and visualize these genes to understand their relationships.

Gene oncology enrichment analysis (GO) and protein–protein interaction network. To further 
explore the role of m6A-related genes in osteosarcoma, we used the “colorspace,” “stringi,” “ggplot2,” “digest,” 
“GOplot,” “clusterProfiler,” and “org.Hs.eg.gg” packages. The “org.Hs.eg.db” and “enrichplot” packages are used 
for GO enrichment analysis. Also, we imported these m6A-related genes into the String database (https:// www. 
string- db. org/) to obtain the protein–protein interaction network, which was then visualized using Cytoscape 
3.8.0.

m6A‑related tumor typing and its correlation analysis. In this study, tumor typing was first per-
formed based on the gene expression of m6A. We used the “ConsensusClusterPlus” and the “limma” packages to 
perform tumor typing analysis. Nine different fractal methods were simulated to determine the best value of the 
cumulative distribution function (CDF), which is the integral of the probability density function. Subsequently, 
after determining the optimal CDF values, tumor typing was performed, and the principal component analysis 
was visualized using the “limma” and “ggplot2” packages. CDF, also known as distribution function, is an inte-
gral of probability density function, and its main function is to completely describe the probability distribution 
of a real random variable  X17. Here, we use it to analyze the most suitable for fractalizing tumor into several 
clusters. Subsequently, the survival analysis was plotted based on different clusters to analyze the relationship 
between m6A-related tumor typing and prognosis. We combined and analyzed the clinical information with that 
of tumor staging to obtain clinical information related to tumor staging. Finally, we also performed a survival 
analysis of the patients in the two cluster groups.

Construction of m6A‑related prognostic model for osteosarcoma. To analyze the relationship 
between the m6A-related genes and prognosis, the Least absolute shrinkage and selection operator (LASSO) 
and multivariate COX regression analysis method, respectively was used to construct the prognostic models. 
The LASSO method can achieve the effect of variable selection by compressing the coefficients of insignificant 
variables to zero. Although the ridge method also compresses the original coefficients to some extent, none of 
the coefficients are compressed to zero, and the final model retains all the variables. Therefore, LASSO regression 
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is a complex yet accurate method to streamline the model. The LASSO regression method was used to obtain the 
minimum penalty coefficient for constructing the model. Subsequently, a multivariate COX regression analysis 
was used to analyze survival status and survival time together with multiple factors of gene expression to derive 
genes for the construction of the prognostic model, with a cut-off value set at P < 0.05. To test our model, we 
have validated our model using the dataset GSE21257 downloaded from the GEO database as a validation data-
set. The model was constructed using the same method for GSE21257. We used the “survival” package and the 
“survminer” package to analyze the forest maps that visualized the genes used to build the model. We obtained 
a risk score for each patient, as well as the mean value of the patient’s risk score, and divided all patients with 
osteosarcoma into a high-risk or low-risk group.

Examination of m6A‑related prognostic models for osteosarcoma. To test the accuracy of our 
constructed m6A-related osteosarcoma prognostic model, the “survivor”, “survminer”, and “timeROC” packages 
were used to construct ROC diagnostic curves for 1, 3, and 5 years for the prediction model. In contrast, we used 
the “ggpubr” package to analyze the differences in gene expression of the constructed models in the high and 
low-risk groups.

Survival analysis. In this study, the survival data were fully analyzed using different analytical methods to 
make the most of the valuable osteosarcoma case data. First, based on their expression, the “survival” package 
was used to separate each m6A-related gene into high and low m6A-related gene expression groups, and the 
differences in their KM curves were analyzed. Second, a prognostic model was constructed for osteosarcoma, 
and based on this with high and low-risk groups, the survival differences between these groups were analyzed.

Prognostic prediction and clinical correlation analysis of m6A‑related osteosarcoma prognos‑
tic model. After constructing a prognostic model for osteosarcoma, the “rms” package was used to construct 
1-year, 3-year, and 5-year calibration curves and nomogram plots to predict the survival rate of patients with 
osteosarcoma. The calibration curve, a plot of actual versus predicted incidence, is essentially a visualization of 
the results of the Hosmer–Lemeshow goodness-of-fit test and is an effective method to evaluate the consistency 
of the Cox regression model. The nomogram graph is a scoring system that adds up all the scores and finally 
corresponds to the probability of survival. The subgroups were constructed based on high and low-risk groups, 
and the relationship of clinical information was analyzed using these two genes.

