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Learning from algorithm‑generated 
pseudo‑annotations for detecting 
ants in videos
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Danny Z. Chen 5

Deep learning (DL) based detection models are powerful tools for large‑scale analysis of dynamic 
biological behaviors in video data. Supervised training of a DL detection model often requires a large 
amount of manually‑labeled training data which are time‑consuming and labor‑intensive to acquire. 
In this paper, we propose LFAGPA (Learn From Algorithm‑Generated Pseudo‑Annotations) that 
utilizes (noisy) annotations which are automatically generated by algorithms to train DL models for 
ant detection in videos. Our method consists of two main steps: (1) generate foreground objects using 
a (set of) state‑of‑the‑art foreground extraction algorithm(s); (2) treat the results from step (1) as 
pseudo‑annotations and use them to train deep neural networks for ant detection. We tackle several 
challenges on how to make use of automatically generated noisy annotations, how to learn from 
multiple annotation resources, and how to combine algorithm‑generated annotations with human‑
labeled annotations (when available) for this learning framework. In experiments, we evaluate our 
method using 82 videos (totally 20,348 image frames) captured under natural conditions in a tropical 
rain‑forest for dynamic ant behavior study. Without any manual annotation cost but only algorithm‑
generated annotations, our method can achieve a decent detection performance (77% in F

1
 score). 

Moreover, when using only 10% manual annotations, our method can train a DL model to perform as 
well as using the full human annotations (81% in F

1
 score).

The studies of animal behaviors have changed with technical advances in video recording. Today, behavioral 
biologists use, for example, infrared or thermal cameras to capture unseen behaviors in the dark (e.g., the 
 work1–3), high-speed cameras to record ultra fast movements in extreme detail (e.g., the  work4, 5), and drones to 
study detailed movement patterns in videos (e.g., the  work6, 7). These technical advances with individual mark-
ing made it also possible to explore the complex and fascinating life of social insects (i.e. ants, bees, termites 
and wasps) in detail (e.g., the  work8, 9). social insects often live in highly dense groups which collectively make 
decisions. As they are easy to keep in the laboratory and experimentally manipulate them, they have become 
important study systems for example to learn about the evolution of sociality (e.g., the  work10, 11), collective 
behavior (e.g., the  work9, 12) and disease dynamics (e.g., the  work13–15). Due to the steadily increasing amount 
of collected video footages (e.g., the  work1), manual data analysis has become infeasible anymore (see Fig. 1). 
Modern deep learning (DL) based object detection methods are powerful tools for accurate detection of moving 
objects or animals and construction of their trajectories. But, such DL detection methods commonly require 
large amounts of annotated data for network training, which are time-consuming and labor-intensive to acquire.

When biological videos are recorded in an environment where the background is relatively stable, automatic 
foreground extraction algorithms can be applied to extract preliminary foreground segmentation or detection 
results. Such preliminary detection results, although often noisy, contain valuable information on where the 
moving objects roughly are in the image frames of the videos. These results can be used as pseudo-annotations 
for training a DL based detection model. In this paper, we study how to build and train a DL detection model 
for ant video data using algorithm-generated pseudo-annotations. Our method has two major steps (see Fig. 2): 
(1) generate foreground objects using a (set of) reasonably good foreground extraction algorithm(s); (2) treat 
the results from step (1) as pseudo-annotations and use them to train a DL detection model.
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Our contributions can be summarized as follows. (1) We demonstrate that it is practically feasible to utilize 
noisy algorithm-generated annotations in learning a deep neural detection model for processing biological 
video data. (2) A new probabilistic NN-Fit algorithm is developed to learn from networks trained with multiple 
annotation resources. (3) A hybrid learning framework is then proposed for learning a deep neural network 
using both the algorithm-generated annotations (noisy) and human-generated annotations (clean). With such 
a hybrid learning framework, a significant reduction in the human annotation is achieved to reach the same 
level of prediction performance.

