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Fermatean hesitant fuzzy rough 
aggregation operators and their 
applications in multiple criteria 
group decision‑making
Attaullah 1, Noor Rehman 2, Asghar Khan 1 & Gustavo Santos‑García 3*

The precise selection of suppliers to fulfill production requirements is a fundamental component of 
all manufacturing and process industries. Due to the increasing consumption levels, green supplier 
selection (GSS) has been one of the most important issues for environmental preservation and 
sustainable growth. The present work aims to develop a technique based on Fermatean hesitant fuzzy 
rough set (FHFRS), a robust fusion of Fermatean fuzzy set, hesitant fuzzy set, and rough set for GSS 
in the process industry. On the basis of the operational rules of FHFRS, a list of innovative Fermatean 
hesitant fuzzy rough weighted averaging operators has been established. Further, several intriguing 
features of the proposed operators are highlighted. To cope with the ambiguity and incompleteness 
of real-world decision-making (DM) challenges, a DM algorithm has been developed. To illustrate 
the applicability of the methodology, a numerical example for the chemical processing industry is 
presented to determine the optimum supplier. The empirical findings suggest that the model has a 
significant application of scalability for GSS in the process industry. Finally, the improved FHFR-VIKOR 
and TOPSIS approaches are employed to validate the proposed technique. The results demonstrate 
that the suggested DM approach is practicable, accessible, and beneficial for addressing uncertainty in 
DM problems.

The supply chain is a system of procedures to acquire crude materials, transform them into substantial and final 
product, and shipped to the customer. It comprises all relationships between suppliers and consumers. The 
objective of supply chain management (SCM) is to improve the physical and information flow that is exchanged 
across all stakeholder involved in the supply chain1. Sustainable supply chains may promote a long-term efficient 
relationship throughout the diverse firms. Supplier selection is the process through which firms locate, analyse, 
and negotiate with suppliers2. In the modern era of internet-based corporate environments, the significance of 
SCM and supplier selection has been elevated, and firms pay special attention to the investigation and selection 
of potential sources of supply. Whenever a supplier becomes a partner, the interaction between the supplier and 
buyer will have a significant impact on the rivalry integrity of the entire SCM. As the majority of firms devote 
a substantial portion of their income on procurement, the supplier selection procedure has become one of the 
most significant features of developing an efficient SCM system3. Whenever organisations become more reli-
ant on suppliers, the direct and indirect repercussions of terrible supplier selection decisions will intensify4. 
The choosing of a supplier is a difficult DM strategy. Before firms made judgments almost completely based 
on expense and variety, the majority of modern investigators believe that the arrangement of features should 
address not only technological and economic needs, but also social and environmental requirements5. Ho et al.6 
suggested that management system be utilized to accurately assess the supplier selection. Conventional supplier 
selection approaches emphasise the provider’s economic and technical efficiency while neglecting its sustain-
ability performance. Today, enterprises should evaluate the environmental sensitivity of their consumption and 
supply that they minimize their influence on the environment7. In combination with appropriate factors such 
as price and quality, the green challenges may play a significant influence on procurement and provide key 
environmental variables that can be employed to evaluate the suppliers. The emergence of manufacturing, green 
SCM may be seen as a significant approach for all buyers and suppliers. To improve the supply chain’s value, the 
current competitive industries have prompted businesses to connect environmental concerns with other essential 
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considerations (cost, quality, service level, etc.). Therefore, hiring green suppliers to decrease procurement risk 
is one of the most significant DM challenges.