Immune cell composition analysis. To investigate the relationship between m6A-related genes and 
immune cells in osteosarcoma, a quantitative analysis was performed of their immune cell content using CIB-
ERSROT  software18. The latter extracted the expression of genes in immune cells as a reference label, used a 
linear model to predict the immune cell content in the tumor, and assessed significance in the results using a 
permutation test. Here, the immune cell content of all osteosarcoma samples was assessed and analyzed using 
P < 0.05 as a screening index.

Drug sensitivity analysis. Here, to analyze the relationship between these two genes and drug sensitiv-
ity, we downloaded the gene expression files and drug sensitivity files from the CellMiner database (Version: 
2021.1, database:2.6) database. The CellMiner database is based on 60 cancer cells listed through the National 
Cancer Institute’s Center for Cancer Research (NCI), and the NCI-60 cell line is the most widely used cancer cell 
sample population for anticancer drug testing  today19,20. The gene expression files and drug sensitivity files were 
downloaded from the CellMiner database (Version: 2021.1, database:2.6), and were analyzed using the "impute" 
package, the "limma" package, the "ggplot2" package, and the "ggpubr The gene expression and drug sensitivity 
analyses were carried out using the "impute", "limma", "ggplot2" and "ggpubr" packages.

Immunohistochemistry. To further validate the reliability of our analysis at the experimental level, a study 
was performed using immunohistochemistry methods. All pathological tissue sections used for immunohisto-
chemistry were obtained from patients diagnosed with osteosarcoma requiring surgical treatment at the First 
Clinical Affiliated Hospital of Guangxi Medical University. This study was in accordance with the Declaration 
of Helsinki of the World Medical Assembly, and the study was approved by the Ethics Department of the First 
Clinical Affiliated Hospital of Guangxi Medical University, approval number: 2021 (KY-E-087). We performed 
immunohistochemical analysis on specimens from anonymous patients, which did not require informed con-
sent from the patients according to the approval of the ethics department of the First Clinical Affiliated Hospital 
of Guangxi Medical University. RBM15-specific antibody was purchased from Proteintech (https:// www. ptgcn. 
com/, Catalog number: 10587–1-AP) and diluted 1:200 for staining; YTHDC1-specific antibody was purchased 
from Abcam (https:// www. abcam. cn/ produ cts/ prima ry- antib odies/ ythdc1- antib ody- epr21 821- 213- ab259 990. 
html) and diluted 1:500 for staining. The http:// www. Abcam. cn/, catalog number: ab259990, was diluted 1:500 
for staining. All pathological tissue sections were subjected to dewaxing, hydration, antigen repair, blocking of 
endogenous peroxidase, serum closure, primary antibody incubation, detection system incubation (secondary 
antibody), DAB development, re-staining, alcohol dehydration, and sealing before placing under an inverted 
microscope for observation. Then, the positive rate of stained areas was assessed for all stained pathological sec-
tions using Image J (V 1.8.0) software (https:// imagej. en. softo nic. com/), and statistical analysis was performed 
using a t test for two-paired sample means with IBM SPSS Statistics 25. Finally, the results of the positive rate 
were visualized using Prism 8 (V 8.0.0, https:// www. graph pad. com/ guides/ prism/8/ user- guide/) software.

https://www.ptgcn.com/
https://www.ptgcn.com/
https://www.abcam.cn/products/primary-antibodies/ythdc1-antibody-epr21821-213-ab259990.html
https://www.abcam.cn/products/primary-antibodies/ythdc1-antibody-epr21821-213-ab259990.html
http://www.Abcam.cn/
https://imagej.en.softonic.com/
https://www.graphpad.com/guides/prism/8/user-guide/
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Quantitative reverse transcription PCR (q‑RT‑PCR). Fluorescence real-time quantitative PCR is 
used to quantify the starting template by monitoring the fluorescence signal of the product of each cycle in the 
amplification reaction in real time and analyzing the amplification of the exponential phase. Here, the normal 
human osteoblasts hFOB1.19, human osteosarcoma cells mnng and human osteosarcoma cells HOS used were 
purchased from Shenzhen Aowei Biotechnology Co (http:// www. otwob iotech. com/). We used the NCBI home-
page (http:// www. ncbi. nlm. nih. gov/) for gene sequence lookup and Primer premier 5.0 for primer design. We 
performed cell culture of all cells purchased, and after obtaining enough cells, we performed RNA extraction 
from two types of osteosarcoma cells and control cells. Subsequently, real-time quantitative PCR was performe. 
The details of primer design are shown in Table 1.