In the following, we first describe the related methods and their relevance in “Related work” section. We 
then analyze essential mechanisms for learning from noisy labels in “Analyses on learning with noisy labels” 
section. Based on the analyses, we describe our proposed method in “Method” section. Finally, experiments are 
performed in “Experiments” section to validate our proposed method.

Figure 1.  Image samples and the desired ant detection results (visualized in green colored disks). Please see the 
video attachment for video clip samples.
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Related work
Object detection. Two-stage models (e.g., Faster R-CNN16 and Mask R-CNN17) and single-stage models 
(e.g.,  SSD18 and  YOLO19) are common options for object detection problems. A two-stage model uses a Fully 
Convolutional  Network20 (FCN) as its first stage for region proposal generation; and uses the proposed regions 
for segmentation or classification in the second stage. On the other hand, a single-stage model attains detection 
results using a group of encoding procedures (e.g., with a VGG like  architecture21) and does not address any 
segmentation problem. In this paper, we demonstrate our new learning method using some popular DL models 
(U-Net22,  DCN23) and Mask R-CNN17 for the ant detection problem.

Pseudo‑labels/annotations. Annotations for classification/detection/segmentation tasks usually refer to 
the image-/object-/pixel-wise ground truth provided by human experts. Pseudo-labels/annotations, on the other 
hand, are produced by a model or an algorithm. In the  work24, pseudo-labels were proposed for semi-supervised 
learning for classification problems, where a DL model is trained using both images with manual labels and 
images with pseudo-labels produced by the current under-training DL model. It was shown that pseudo-labels 
generated by a DL model for unlabeled data could boost the performance of the under-training DL  model24. 
Oliver et al.25 demonstrated that the  method24 was still among the top performers for a semi-supervised learning 
classification problem using modern DL based models. However, there are some issues on using pseudo-labels 
generated by a under-explored DL model. First, if a DL model generates wrong predictions for some unlabeled 
images and such predictions are used to generate pseudo-labels, then the wrong ideas/concepts from the DL 
model could be further enhanced. Second, using pseudo-labels generated by a DL model still requires a cer-
tain amount of human-annotated images in the first place to initiate the model training (before it can generate 
pseudo-labels for unlabeled images). In contrast, our method uses algorithms to automatically generate pseudo-
annotations (based on a common property of the ant videos) and requires zero manual annotation in the begin-
ning. Further, our method is capable of using both human-annotated and algorithm-annotated training data. 
In experiments (“Scenario-1: using no human annotations” section), we directly compare our method with the 
 method24 for the ant detection under the semi-supervised learning setting (Fig. 5).

Self‑supervised feature learning. Self-supervised feature learning is a relatively new research topic in 
the machine learning field. Pretext tasks (e.g., predicting the relative locations of two cropped image  patches26, 
image  colorization27, and solving jigsaw  puzzles28) are hand-defined and algorithmically produced to train DL 
models to learn meaningful semantic features.  MoCo29 and  SimCLR30 are recent developments based on con-
trastive learning scheme. Although no manual labels are used, the learned feature representations from self-
supervised learning methods do not output classification and detection predictions (additional training with 
manually labeled data is required for downstream tasks). In contrast, our method utilizes algorithm-generated 
annotations to directly train a DL model for a detection problem.

Lee et al.24 proposed to use pseudo-label for utilizing unlabeled data for training an image classification model. 
Pseduo-labels contain possible errors, and this pioneer work showed that training process of deep networks 
can reduce some of the errors via a self-correction mechanism. The self-correction mechanism was primarily 
demonstrated by experiments, but less theoretical studies were performed at that time. Pathak et al.31 proposed 
to learn visual representations by learning from unsupervised motion segmentation. Noisy segmentation maps 
were first generated by pixel grouping method based on motions in the videos, and these noisy segmentation 
maps were then used to train a new segmentation model. The trained networks can improve the quality of the 
segmentation from the original noisy segmentation and also learn meaningful feature representations. This 
phenomena was understood as that errors which are not systematic errors in the labels would be likely to be 
corrected by a learning process, due to the model’s limited capacity. Numerous work then followed to further 
study using pseudo-labels for utilizing unlabeled data in training a DL model.