Uncertainty is a repercussion of both the objective world’s complexity and the scarcity of human understand-
ing. Uncertainty is a difficult-to-describe character trait, and the majority of its expressions are unpredictable 
and fuzzy. To correctly describe the ambiguous information in real issues, several novel theories and techniques 
have been developed see for8–15 more details. Among these approaches, fuzzy set (FS) theory has garnered 
considerable interest. Zadeh14 introduced FS theory, which is used to express the fuzzy and absurd information 
of objective items. FS theory describes theoretical framework for the interpretation of imprecise information 
and enables the transformation of DM information from the linguistics variable to the numerical variable. The 
FS theory has the ability to develop a novel approach to exhibit ambiguous and conflicting information while 
addressing the problems with conventional DM processing information. The study on FS theory has yielded 
promising discoveries and has been significantly employed in numerous diverse fields. Whenever the complexity 
of a DM problem grows, classical FS theory is unable to adequately represent the uncertain information in the 
problem16. For this issue, several researchers have provided the enhanced forms of classical FSs from a variety 
of perspectives, including intuitionistic FSs (IFSs)17, Pythagorean FSs (PFSs)18, hesitant FSs (HFSs)19, and rough 
sets (RSs)20. The efficacy of many concepts of generalised fuzzy sets served as the inspiration for the notion of 
MCGDM, which has been the subject of several investigations (see21–24 for more information). Wu et al.25 sug-
gested a multi-criteria sequential calibration and uncertainty analysis technique for improving the efficiency and 
performance of high-reliability hydrological modelling. Two case studies were undertaken in comparison with 
two other approaches, sequential uncertainty fitting algorithm and generalised likelihood uncertainty estimation, 
to assess the performance and practicality of the suggested method. Wang et al.26 introduced a hybrid MCDM 
framework that combines the spherical fuzzy analytical hierarchy process (SF-AHP) with weighted aggregated 
sum product assessment (WASPAS). The optimum site for an offshore wind power station (OWPS) was deter-
mined using a decision framework based on the spherical fuzzy set approach. Basset et al.27 explored an axi-
omatic design to expand MCDM in the neutrosophic environment as a significant contribution to select optimal 
computed tomography equipment. They introduced a new linguistic scale based on single-valued triangular 
neutrosophic numbers for assessing criteria and alternatives. Limberger et al.28 established the first numerical 
model to anticipate the seismic wave field generated by wind farms as well as simulate the complicated effects of 
wave field interferences, surface topography, and attenuation. This proposed modelling technique can accurately 
estimate the effects of several wind turbines on ground motion recordings, providing critical information to guide 
decision-making prior to wind farm implementation. Stańczyk et al.29 designed and presented a method for 
predicting water demand based on a linear regression model integrated with evolutionary techniques to extract 
weekly seasonality. Eseoglu et al.30 designed a novel fuzzy framework for technology selection of sustainable 
waste water treatment plants in emerging metropolitan areas based on TODIM methodology.

The rough set theory, established by Pawlak20 in the 1980s, is a robust branch of artificial intelligence with 
applications in many areas of data mining31–33, attributes and feature identification34–36, and data prediction37,38. 
FSs theory can be combined with RS theory to handle information with continuous features and identify informa-
tion discrepancies. Owing to the fact that the fuzzy RS approach is an effective technique for evaluating inconsist-
ent and imprecise information, it has shown to be valuable in a wide variety of application domains. Numerous 
scholars have applied RS theory to scientific disciplines including industrial applications39, pharmaceutical, 
health, and bio-informatics40–42, traffic and transportation43,44, environmental sciences45,46, environmental engi-
neering and protection of the environment management47, security scientific method48, and aerospace, space 
technology, and military control49.

Since the development of RS theory, numerous significant generalisations of RS in diverse directions have 
been established50–55. In more recent years, RS approximations have been introduced to IF sets56,57. They sub-
sequently introduced the notion of IF rough sets, in which both the lower approximations (LA) and upper 
approximations (UA) are IF sets. Feng et al.58,59 introduced the innovative ideas of soft RS, soft set, and rough sets 
to examine certain information system characteristics. Zhang et al.60,61 established the IF soft RS and interval-
valued hesitant fuzzy rough approximation operators. Zhan and Alcantud62 developed an overview AOPs, and 
their applicability to the DM problem. Pamucar63 presented a geometric Dombi Bonferroni mean operator using 
interval grey numbers and discussed their application in DM. Ali et al.64 established Einstein geometric AOPs 
with a unique complex interval-valued Pythagorean FSs for use in green SCM. Motivated by the robust applica-
tion of AOPs in DM, in this article, the present authors introduce an innovative notation of Fermatean hesitant 
fuzzy RSs (FHFRSs), which is a hybrid structure of RSs and Fermatean hesitant FSs, having piqued their curiosity 
for its capacity to handle ambiguous and imprecise information. According to the existing literature, AOPs are 
essential in DM because they enable information from several sources to be aggregated into a single number65–72. 
The development of AOps FHFSs hybridization with RSs is not observed in the existing research. Pursuant to 
this motivation, we develop a list of algebraic AOPs for FHFR information, including FHFR weighted averaging 
(WA), order weighted averaging (OWA, and hybrid weighted averaging (HWA, under the algebraic t-norm and 
t-conorm, and explore their significant features in detail. Furthermore, a case study of a real-world DM prob-
lem in GSS for the chemical process industry based on a new concept of FHFRSs is considered, economic and 
environmental aspects are appropriately evaluated for GSS. To demonstrate the validity of the suggested DM 
technique, an enhanced FHFR-VIKOR method is employed.