Big data blood test immune cell discrepancy. Here, we collected routine blood data from screened 
non-osteosarcoma patients and osteosarcoma patients attending the First Affiliated Hospital of Guangxi Medical 
University between January 1, 2010 and January 1, 2022 for testing immune cell differences in order to test the 
accuracy of immune cells obtained from CIBERSORTx software (https:// ciber sortx. stanf ord. edu/) calculations. 
This study was in accordance with the Declaration of Helsinki of the World Medical Assembly, and the study 
was approved by the Ethics Department of the First Clinical Affiliated Hospital of Guangxi Medical University, 
approval number: 2021 (KY-E-087).We performed statistical analysis of these two groups using two independ-
ent samples t test. The statistical results were also visualized using the programming language R.

Ethical disclosure. This study was approved by the Ethics Review Committee of the First Clinical Affiliated 
Hospital of Guangxi Medical University and was in accordance with the Declaration of Helsinki of the World 
Medical Associatio.

Results
Data download and preliminary processing. The gene expression data were downloaded from the 
UCSC Xena database for 88 patients with osteosarcoma, while 396 normal samples were downloaded from the 
GTEx database as normal controls. We normalized the downloaded data, and log2 processed all the data. The 
steps of the work were plotted as a flow chart (Fig. 1).

Extraction of m6A‑related genes, differential expression analysis, and correlation analy‑
sis. We extracted m6A-related genes for further analysis to investigate the role of m6A-related genes in osteo-
sarcoma. We extracted a total of 12 m6A-related genes from 54,751 rows of gene expression matrix for analysis. 
Subsequently, we performed differential expression analysis of these 12 m6A-related genes and plotted them 
into heat map (Fig. 2A) and violin map (Fig. 2B). The details of differentially expressed genes are illustrated in 
Table 2. Here, we constructed a correlation circle diagram between genes to analyze the correlation between 
these m6A genes (Fig. 2C). We made a two-by-two association of all m6A-related genes. If the line between two 
genes is red, the expression of these two genes in osteosarcoma is synergistically high, and if the line between two 
genes is green, the expression of the two genes in osteosarcoma is synergistically low.

Gene oncology enrichment analysis (GO) and protein–protein interaction network. Here, GO 
enrichment analysis was performed to analyze the function of GO of these m6A-related genes (Fig. 3A). The 
results of GO demonstrate that the first 10 items are: regulation of mRNA metabolic process, RNA modifica-
tion, mRNA methylation, regulation of mRNA stability, mRNA modification, regulation of RNA stability, RNA 
methylation, regulation of mRNA catabolic process, mRNA destabilization, and RNA destabilization. In con-
trast, these m6A-related genes were imported into the STRING database, and their protein–protein interaction 
network diagram was obtained (Fig. 3B). In the figure we could find that RBM15 and YTHDC1 are each directly 
or indirectly linked to several m6A-related genes.

m6A‑related tumor typing and its correlation analysis. To analyze the role of m6A-related genes 
in osteosarcoma extensively, all cases were divided into different clusters of 1, 2, 3, 4, 5, 6, 7, 8, and 9 based on 
the simulation of these m6A gene expression values (Fig. 4A–L), and the CDF values were calculated. The best 
results were obtained when the CDF value was 2. Subsequently, a principal component analysis plot was con-
structed (Fig. 5A) by grouping all cases based on cluster1 and cluster2. Also, the difference in survival analysis 
based on m6A tumor staging (Fig. 5B) was not statistically significant (P > 0.05). We also analyzed the relation-
ship of m6A-based tumor typing with clinical information (Fig. 5C).

Table 1.  Primer sequences of GAPDH and RBM15.