Figure 2.  Schematic overview of our proposed learning framework. Step-1 generates pseudo-annotations for 
raw image data using foreground extraction algorithms. Step-2 trains DL based detection models using the 
generated training data from Step-1.
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Learning from noisy labels. Learning from noisy labels has been a long-standing research problem in 
machine learning and computer vision. For a more thorough summary and analysis, one can refer to a recent 
survey  article32. In the following, we list and analyze previous methods related to our proposed method.

Li et al.33 proposed first to train a model using clean data and then utilize the learned model to guide the 
learning process of a new model on the full dataset, which contains label noises. Tanaka et al.34 proposed to 
rectify labels while learning the DNN model parameters. An interchanged learning phase was designed where 
one training epoch asks the model to learn from the current labels, and the next training epoch uses the learned 
model to modify some of the labels the model cannot fit well. Zheng et al.35 trained a group of diverse deep neural 
networks using manually labeled (clean) labels, then they utilized the trained networks to generate pseudo-labels 
on unlabeled data. Manually labeled and network-labeled data is then combined to train a new model. In order to 
handle potential noisy labels in the network-generated labels, a random-fit and NN-fit algorithm was designed, 
which allows the under-trained network to choose which label to fit. Different  from34, label distribution was 
better modeled by training a diverse set of neural networks, which helps avoid over-fitting. Han et al.36 gener-
ated prototype samples from the dataset and utilized the prototypes to correct some of the incorrect labels. Bai 
et al.37 compose a DNN model into multiple parts and control the early stopping timings for each part. This is 
based on the observation that earlier layers are often more robust than the later layers when learning from noisy 
labels. Early stopping helps prevent the network from over-fitting noises in the labels. Via such fine control of 
early stop w.r.t layers, this work achieves good performance in learning from noisy labels.

Analyses on learning with noisy labels
To successfully utilize noisy labeled data for training a DL model, a crucial factor lies on whether any negative 
effects introduced by noisy labels can be minimized; meanwhile, the potential merits of using additional data 
(with noisy labels) can be maximized. As described above, many recent methods build on top of the original 
pseudo-label ideas, proposing new methods that aim to learn from noisy labels. Below, we give our analysis of 
the types of errors in the noisy labels, core mechanisms to handle these errors, and guidelines on how to design a 
DNN model with proper learning objectives and training procedures to achieve a successful learning procedure 
when dealing with noisy labels.

Systematic and non‑systematic errors. In this work, we utilize ants’ motion to generate pseudo-labels. 
This assumes any moving object in the videos is an ant object. But, occasionally, other small objects would 
move in the videos. The motion-based foreground detection algorithm (see “Detecting ants using motion-based 
foreground detection algorithms”  section for details) cannot distinguish between ants and other insects. Thus 
it would treat all the moving objects as ants. These errors are systematic. On the other hand, winds occasionally 
cause objects to move in the scenes; in some frames, objects are moving, and in most cases, those objects are 
stable, and the labels would be assigned differently for the same objects. Thus, these errors are non-systematic.

More formally, we consider a group of n training samples X = {x1, x2, . . . , xn} , Y = {y1, y2, . . . , yn} , where 
x ∈ R

w×h×c , and y ∈ R
w′×h′×p×q×k . That is, an input image with width w, length h, and c number of channels, 

and its corresponding annotation is represented as a tensor with w′ width, h′ height, and p number of configura-
tions of the bounding box’s width and q number of configurations of the bounding box’s height. k is the number 
of object classes in the detection problem. For semantic segmentation (a dense pixel classification problem), the 
above output is reduced to Rw′×h′×k . To convince of the below analysis, we assume the problem is predicting 
whether the center pixel of a sample xi is a center of a target object. Hence the output yi is further reduced to 
R
k . Suppose a subset of the samples are labeled incorrectly, and an indicator array ind = b1, b2, . . . , bn , where 