The remaining of this article is organised as follows: Section Basic terminologies contains a concise review of 
the fundamental and the innovative concept of FHFRSs. The FHFR AOPs are described in Section The Fermatean 
hesitant fuzzy rough aggregation operators. Methodologies for MCGDM are discussed in Section Multi-attribute 
decision making framework. The implementation of the GSS and assessment of DM model in the chemical pro-
cessing industry is presented in Section Numerical implementation of the MCGDM framework. In Section The 
comparative evaluation, the suggested technique is verified via the use of the improved VIKOR and TOPSIS 
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schemes based on FHFRSs. Section Concluding remarks and future recommendations concludes with a descrip-
tion of the results and future recommendations.

Basic terminologies
This section presents the following terms: intuitionistic FSs (IFSs), Pythagorean FSs (PFSs), Pythagorean hesi-
tant FSs (PHFSs), rough sets (RSs), Fermatean fuzzy RSs (FFRSs) and Fermatean hesitant fuzzy RSs (FHFRSs).

Definition 2.1  17An IFS F  over a universal set U is described as:

for each ϑ ∈ F  the functions ζF : U → [0 ,1] and JF : U → [0, 1] denote the positive membership grade (PMG) 
and negative membership grade (NMG) respectively subject to the condition that 0 ≤ ζF (ϑ)+ JF (ϑ) ≤ 1.

Definition 2.2  73A PFS T  over a universal set U is described as follows:

for all ϑ ∈ T  the functions ζT : U → [0, 1] and JT : U → [0, 1] denote the PMG and NMG respectively subject 
to the condition that (JT (ϑ))2 + (ζT (ϑ))2 ≤ 1.

Definition 2.3  73A Fermatean FS T  over a universal set U is defined as follows:

for all ϑ ∈ T  the functions ζT : U → [0, 1] and JT : U → [0, 1] symbolize the PMG and NMG respectively 
subject to the condition that (JT (ϑ))3 + (ζT (ϑ))3 ≤ 1. The pictorial depiction of the IFS, PFS, and FFS is 
illustrated in Fig. 1.

Definition 2.4  74A Fermatean hesitant fuzzy set (FHFS) H over a universal set U is defined as follows:

where ζhH(x) and JhH(ϑ) are sets of some values in [0, 1] and show the PMG and NMG respectively subject to 
the conditions: ∀ ϑ ∈ U , ∀µH(x) ∈ ζhH(ϑ), ∀ VH(ϑ) ∈ JhH(ϑ) with 

(
max

(
ζhH(ϑ)

))3
+

(
min

(
JhH(ϑ)

))3
≤ 1 

and 
(
min

(
ζhH(ϑ)

))3
+

(
max

(
JhH(ϑ)

))3
≤ 1. To put it simply, we will utilize a pair H = (ζhH ,JhH) to refer 

to the FHF number (FHFN).

Definition 2.5  74Let R1 = (ζhR1
,JhR1

) and R2 = (ζhR2
,JhR2

) be two FHFNs. Then the fundamental set-
theoretic operations are: 

F = {�ϑ , ζF (ϑ),JF (ϑ)�|ϑ ∈ U},

T = {�ϑ , ζT (ϑ),JT (ϑ)�|ϑ ∈ U}

T = {�ϑ , ζT (ϑ),JT (ϑ)�|ϑ ∈ U}

H = {
〈
ϑ , ζhH(ϑ),JhH(ϑ)

〉
|ϑ ∈ U},

Figure 1.   The pictorial representation of the IFS, PFS and FFS space.
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(1)	 R1 ∪R2 =





�
µ1∈ζhR1
µ2∈ζhR2

max (µ1,µ2),
�

V1∈JhR1
V2∈JhR2

min (V1,V2)




;

(2)	 R1 ∩R2 =





�
µ1∈ζhR1
µ2∈ζhR2

min (µ1,µ2),
�

V1∈JhR1
V2∈JhR2

max (V1,V2)




;

(3)	 Rc
1 =

{
JhR1

, ζhR1

}
.