Primer Sequence (5′–3′)

RBM15-F CTG CCT GAG GAG AGT GGA GGAC 

RBM15-R CGG CTA CTG CTC AAT TCT GGA CTG 

GAPDH-F CCA CTC CTC CAC CTT TGA C

GAPDH-R ACC CTG TTG CTG TAG CCA 

http://www.otwobiotech.com/
http://www.ncbi.nlm.nih.gov/
https://cibersortx.stanford.edu/
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Survival analysis. Here, two different methods were used to analyze the survival data of ghost sarcoma 
cases to obtain the best results. First, survival curves (Fig. 6A–L) were constructed based on the mean values of 
gene expression of these 12 m6A-related genes, dividing all patients into high and low expression groups. The 
results revealed that the differences were not statistically significant (P > 0.05). In contrast, the survival rate of 
patients in the high-risk group was much lower than that of those in the low-risk group by analyzing the differ-
ences between the high-risk and low-risk groups based on the constructed prognostic model of osteosarcoma 
with m6A-related genes (Fig. 6M), and the differences were all statistically significant (P < 0.05). Results from 

Figure 1.  Flowchart. This figure shows the workflow diagram of this study.
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the validation dataset of the GEO database (Fig. 6N) showed that patients in the high- and low-risk groups con-
structed based on this prognostic model also had lower survival rates in the high-risk group than in the low-risk 
group in the GEO database (P < 0.05).

Construction of m6A‑related prognostic model for osteosarcoma. Since the results of the m6A-
based model for tumor typing did not yield satisfactory results, a COX regression model was constructed. The 
m6A-associated genes were analyzed with survival by LASSO regression to obtain the minimum penalty coef-
ficient (Fig. 7A,B). Subsequently, these genes were further analyzed concerning survival status and survival time 
using multivariate COX regression analysis, and finally, two genes (RBM15 and YTHDC1) were obtained for 
the COX prognostic model, which was visualized using forest plots (Fig. 7C). Moreover, the risk score of each 
patient was obtained; patients with greater than the mean value of risk score were categorized into a high-risk 
group and those with less than or equal to risk score into low-risk group.

Figure 2.  M6A-related genes differential analysis and correlation analysis plots. (A) Shows the heat map of 
m6A-related genes, red indicates high expression and green indicates low expression. "***" indicates P < 0.001. 
(B) Indicates the difference in expression of m6A-related genes in osteosarcoma and paraneoplastic tissues. (C) 
Indicates the correlation analysis graph between m6A-related genes.
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Examination of m6A‑related prognostic models for osteosarcoma. Receiver operating character-
istic (ROC) diagnostic curves were constructed (Fig. 7D) to be used to test the accuracy of the prognostic model. 
As illustrated by the ROC diagnostic curve, the area under the curve values are > 0.5 in predicting survival at 
1 year or 3 and 5 years. This also demonstrates the accuracy of our constructed m6A-related prognostic model 
for osteosarcoma. In contrast, the expression of these two gene lists for the construction of the model in the high 
and low-risk groups was analyzed (Fig. 7E,F). The differences in gene expression of RBM15 in the high-risk and 
low-risk groups were determined, and the expression of RBM15 was significantly higher in the high-risk group 
than in the low-risk group, and the difference was statistically significant (P < 0.05).

Prognostic prediction and clinical correlation analysis of m6A‑related osteosarcoma prognos‑
tic model. A prognostic model was constructed for osteosarcoma for deriving the calibration curve (Fig. 8A) 
and nomogram plot (Fig. 8B) for predicting the prognosis of patients with osteosarcoma. The predicted value of 
the initiating point of the prediction overlaps with the actual value, and the predicted value of the focus of the 
prediction also basically overlaps with the actual value, which further confirms the accuracy of our constructed 
prognostic model. Also, the nomogram was used to predict the prognosis of patients with osteosarcoma. Finally, 
the relationship between risk values and clinical information was visualized by ranking patients in order from 
lowest to highest based on the risk score values (Fig. 8C).