bi = 1 means the yi is correct, and bi = 0 means yi is incorrect. Note that in network training, the values for this 
array are unavailable. We consider an error in the label for sample i is a systematic error, if bi = 0 , and for any 
sample xi∗ that is visually similar to sample xi (according to a perceptual measure ζ , that ζ(xi)− ζ(x∗) ≤ ǫ ) and 
yi∗ = yi . On the other hand, for those samples with bi = 0 , if there exists another sample x∗i  in the training set 
that is visually similar to xi (according to a perceptual measure ζ , that ζ(xi)− ζ(x∗) ≤ ǫ ), but y∗i �= yi . Then we 
consider the errors of yi for a sample xi as a non-systematic error.

Handling non‑systematic errors. Shared masks/convolutions allow a convolution-based DL model to 
correct non-systematic errors. Suppose a group of convolution layers in a DL network works on a sample xA , 
whose pseudo-annotations suggest an ant in this sample, yA = 1 . Suppose that there is another sample xB that is 
visually similar to the sample xA (that is ζ(xA)− ζ(xB) ≤ ǫ , but pseudo-annotations suggest that no ant appears 
in the sample B ( yB = 0 ). Although these two samples are visually similar, their supervision signals provide 
significantly different suggestions. That is, the annotations of either sample A or sample B are less accurate or 
wrong. Since the parameters of the convolutions are shared across all the image areas (i.e., location independent) 
and the functions built by the convolutional layers are continuous, making the DL model fit both samples A’s 
label and sample B’s label challenging. Handling non-systematic errors is then transferred to the problem/task 
of preventing over-fitting. In “Detecting ants using motion-based foreground detection algorithms”  section, 
we utilize motion-based foreground detection algorithms to generate pseudo-labels for ants detection task. In 
“Learning from algorithm-generated annotations” section, we give details of the training pipeline for learning 
from the algorithm-generated annotations.

Handling systematic errors. Systematic errors are consistent for samples with similar appearance. 
Namely, a cluster of samples given the same wrong label from a labeling process. If no additional information 
(supervision) is available, rectifying this type of error is challenging. A potential way to tackle this problem is to 
generate multiple versions of pseudo-labels and select the most plausible label for each sample to fit. Generating 
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multiple versions of pseudo-labels aims to break the consistent labeling pattern from a single labeling resource. 
Unless errors are consistent across all the versions of the pseudo-labels, there is a chance to correct some of the 
errors via a label selection procedure. In “Learning from multiple labeling sources” section, we describe the 
procedure of learning from multiple pseudo-annotations. In the case where all the labels provide wrong sugges-
tions for a certain type of object (samples), manual annotations would be required to rectify such errors. “Using 
both algorithm-generated annotations and human annotations for network training” section describes how we 
perform joint learning using the algorithm and human-labeled data.

Method
Detecting ants using motion‑based foreground detection algorithms. Given the fact that the 
background in an ant surveillance video is often relatively stable through time, our foreground extraction algo-
rithm aims to extract moving objects in the video. In many biological studies, the background is usually static, 
and the moving objects in videos are usually the objects of interest in the studies (e.g., ants). Thus, foreground 
extraction algorithms are well suited to our dynamic ant problem to produce some preliminary detection results 
for the subsequent DL network training.

Given a video of N image frames, X = {xi , i = 1, 2, . . . ,N} , a foreground extraction algorithm decomposes 
each frame xi into two maps, xbgi  and xfgi  , where xbgi  is for objects that stay static throughout the image sequence 
(i.e., background), and xfgi  is for objects that move through time (i.e., foreground). There is a rich set of methods 
and literature for algorithmic foreground extraction (e.g.,38, 39). Here, we describe a straightforward but effective 
one, which we also use in our experiments (denoted as FE-1).