Definition 2.6  74Let R1 = (ζhR1
,JhR1

) and R2 = (ζhR2
,JhR2

) be two FHFNs and γ > 0 be any positive real 
number. The basic laws are formulated in the following way: 

(1)	 R1 ⊕R2 =





�
µ1∈ζhR1
µ2∈ζhR2

�
3

�
µ3
1 + µ3

2 − µ3
1µ

3
2

�
,

�
V1∈JhR1
V2∈JhR2

{V1 · V2}




;

(2)	 R1 ⊗R2 =





�
µ1∈ζhR1
µ2∈ζhR2

{µ1 · µ2},
�

V1∈JhR1
V2∈JhR2

�
3

�
V3
1 + V3

2 − V3
1V

3
2

�



;

(3)	 ςR1 =





�
µ1∈ζhR1

�
3

�
1− (1− µ3

1)
ς

�
,

�
V1∈JhR1

�
V
ς
1

�


;(4) 

R
ς
1 =





�
µ1∈ζhR1

�
µ
ς
1

�
,

�
V1∈JhR1

�
3

�
1− (1− V3

1 )
ς

�
.

Definition 2.7  20Let Z ⊆ U × U be a (crisp) relation and U be a universal set. Then 

(1)	 ð is known to be reflexive if ( , ) ∈ ð, for all  ∈ U;
(2)	 ð is known to be symmetric if for all  ,̟ ∈ U , ( ,̟) ∈ ð then (̟ , ) ∈ ð;
(3)	 ð is known to be transitive if for all  ,̟ ,ϕ ∈ U , ( ,̟) ∈ U and (̟ ,ϕ) ∈ ð then ( ,ϕ) ∈ ð.

Definition 2.8  20Let ð be any relation on a universal set U . Characterize a mapping ð∗ : U → M(U) by 
ð∗() = {̟ ∈ U |( ,̟) ∈ ð}, for  ∈ U where ð∗() is called a successor neighborhood of the element  w.r.t. 
relation ð. The pair (U , ð) is called crisp approximation space. Now for any set ג ⊆ U , the LA and UA of ג w.r.t. 
approximations space (U , ð) is described as follows:

The pair 
(
ð(ג),ð(ג)

)
 is called RS and both ð(ג), ð(ג) : M(U) → M(U) are LA and UA operators.

Definition 2.9  75Let ð ∈ IFS(U × U) be an IF relation and U be the universal set. Then 

(1)	 ð is known to be reflexive if µð( , ) = 1 and Vð( , ) = 0,∀ ∈ U;
(2)	 ð is known to be symmetric if ∀( ,̟) ∈ U × U , µð( ,̟) = µð(̟ , ) and Vð( ,̟) = Vð(̟ , );
(3)	 ð is known to be transitive if ∀( ,̟) ∈ U × U ,

 and 

Definition 2.10  Let U be any fixed set. Then any ð ∈ FFS(U × U) is called Fermatean fuzzy relation. The pair 
(U × ð) is said to be Fermatean approximation space. Now for any ג ⊆ FFS(U) , the LA and UA of ג w.r.t. Fer-
matean fuzzy approximation space (U ,ð) are two FFSs, which are symbolised by ð(ג) and ð(ג) and described 
below as:

ð(ג) ={ ∈ U |ð∗() ⊆ ;{ג

ð(ג) ={ ∈ U |ð∗() ∩ ג �= φ}.

µð( ,ϕ) ≥
∨

̟∈U
[µð( ,̟) ∧ µð(̟ ,ϕ)];

Vð( ,ϕ) =
∧

̟∈U
[Vð( ,̟) ∧ Vð(̟ ,ϕ)].
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where

such that 0 ≤ ((µð(ג)())
3 + (Vð(ג)())

3) ≤ 1, and 0 ≤

((
µ
ð(ג)()

)3
+

(
V
ð(ג)()

)3)
≤ 1. As 

(
ð(ג), ð(ג)

)
 are 

FFSs,   so ð(ג), ð(ג) : FFS(U) → FFS(U) are LA and UA operators. The pair ð(ג) = (ð(ג),ð(ג)) =

{
〈
 , (µð(ג)(),Vð(ג)(), (µð(ג)(),Vð(ג)())

〉
| ∈ is {ג  cal led FFRS. Just because of simplicity, 

ð(ג) = {
〈
 ,µð(ג)(),Vð(ג)(), (µð(ג)(),Vð(ג)())

〉
| ∈ U} is described as ð(ג) = ((µ,V), (µ,V)) and is called 

as FFR value (FFRV).