Immune cell composition analysis. We quantified immune cells using CIBERSORTx software to ana-
lyze the relationship between two genes and immune cells in osteosarcoma using the constructed prognostic 
model (Fig. 9A–C). A significant negative correlation was detected between RBM15 and T cells gamma delta 
(R = − 0.26, P = 0.017). This would suggest that when the RBM15 gene is overexpressed, T cells gamma delta 
expression is reduced in osteosarcoma. On the other hand, a significant positive correlation between RBM15 and 
activated natural killer (NK) cells (R = 0.23, P = 0.032). This suggests a new direction for immunotherapy in the 
treatment of osteosarcoma. This suggests that when RBM15 gene expression is high, the expression of natural 
killer (NK) cells in osteosarcoma is also correspondingly increased.

Drug sensitivity analysis. As shown in Fig. 10, we constructed the relationship between the gene expres-
sion of these two genes and the sensitivity of the drugs. From the figure, we could find that YTHDC1 showed a 
very significant correlation with Nelarabine, Olaparib, Fludarabine, Mithramycin, Homoharringtonine, Vinorel-
bine, Vemurafenib, Allopurinol, Dexamethasone Decadron and Allopurinol showed a highly significant correla-
tion (P < 0.05). Among them, YTHDC1 showed positive correlation with Nelarabine, Fludarabine, Allopurinol 
and Allopurinol. In other words, if increased expression of YTHDC1 is detected in a patient’s gene, then these 
drugs will be more sensitive than others for treating this patient. YTHDC1 showed a negative correlation with 
Olaparib, Mithramycin, Homoharringtonine, Vinorelbine and Vemurafenib, i.e. the higher the gene expression 
value, the weaker the drug sensitivity. On the other hand, RBM15 showed a negative correlation with Denileukin 
Diftitox Ontak (P < 0.05), i.e., the higher the RBM15 expression value, the worse the sensitivity of this drug. In 
other words, if an increased RBM15 is detected in a patient with osteosarcoma, then this patient is insensitive to 
Denileukin Diftitox Ontak.

Immunohistochemical analysis. The immunohistochemical analysis of osteosarcoma and paraneoplas-
tic tissue specimens was performed at the First Clinical Affiliated Hospital of Guangxi Medical University that 
was used for pathological testing during the surgical treatment. Six pairs (six osteosarcomas and six paraneoplas-
tic tissues) of pathological tissue sections were stained with specific antibodies for each gene, and a total of 24 
sections were specifically stained. The results demonstrated that the positive area of specific staining expression 
of RBM15 was significantly more abundant in osteosarcoma than in paraneoplastic tissues (Fig. 11A1–B2). The 
positive area of specific staining expression of YTHDC1 was significantly more abundant in osteosarcoma than 
in paraneoplastic tissues (Fig. 11C1–D2). Also, we used Image J software to count the positive rate of the specifi-

Table 2.  Details of the differentially expressed m6A-related genes.

Gene conMean treatMean logFC P value

YTHDC2 2.607617 1.396502 − 0.90092 3.73E−47

YTHDF2 3.996537 5.302091 0.407811 3.20E−46

WTAP 5.646791 3.828828 − 0.56053 3.86E−43

YTHDF1 4.081145 5.124077 0.328318 9.84E−43

FTO 3.807339 2.605391 − 0.54728 8.18E−42

YTHDC1 4.42701 3.589309 − 0.30263 6.82E−40

METTL3 4.086343 3.134333 − 0.38265 4.10E−37

METTL14 2.240601 1.919177 − 0.2234 1.19E−11

ALKBH5 6.109931 6.918332 0.179268 3.70E−09

RBM15 1.809804 2.148501 0.247497 4.28E−09

ZC3H13 2.760139 2.727128 − 0.01736 0.172505

HNRNPC 6.583267 6.571413 − 0.0026 0.520275
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cally stained sections for the RBM15 and YTHDC1 genes and then performed statistical analysis using a t test 
for the mean of two paired samples with IBM SPSS Statistics 25. Graphpad prism 8 (https:// www. graph pad. com/ 
guides/ prism/8/ user- guide/) was used to visualize the positive rate statistics for both genes. After performing 
statistical analysis, the rate of positive specific staining for RBM15 was higher in osteosarcoma than in paraneo-
plastic tissues (Fig. 11E), and the difference was statistically significant (P < 0.05). The positive rate of specific 
staining for YTHDC1 was higher in osteosarcoma than in paraneoplastic tissues (Fig. 11F), and the difference 
was statistically significant (P < 0.05).