Assume that each frame xi in a video is of a fixed size. For every pixel location (p, q), across all the N frames 
in the video, we compute the mean pixel value for this location xp,q = 1

N

∑N
i=1(xi,p,q) and its standard derivation 

σp,q =

√

1
N−1

∑N
i=1(xi,p,q − xp,q)2 . We then determine whether a pixel xi,p,q of xi belongs to the foreground or 

background by a straightforward criterion: If |xi,p,q − xp,q| > T × σp,q , then xi,p,q belongs to the foreground 
( yi,p,q = 1 ); otherwise, xi,p,q belongs to the background ( yi,p,q = 0 ). Based on the empirical  rule40, T can be chosen 
as 2, 2.5, or 3. In our experiments, we set T as 2.5.

The above procedure runs in linear time in the number of pixels in the image sequence, and can capture 
the essential structures of the moving objects in the sequence. To highlight the instance-level information for 
the ant detection problem, we define a new class called “ant boundary” using a dilation operation based on 
the foreground detection results of the algorithm. This allows us to directly enforce separation among nearby 
or touching ants during network training. The boundary class is commonly applied to image detection and 
segmentation problems. Our detection problem is now associated with three classes: ant body, ant boundary, 
and background. Besides the algorithm illustrated above, one can apply other algorithms (e.g.,38) for generating 
additional annotations for every image sample. Each version of the annotations could be used to train a detec-
tion network (“Learning from algorithm-generated annotations” section), and all the trained networks could be 
further used for the deep ensemble learning step (“Learning from multiple labeling sources” section).

Learning from algorithm‑generated annotations. As discussed above, a convolution-based DL 
model with shared convolutions/masks is one of the keys to the success of our DL network training. To show 
this, we examine two popular DL networks, U-Net22 and  DCN23, for detecting ants in videos trained by noisy 
algorithm-generated annotations. Such a neural network mainly utilizes convolution operations (with batch 
normalization and ReLU), and its convolution kernels are shared across all image areas and are location insensi-
tive.

Given image frames xi , i = 1, 2, . . . ,N  , and their corresponding algorithm-generated annotations yi , 
i = 1, 2, . . . ,N . We create a deep neural network τ with randomly initialized parameters θ . The overall training 
objective function is 1N

∑N
i=1 L (τθ (xi), yi) , where L is the spatial cross-entropy loss. We aim to minimize the 

objective with respect to the parameters θ in the network τ . Following standard practice, we use the  Adam41 
optimizer to train the model with a batch size set as 8. The learning rate is set as 0.0005 for the first 30000 itera-
tions and 0.00005 after 30000 iterations.

Suppose there are K algorithms to generate annotations. We repeat the above procedure K times to train K 
number of deep neural networks, each is supervised by annotations generated by one of the algorithms. Then 
we precede the final stage of our framework, that is, learning a single ensemble model from the K algorithm-
trained neural networks.

Learning from multiple labeling sources. Ensemble learning has been well studied before the deep 
learning era. It is commonly known that combining a group of diversely trained weak classifiers can often 
improve the prediction performance. Diverse base learners are essential for the success of ensemble learning. In 
this section, we aim to learn a new deep neural network from base neural networks that are trained by different 
algorithm-generated annotations. One can consider this as an ensemble learning problem, but the difference 
is that our learned model is a complex deep new network instead of a simple aggregator (e.g., majority voting 
or averaging). One can also view this task as a knowledge distillation problem that distills knowledge from 
multiple network resources. In either language, the task can be formally defined as follows. Given images xi , 
i = 1, 2, . . . ,N ; a group of diversely trained deep neural networks τ1, τ2, . . . , τK , train a new network τfinal.

We propose a probabilistic version of the Random-NN-Fit (random-fit and nearest-neighbor-fit)  algorithm35 
for this deep ensemble learning task. We name the new algorithm as “Probabilistic NN-Fit”. Its goal consists of 
training a neural network while selecting which annotations to fit during every training iteration. The original 
Random-NN-Fit algorithm creates a two-stage training pipeline, where the first stage trains the network with 
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uniformly randomly selected annotations, and the second stage trains the network by picking the annotations in 
favor of the under-trained network. Instead of exactly choosing the nearest neighbor to fit, in one iteration and 
for one image sample, our Probabilistic NN-Fit algorithm assigns each of its annotation versions a probability 
score that describes the chance that version would be selected for training. These scores are inversely related to 
the differences between the predictions of the current network and the annotations. A random sampling process 
is then applied to select an annotation version for each image sample for network training. Pseudo-codes of the 
Probabilistic NN-Fit is detailed in Algorithm 1.