Definition 2.11  21Suppose U  is a universal set and for any subset ð ∈ FHFS(U × U) is known as Fermatean 
hesitant fuzzy relation. The pair (U , ð) is called to be FHF approximation space. If for any ג ⊆ FHFS(U) , then 
the LA and UA of ג w.r.t. FHF approximation space (U , ð) are two FHFSs, which are symbolised by ð(ג) and ð(ג) 
and described as follows:

where

such that 0 ≤
(
min(ζhð(ג)

()
)3

+
(
max(Jhð(ג)

())
)3

≤ 1 and 0 ≤
(
max(ζh

ð(ג)
())

)3
+
(
min(Jh

ð(ג)
())

)3
≤ 1. 

As 
(
ð(ג), ð(ג)

)
 are FHFSs,  so ð(ג),ð(ג) : FHFS(U) → FFS(U) are LA and UA operators. The pair

will be called Fermatean hesitant fuzzy rough set. Just because of simplicity

is written as ð(ג) =
(
(ζ ,J ), (ζ ,J )

)
 and is called as FHFR value. For explanation of the above concept of FHFRS, 

we present the following example.

Example 2.12  Suppose U = {ϕ1,ϕ2,ϕ3,ϕ4} be any fixed set and (U , ð) is FHF approximation space where 
ð ∈ FHFRS(U × U) is the FHFR relation shown in Table 1. A decision expert now provides the ideal normal 
decision object ג (in the form of FHFRS).

and

ð(ג) ={
〈
 ,µð(ג)(),Vð(ג)()

〉
| ∈ U};

ð(ג) ={
〈
 ,µ

ð(ג)(),Vð(ג)()
〉
| ∈ U};

µ
ð(ג)() =

∨

g∈U

[µð( , g)
∨

µג(g)];

Vð(ג)() =
∧

g∈U

[Vð( , c)
∧

Vג(g)];

µð(ג)() =
∧

g∈U

[µð( , c)
∧

µג(g)];

Vð(ג)() =
∨

g∈U

[Vð( , c)
∨

Vג(g)];

ð(ג) =
{〈

 , ζh
ð(ג)

(),Jh
ð(ג)

()
〉
| ∈ U

}
;

ð(ג) =
{〈

 , ζhð(ג)
(),Jhð(ג)

()
〉
| ∈ U

}
;

ζh
ð(ג)

() =
∨

k∈U

[
ζhð( , k)

∨
ζhג(k)

]
;

Jh
ð(ג)

() =
∧

k∈U

[
Jhð( , k)

∧
Jhג(k)

]
;

ζhð(ג)
() =

∧

k∈U

[
ζhð( , k)

∧
ζhג(k)

]
;

Jhð(ג)
() =

∨

k∈U

[
Jhð( , k)

∨
Jhג(k)

]
;

ð(ג) =
(
ð(ג), ð(ג)

)
=

{〈
 ,
(
ζhð(ג)

(),Jhð(ג)
()

)
,

(
ζh

ð(ג)
(),Jh

ð(ג)
()

)〉
| ∈ ג

}

ð(ג) =
{〈

 ,
(
ζhð(ג)

(),Jhð(ג)
()

)
,

(
ζh

ð(ג)
(),Jh

ð(ג)
()

)〉
| ∈ ג

}
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Then it follows that

Similarly, we can find the remaining values as:

Now,

By the routine calculations, we get

Further,

By the routine calculations, we get

ג =

{
�ϕ1, {0.2, 0.3, 0.4}, {0.5, 0.7}�, �ϕ2, {0.2, 0.3, 0.7}, {0.1, 0.7, 0.8}�,
�ϕ3, {0.5, 0.7, 0.8}, {0.1, 0.5, 0.7}�, �ϕ4, {0.6, 0.8, 0.9}, {0.2, 0.6, 0.7}�

}
.

ζh
ð(ג)

(ϕ1) =
�

k∈U

�
ζhð(ϕ, c)

�
ζhג(k)

�

=





{0.1 ∨ 0.2, 0.3 ∨ 0.3, 0.4 ∨ 0.4}∨
{0.2 ∨ 0.2, 0.3 ∨ 0.3, 0 ∨ 0.7}∨
{0.2 ∨ 0.5, 0.5 ∨ 0.7, 0.7 ∨ 0.8}∨
{0.3 ∨ 0.6, 0.5 ∨ 0.8, 0 ∨ 0.9}





=

�
{0.2, 0.3, 0.4} ∨ {0.2, 0.3, 0}∨
{0.5, 0.7, 0.8} ∨ {0.6, 0.8, 0.9}

�

={0.6, 0.8, 0.9}

ζh
ð(ג)

(ϕ2) = {0.6, 0.8, 0.9}, ζh
ð(ג)

(ϕ3) = {0.7, 0.9},

ζh
ð(ג)

(ϕ4) = {0.6, 0.8, 0.9}.