Figure 3.  GO enrichment analysis and protein–protein interaction network diagram. (A) Shows the GO 
enrichment analysis of m6A-associated genes. (B) Shows the protein–protein interaction network of m6A-
related genes.

https://www.graphpad.com/guides/prism/8/user-guide/
https://www.graphpad.com/guides/prism/8/user-guide/
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qRT‑PCR. After cell culture, RNA extraction, primer design and QRT-PCR laboratory manipulation, we 
obtained the expression of RBM15 in osteosarcoma cells as well as in control cells. From Fig. 11G, we can find 
that the expression of RBM15 in both osteosarcoma cell lines was significantly higher than that in the control 
group, and the difference was statistically significant (P < 0.001). This further tested the accuracy of our analysis 
at the cellular level.

Figure 4.  M6A-associated gene tumor typing map. (A–L) Indicates that we simulated the classification of 
tumors into 1–9 different grouping scenarios based on the expression of m6A-related genes.
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Big data blood routine data results. To test the accuracy of immune cell differences obtained from 
bioinformatics CIBERSORTx analysis, we collected data on routine blood tests from 1738 patients diagnosed 
with osteosarcoma and 24,344 non-osteosarcoma patients (healthy controls) at the First Affiliated Hospital of 
Guangxi Medical University from January 1, 2010 to January 1, 2022, for a total of 26,082 cases in all cases. We 
collected four indices of routine blood data: absolute lymphocyte value, lymphocyte percentage, red blood cell 
count and erythrocyte specific volume. The results (Fig. 12A–D) showed that the absolute lymphocyte value, 
lymphocyte percentage, hematocrit and erythrocyte count were lower in osteosarcoma than in the control 
group (P < 0.001). This further validates the reliability of our analysis. The previous bioinformatics analysis also 
revealed significant differences between these immune cells in the osteosarcoma and control groups.

Figure 5.  Principal component analysis, prognostic analysis and clinical correlation analysis of m6A-related 
genes based on tumor typing. (A) Shows the principal component analysis. (B) Shows the KM curves of the 
prognostic analysis constructed based on two different cluster groupings. (C) Represents the clinical correlation 
analysis based on two different clusters.
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Discussion
Osteosarcoma as a soft tissue sarcoma has a poor prognosis, especially the highly aggressive soft tissue  sarcomas21. 
The protein function that specifically recognizes m6A reveals that it is a modification used by cells to accelerate 
mRNA translation and  metabolism22. Since 1974, m6A RNA methylation has been identified as a major internal 

Figure 6.  Survival analysis. (A–L) Shows the KM survival curves constructed based on the high and low 
expression of m6A-related genes in osteosarcoma and paraneoplastic tissues. (M) Shows the KM survival curves 
constructed based on the high and low risk groups of the m6A-related osteosarcoma prognostic model.



12

Vol:.(1234567890)

Scientific Reports |         (2023) 13:5255  | https://doi.org/10.1038/s41598-023-28739-1

www.nature.com/scientificreports/

modification of higher eukaryotic RNAs. For different tissues and cell lines, m6A methylation is capable of 
influencing tumorigenesis and development through various  mechanisms23. Moreover, in the present study, the 
results of GO enrichment analysis showed that these m6A-related genes were primarily enriched in regulation 

Figure 7.  Construction diagram of the prognostic model for osteosarcoma. (A) and (B) represent the results of 
LASSO regression analysis to find the minimum penalty coefficient. (C) Shows the results of multivariate COX 
regression analysis, plotting the forest plot of 2 genes for constructing the prognostic model of osteosarcoma. 
(D) Represents the ROC diagnostic curve. (E) and (F) indicate the expression of the two genes used to construct 
the model in the high and low risk groups.
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of mRNA metabolic process, RNA modification, mRNA methylation, regulation of mRNA stability, mRNA 
modification, regulation of RNA stability, RNA methylation, regulation of mRNA catabolic process, mRNA 
destabilization, and RNA destabilization entries. This is consistent with the results of our analysis. Also, the 
results of both protein–protein interaction network and intergenic correlation analysis demonstrated that these 
m6A-related genes were closely linked.