Using both algorithm‑generated annotations and human annotations for network train‑
ing. When human-annotated images are available as training samples, it is reasonable to make use of both 
human-annotated (HA) and algorithm-annotated (AA) images for the DL network training. It should be noted 
that algorithm annotations and human annotations can be of different styles and nature, and thus directly mix-
ing human annotations and algorithm annotations when training a DL model could cause confusion, especially 
for the decoding part of the model. We show here that our method is capable of utilizing these two types of 
annotations with only some minor twist of the DL model architecture.

We use a common U-Net model for illustration here. Different from those models that have only one output, 
we modify the deep neural network to give two outputs: output #1 is trained using images with algorithm-
generated annotations and output #2 is trained using images with human annotations (see Fig. 3). We choose to 
have the output split near the end of the model for the following reasons: (1) this allows the AA branch to share 
the entire encoding backbone with the HA branch; (2) splitting near the end of the model output causes only 
a minimal increase in the model size, introducing only a few more convolution layers. Details are presented in 
Algorithm 2 and Fig. 3.

Figure 3.  Training an encoder-decoder based deep neural network using images with algorithm-generated 
annotations and images with human annotations (when available).
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For the case in which both algorithm annotations and human annotations are used for training, there are two 
options for using the two output branches of the model during test: (1) using only the branch (output #2) that is 
directly trained with human annotations; (2) mixing the two outputs to generate the final detection results. We 
choose and recommend the second option in practice. Specifically, we add the two output tensors to obtain the 
probability map and then apply a normal argmax operation on top of it. As for the case in which only algorithm-
annotated images are available, only output #1 is used for generating results in both training and test.

Experiments
Dataset. 82 video clips (1080p) of ant motion were captured under natural conditions in a tropical rain-for-
est at night. The training set contains 65 videos (18,160 images) and the test set contains 17 videos (2188 images). 
We manually annotate all images, making the center point of every ant. Based on different experimental settings, 
part/all/none of the human annotations in the training set are made available to the DL network training.

Evaluation metric. Since the human annotations that we use for the experiments mark the center point 
of each ant, the region-overlap type criterion is not suitable when computing matching between ground truth 
and the results of the DL model. We use a distance based criterion when computing matching between ground 
truth and the model prediction results. If an ant’s center point of the ground truth and a predicted ant center 
point are spatially close enough (e.g., ≤ 5 pixels), we treat them as a potential matched pair. The overall matched 
pairs between ants in a ground truth image and detected ants by the model are computed using a maximum 
bipartite matching algorithm (also widely used to handle “points” for evaluation in contour  detection42). The 
maximum bipartite matching is similar to a nearest neighbor based matching heuristic, but it is more systematic 
and accurate since it solves the matching problem with global optimality. After computing the matching between 
ground truth and the model predictions, we calculate the precision, recall, and F1 score for the ant detection as 
in common practice.

Scenario‑1: using no human annotations. In this scenario, we train a detection network using only 
algorithm annotations. FE-1 is a simple algorithm based on basic pixel statistics (presented in “Detecting ants 
using motion-based foreground detection algorithms”  section), and 3-term  decomposition38 (dented as FE-2) is 
an algorithm based on low-rank matrix decomposition for foreground detection in videos. We believe that these 
are two representative foreground extraction algorithms for our ant detection problem. We use a foreground 
extraction algorithm (e.g., FE-1 or FE-2) to generate pseudo-annotations for all the images in the training set. 
The raw images and generated pseudo-annotations are then used to train a DL based detection model (e.g., 
U-Net22 or  DCN23). Table 1 shows that our method can significantly improve the results from the initial results 
provided by the foreground extraction algorithm. Both FE-1 and FE-238 have a relatively high recall score. This 
is because ants have some movement most of the time in the videos and foreground extraction algorithms are 

Table 1.  Performance of ant detection on the test set. All the network training supervision signals are 
generated by algorithms. No human annotations are used in training the DCN and U-Net.