Jh
ð(ג)

(ϕ1) =
�

k∈U

�
Jhð(ϕ, c)

�
Jhג(k)

�

=





{0.2 ∧ 0.5, 0.5 ∧ 0.7, 0 ∧ 0.7}∧
{0.7 ∧ 0.1, 0.9 ∧ 0.7, 0 ∧ 0.8}∧
{0.2 ∧ 0.1, 0.3 ∧ 0.5, 0 ∧ 0.7}∧
{0.8 ∧ 0.2, 0 ∧ 0.6, 0 ∧ 0.7}





={{0.2, 0.5} ∧ {0.1, 0.7} ∧ {0.2, 0.3} ∧ {0.2}},

={0.2}.

Jh
ð(ג)

(ϕ2) = {0.1}, Jh
ð(ג)

(ϕ3) = {0.1, 0.2}, Jh
ð(ג)

(ϕ4) = {0.1, 0.5}.

ζhð(ג)
(ϕ1) =

�

k∈U

�
ζhð(ϕ, c)

�
ζhג(k)

�

=





{0.1 ∧ 0.2, 0.3 ∧ 0.3, 0.4 ∧ 0.4}∧
{0.2 ∧ 0.2, 0.3 ∧ 0.3, 0 ∧ 0.7}∧
{0.2 ∧ 0.5, 0.5 ∧ 0.7, 0.7 ∧ 0.8}∧
{0.3 ∧ 0.6, 0.5 ∧ 0.8, 0 ∧ 0.9}





=

�
{0.1, 0.3, 0.4} ∧ {0.2, 0.3}∧
{0.2, 0.5, 0.7} ∧ {0.3, 0.5}

�

={0.1, 0.3}.

ζhð(ג)
(ϕ2) = {0.1, 0.3}, ζhð(ג)

(ϕ3) = {0.2, 0.3}, ζhð(ג)
(ϕ4) = {0.2, 0.3}.

Table 1.   FHFR  relation  in  U.

ג c1 c2 c3 c4

ϕ1

(
{0.1, 0.3, 0.4},

{0.2, 0.5, 0.7}

) (
{0.2, 0.3},

{0.7, 0.9}

) (
{0.2, 0.5, 0.7},

{0.2, 0.3}

) (
{0.3, 0.5},

{0.8}

)

ϕ2

(
{0.2, 0.3, 0.5},

{0.2, 0.7}

) (
{0.2, 0.3, , 0.5},

{0.3, 0.4}

) (
{0.1, 0.4, 0.6},

{0.7, 0.9}

) (
{0.2, 0.4},

{0.7}

)

ϕ3

(
{0.5, 0.6},

{0.7, 0.9}

) (
{0.5, 0.8, 0.9},

{0.1, 0.9}

) (
{0.2, 0.3},

{0.5, 0.9}

) (
{0.7, 0.9},

{0.1, 0.2, 0.3}

)

ϕ4

(
{0.2, 0.5, 0.9},

{0.6, 0.7, 0.9}

) (
{0.3, 0.8, 0.9},

{0.4, 0.8}

) (
{0.2, 0.5},

{0.6, 0.9}

) (
{0.5, 0.7},

{0.1, 0.8}

)
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Now,

Keeping on the same route, the remaining values may be determined as follows:

The LA and UA operators in the form of FHFR approximation are follows:

Hence

Definition 2.13  Let ð(1ג) = (ð(1ג),ð(1ג)) and ð(2ג) = (ð(2ג),ð(2ג)) be two FHFRSs. Then 

(1)	 ð(1ג)∪ ð(2ג) = {(ð(1ג) ∪ ð(2ג)), (ð(1ג) ∪ ð(2ג))}

(2)	 ð(1ג)∩ ð(2ג) = {(ð(1ג) ∩ ð(2ג)), (ð(1ג) ∩ ð(2ג))}.