RBM15, a protein-coding gene, is associated with the RBM15 gene in diseases such as acute megakaryo-
cytic leukemia and megakaryoblastic acute myeloid leukemia With T(1;22)(P13; Q13). RBM15, a type of m6A 
methyltransferase, has growing evidence that m6A methylation has a dramatic impact on RNA and is involved 
in the pathogenesis of a variety of diseases, including  cancer24. Also, dysregulation by m6A modification and 
its associated proteins contributes to cancer development, occurrence, and drug  response25. Furthermore, m6A 
modifications play a unique role in critical physiological functions of the liver and various liver diseases. Dynamic 
post-transcriptional modifications determine the fate of target RNAs by regulating various aspects of RNA 
processing, including RNA export, transcript processing, splicing, and degradation, while the most abundant 
internal mRNA modifications in eukaryotic cells are by using m6A, which plays an important physiological 
role in carcinogenesis and embryonic  development26. Moreover, in the present study, we showed through bioin-
formatics with laboratory level validation results that RBM15 plays an integral role in osteosarcoma and that a 

Figure 8.  M6A-related osteosarcoma prognostic model validation and clinical correlation analysis. (A) 
Represents the calibration curve plot, the predicted starting point and the predicted end point basically overlap. 
(B) Represents the column line plot, which can be used to predict the prognosis of osteosarcoma patients. (C) Is 
the clinical correlation analysis plot.
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prognostic model of osteosarcoma consisting of two genes, including RBM15, was able to adequately predict the 
prognosis of patients with osteosarcoma. It has been shown that in a mouse model of spontaneous breast cancer, 
tumors can maximize the chance of metastasis through a systemic validation cascade of gas exchange and that 
tumor-induced neutrophils can acquire the ability to carry cytotoxic T lymphocytes transporting CD8  antigens27. 
Gamma delta (γδ) T cells are recognized as protective cells in cancer, primarily through the production of potent 
cytotoxicity and interferon-γ28. There is growing evidence for a role of γδ T cells as additional drivers of tumor 
development, and these native γδ T cells are abundant in both mouse and human tumor  microenvironments29. 
This is consistent with our findings. Our study showed that γδ T cells in osteosarcoma are closely associated 
with RBM15. NK cells can rapidly kill multiple adjacent cells as long as they exhibit surface markers associated 
with oncogenic transformation, a unique property of immune cells that enhances the ability of antibodies and 
T-cell responses to support the role of NK cells as anti-cancer  agents30. Chimeric antigen receptors (CARs) can 
significantly increase the antitumor activity of immune effector cells and improve NK cell-mediated  killing31. 

Figure 9.  Immune cell composition analysis and correlation analysis of RBM15. (A) Represents the 
composition analysis graph of immune cells based on RBM15. (B,C) Show the correlation analysis between 
RBM15 and two different immune cells, respectively.
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This is consistent with the results of this study, which showed a significant positive correlation between RBM15 
and NK cell activation in osteosarcoma. Finally, we found that the expression of RBM15 in both osteosarcoma 
cell lines was much higher than that in the control cell lines by qRT-PCR in vitro, and the difference was statisti-
cally significant (P < 0.05).

YTH Domain Containing 1 (YTHDC1) is a protein-coding gene, and diseases associated with the YTHDC1 
gene include Wilms tumor 1 and periosteal chondrosarcoma. Wen Xiao et al. showed that due to YTHDC1 deple-
tion, its dysregulation can be restored by wild-type but not m6A binding-deficient YTHDC1 recombination, 
demonstrating that the m6A reader YTHDC1 can exert regulatory mRNA splicing by recruiting and regulating 
pre-mRNA splicing factors and permitting splicing factors to enter the binding region of target mRNAs splicing 
 role32. Also, double-strand breaks (DSBs) have been demonstrated as the type of DNA damage that is optimally 
returned and may lead to cell death or genomic instability if not repaired and that the METTL3-m6A-YTHDC1 
axis can regulate the accumulation of DNA-RNA hybrids at DSBs sites. Moreover, depletion of METTL3 mark-
edly enhanced the sensitivity of mouse xenografts and cancer cells to DNA damage  treatment33. This is consistent 
with the results of the present study. In this study, bioinformatics with laboratory level studies showed that the 
prognostic model of osteosarcoma consisting of two genes, including YTHDC1, demonstrated a close correlation 
with the prognosis of patients with osteosarcoma whose survival rate was much lower in the high-risk group 
than in the low-risk group.