Model Precision Recall F1 score

FE-1 (pixel statistics) 0.2836 0.7841 0.4165

FE-2 (3-term  decomposition38) 0.1319 0.8282 0.2276

LFAGPA (Learn from FE-1):

 DCNFE−1 0.7292 0.7171 0.7231

 U-NetFE−1 0.7192 0.7291 0.7241

LFAGPA (Learn from FE-2):

 DCNFE−2 0.6327 0.5671 0.5981

 U-NetFE−2 0.5933 0.5945 0.5938
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designed to be sensitive to moving objects. On the other hand, camera movement and other moving subjects 
(not ants) in the videos lead foreground extraction to produce false positives; thus, the precision is low for these 
algorithms. In Fig. 4, we give visual comparisons between results of a foreground extraction algorithm and a 
U-Net model (trained solely on the annotations of the same algorithm). We can see that the network training 
procedure successfully removes many false positives while keeping most of the true positives.

In Table 2, we show the ensemble learning results for simple average ensemble, Random-NN-Fit35 and the 
proposed probabilistic NN-Fit. Clear improvement is achieved using probabilistic NN-Fit when combining 
networks in varied architectures and trained by different annotations.

Scenario‑2: using a small amount of human annotations. When human-annotated images are avail-
able for network training, we make use of them together with algorithm-annotated images for DL network train-
ing. For comparison, we consider the following training data proportion settings: 2% human annotation (HA) + 
98% algorithm annotation (AA), 4% HA + 96% AA, 10% HA + 90% AA, 20% HA + 80% AA, etc. DCN is used 
for the experiments here. In Fig. 5, we show our method significantly improves the detection performance when 
utilizing AA images and performs considerably better than a widely used semi-supervised learning  method24. 
Compared to the model trained using training images with 100% HA, we achieve the same level of performance 
using only 10% human-annotated training images. To support the analysis in “Using both algorithm-generated 
annotations and human annotations for network training” section, we further compare the model version illus-
trated in Fig. 3 with the model without the two-output design (i.e., single output). In Table 3, we demonstrate 
that the two-output design yields considerably better results than the simple single output design.

Conclusion
Automatic tracking of moving objects in biological videos provides many new opportunities to study the indi-
vidual and group behaviors of animals. Deep learning based detectors are very powerful, but they often require 
a large amount of manually annotated images in training. This paper demonstrated the feasibility of using 
algorithms automatically-generated annotations for training deep neural networks. More particularly, our pro-
posed LFAGPA method can effectively train deep neural networks without using any human annotations, and 
by utilizing a small amount of human-annotated samples, LFAGPA can train a deep neural network to achieve 

Figure 4.  Top row: visualization of ant detection results from the FE-1 (foreground extraction) . Bottom row: 
visualization of ant detection results obtained from the U-Net trained using the FE-1’s annotations.

Table 2.  Learning from networks with different architectures and trained with different annotations. AE: 
Average Ensemble, DE: Deep Ensemble (Probabilistic NN-Fit). DCN was used for constructing the final model 
in NN-Fit and DE. Significant values are in bold.

τbase : U-NetFE−1 τbase : U-NetFE−2

F1 score AE NN-Fit35 DE (ours) AE NN-Fit35 DE (ours)

τbase : DCNFE−1 0.7453 0.7538 0.7679 0.7331 0.7412 0.7562

τbase : DCNFE−2 0.7280 0.7352 0.7494 0.6232 0.6410 0.6605
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the same detection performance as the model trained using full human annotations. LFAGPA provides a new 
practical way to tackle video detection problems in large-scale biological studies.

Data availability
The dataset used in this study can be accessed by visiting this link https:// drive. google. com/ drive/ folde rs/ 
1WM_m- PPUcJ oVj2g zZni9 9OkaJ G1W1q 9_? usp= shari ng.
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