Definition 2.14  Let ð(1ג) = (ð(1ג),ð(1ג)) and ð(2ג) = (ð(2ג),ð(2ג)) be two FHFRSs. Then 

(1)	 ð(1ג)⊕ ð(2ג) = {(ð(1ג)⊕ ð(2ג)), (ð(1ג)⊕ ð(2ג))}

(2)	 ð(1ג)⊗ ð(2ג) = {(ð(1ג)⊗ ð(2ג)), (ð(1ג)⊗ ð(2ג))}

(3)	 ð(1ג) ⊆ ð(2ג) = {(ð(1ג) ⊆ ð(2ג)) and (ð(1ג) ⊆ ð(2ג))}

(4)	 ςð(1ג) = (ςð(1ג), ςð(1ג)) for ς ≥ 1

(5)	 (ð(1ג))
ς = ((ð(1ג))

ς , (ð(1ג))ς ) for ς ≥ 1

(6)	 ð(1ג)
c = (ð(1ג)

c , ð(1ג)c) where ð(1ג)c and ð(1ג)c illustrate the complement of FFR approximation opera-
tors ð(1ג) and ð(1ג),  that is ð(1ג)c =

(
Jhð(ג)

, ζhð(ג)

)
.

(7)	 ð(1ג) = ð(2ג) iff ð(1ג) = ð(2ג) and ð(1ג) = ð(2ג).

The score function will be utilized to compare and rank two or more FHFR values. Greater FHFR score values 
indicate superiority, whilst lower FHFR score values indicate inferiority. We will employ the accuracy function 
when the score values are identical.

Definition 2.15  The function for scoring FHFR value ð(ג) = (ð(ג),ð(ג)) = ((ζ ,J ), (ζ ,J )) is given as:

The accuracy function for FHFR value ð(ג) = (ð(ג), ð(ג)) = ((ζ ,J ), (ζ ,J )) is given as:

where MR and NR show the number of elements in ζhg and Jhg , respectively.

Jhð(ג)
(ϕ1) =

�

k∈U

�
Jhð(ϕ, c)

�
Jhג(k)

�

=





{0.2 ∨ 0.5, 0.5 ∨ 0.7, 0.7 ∨ 0}∨
{0.7 ∨ 0.2, 0.9 ∨ 0.3, 0 ∨ 0.7}∨
{0.2 ∨ 0.1, 0.3 ∨ 0.5, 0 ∨ 0.7}∨
{0.8 ∨ 0.2, 0 ∨ 0.6, 0 ∨ 0.7}





=

�
{0.5, 0.7, 0.7} ∨ {0.7, 0.9, 0.7}∨
{0.2, 0.5, 0.7} ∨ {0.8, 0.6, 0.7}

�

={0.8, 0.9, 0.7}.

Jhð(ג)
(ϕ2) = {0.7, 0.9}, Jhð(ג)

(ϕ3) = {0.7, 0.9, 0.8}, Jhð(ג)
(ϕ4) = {0.6, 0.9, 0.9}.

ð(ג) =

{
�ϕ1, {0.1, 0.3}, {0.8, 0.9, 0.7}�, �ϕ2, {0.1, 0.3}, {0.7, 0.9}�,
�ϕ3, {0.2, 0.3}, {0.7, 0.9, 0.8}�, �ϕ3, {0.2, 0.3}, {0.6, 0.9, 0.9}�

}
,

ð(ג) =

{
�ϕ1, {0.6, 0.8, 0.9}, {0.2}�, �ϕ2, {0.6, 0.8, 0.9}, {0.1}�,
�ϕ3, {0.7, 0.9, 0.9}, {0.1, 0.2}�, �ϕ4, {0.6, 0.8, 0.9}, {0.1, 0.5}�

}
.

ð(ג) =(ð(ג), ð(ג))

=





�ϕ1, ({0.1, 0.3}, {0.8, 0.9, 0.7}), ({0.6, 0.8, 0.9}, {0.2})�,
�ϕ2, ({0.1, 0.3}, {0.7, 0.9}), ({0.6, 0.8, 0.9}, {0.1})�,
�ϕ3, ({0.2, 0.3}, {0.7, 0.9, 0.8}), ({0.7, 0.9, 0.9}, {0.1, 0.2})�,
�ϕ3, ({0.2, 0.3}, {0.6, 0.9, 0.9}), ({0.6, 0.8, 0.9}, {0.1, 0.5})�




.

�(ð(ג)) =
1

4




2+ 1
MR

�
µı∈ζhð(ג)

�
µı

�
+ 1

NR

�
µı∈ζh

ð(ג)

{µı }−

1
MR

�
Vı∈Jhð(ג)

(Vı )−
1

MR

�
Vı∈Jh

ð(ג)

(Vı )


.