Here, prognostic models were constructed by two different methods. First, tumors were typed based on 
the expression of m6A-related genes, and all osteosarcoma cases were divided into two clusters. Based on this, 
PCA plots, survival analysis, and clinical correlation plots were constructed. Subsequently, LASSO regression 
and multivariate COX regression analysis were used to construct a prognostic model for m6A-related genes to 
construct a more accurate model. The results showed that the survival rate of patients with osteosarcoma in the 
high-risk group was much lower than that in the low-risk group. Results from the validation dataset of the GEO 
database showed that patients in the high- and low-risk groups constructed based on this prognostic model also 
had lower survival rates in the high-risk group than in the low-risk group in the GEO database (P < 0.05). The 
ROC diagnostic curve and calibration curve was tested on the model, and the prognosis of osteosarcoma cases 
could be predicted using nomogram plots. Subsequently, an analysis of the immune cell composition of these two 
genes was performed, which showed that RBM15 was closely associated with both immune cells, suggesting a 
new direction and perspective for immunotherapy of osteosarcoma. Finally, the difference in protein expression 

Figure 10.  Drug sensitivity analysis. The graph shows the results of the analysis of gene expression and drug 
sensitivity, the horizontal coordinates indicate the gene expression values and the vertical coordinates indicate 
the Z-scroe values of sensitivity. Cor > 0 indicates a positive correlation and Cor < 0 indicates a negative 
correlation.
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Figure 11.  Immunohistochemical analysis and statistical analysis of positive rate. (A1–B2) Show the specific 
expression of RBM15 in osteosarcoma and in paraneoplastic tissues. (C1–D2) Show the difference of YTHDC1 
expression in osteosarcoma and in paraneoplastic tissues. (E,F) Indicate the statistical plots of all positive 
immunohistochemical staining rates for RBM15, respectively. (G) Shows the expression of RBM15 in two 
osteosarcoma cell lines and one control cell line, "*" indicates P < 0.05, "**" indicates P < 0.01, "***" denotes 
P < 0.001.
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of these two genes was analyzed in osteosarcoma tissue and normal para cancerous tissue by immunohisto-
chemistry, and the results supported this analysis. Subsequently, we examined the RBM15 gene by qRT-PCR 
using in vitro cellular assays and found that its expression was indeed higher in the osteosarcoma cell line than 
in the control cell line, which further confirmed the accuracy of our analysis. More notably, we collected 1738 
patients diagnosed with osteosarcoma and 24,344 non-osteosarcoma patients from January 1, 2012 to January 
1, 2022 at the First Affiliated Hospital of Guangxi Medical University to verify the accuracy of CIBERSORTx 
analysis of immune cell differences using two independent sample t tests, and the results also confirmed that our 
bioinformatics analysis was very accurate.

Our study also has certain shortcomings. First, the sample size was inadequate. Our analysis was based on 
two databases of 88 osteosarcoma samples and 396 normal samples, which was inadequate. Second, laboratory 
level validation was inadequate. We only performed preliminary validation of the results of the analysis by 
immunohistochemistry and did not perform in-depth laboratory validation.

Conclusion
RBM15 could be possible m6A-related biomarker for predicting the prognosis of osteosarcoma with much lower 
survival rates in the high-risk group than in the low-risk group.

Figure 12.  Results of routine blood analysis of big data. (A,B) Demonstrate the differences in absolute 
lymphocyte values and lymphocyte percentages in the osteosarcoma and control groups, respectively. (C,D) 
Show the differences in red blood cell count and red blood cell volume between the osteosarcoma and control 
groups.
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Data availability
The datasets supporting the conclusions of this article are available in the UCSC Xena (http:// xena. ucsc. edu/), 
GTEx database (https:// www. gtexp ortal. org/ home/), and GEO database (https:// www. ncbi. nlm. nih. gov/ geo/ 
query/ acc. cgi? acc= GSE21 257).
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