ACð(ג) =
1

4




1
MR

�
µı∈ζh

ð(ג)

(µı )+
1

MR

�
µı∈ζh

ð(ג)

(µı )+

1
MR

�
Vı∈Jhð(ג)

(Vı )+
1

MR

�
Vı∈Jh

ð(ג)

(Vı )


,
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Definition 2.16  Suppose ð(1ג) = (ð(1ג),ð(1ג)) and ð(2ג) = (ð(2ג),ð(2ג)) are two FHFRVs. Then 

(1)	 If �(ð(1ג)) > �(ð(2ג)), then ð(1ג) > ð(2ג),

(2)	 If �(ð(1ג)) ≺ �(ð(2ג)), then ð(1ג) ≺ ð(2ג),

(3)	 If �(ð(1ג)) = �(ð(2ג)), then 

(a)	 If ACð(1ג) > ACð(2ג) then ð(1ג) > ð(2ג),
(b)	 If ACð(1ג) ≺ ACð(2ג) then ð(1ג) ≺ ð(2ג),
(c)	 If ACð(1ג) = ACð(2ג) then ð(1ג) = ð(2ג).

The Fermatean hesitant fuzzy rough aggregation operators
In this section, we establish the concept of FHFR aggregation operators by combining the idea of rough sets and 
FHF aggregation operators. Further we obtain aggregation notions for FHFRWA, FHFROWA, and FHFRHWA. 
Several fundamental characteristics of these notions are highlighted.

The Fermatean hesitant fuzzy rough weighted averaging operator. 

Definition 3.1  Consider the collection ð(גı ) = (ð(גı ),ð(גı )) (ı = 1, 2, 3, ..., ℓ) of FHFRVs with weight 
vector W = (∝1,∝2, ...,∝n)

T such that 
⊕ℓ

i=1 ∝ı= 1 and ∝ı∈ [0, 1]. The FHFRWA operator is identi‑
fied as:

Theorem  1  Let ð(גı ) = (ð(גı ),ð(גı )) (ı = 1, 2, 3, ..., ℓ) be the collection of FHFRVs with weight vector 
W = (∝1,∝2, ...,∝ℓ)

T . Then the FHFRWA operator is defined as:

Proof  We employ the mathematical induction to get the required proof. In terms of the operational law, it fol-
lows that

and

If ℓ = 2 , then

For ℓ = 2, the result is accurate. Assume it is true for ℓ = k, that is,

FHFRWA(ð(1ג),ð(2ג), ...,ð(גℓ)) =

(
ℓ⊕

ı=1

∝ı ð(גı ),

ℓ⊕

ı=1

∝ı ð(גı )

)
.

FHFRWA(ð(1ג), ð(2ג), ...,ð(גℓ))

=

�
ℓ�

i=1

∝ı ð(גı ),

ℓ�

i=1

∝ı ð(גı )

�

=




�
µı∈ζhð(ג)

3

��
1−

ℓ

⊠
i=1

�
1−

�
µı

�3�∝ı

�
,

�
Vı∈Jhð(ג)

ℓ

⊠
i=1

�
Vı

�∝ı

�
µı∈ζh

ð(ג)

3

��
1−

ℓ

⊠
ı=1

�
1− (µı )

3
�∝ı

�
,

�
Vı∈Jh

ð(ג)

ℓ

⊠
ı=1

�
Vı

�∝ı




ð(1ג)⊕ ð(2ג) =
[
ð(1ג)⊕ ð(2ג),ð(1ג)⊕ ð(2ג)

]

ςð(1ג) =
(
ςð(1ג), ςð(1ג)

)

FHFRWA(ð(1ג),ð(2ג))

=

�
2�

ı=1

∝ı ð(גı ),

2�

ı=1

∝ı ð(גı )

�

=





 �

µı∈ζhð(ג)

3

��
1−

2

⊠
ı=1

�
1−

�
µı

�3�∝ı

�
,

�
Vı∈Jhð(ג)

2

⊠
ı=1

�
Vı

�∝ı







�
µı∈ζh

ð(ג)

3

��
1−

2

⊠
ı=1

�
1− (µı )

3
�∝ı

�
,

�
Vı∈Jh

ð(ג)

2

⊠
ı=1

�
Vı

�∝ı







.
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Now we need to prove it for ℓ = k + 1.

Therefore, the obtained outcome holds for ℓ = k + 1 . As a result, the finding is applicable for all ℓ ≥ 1. Based 
on the preceding analysis ð(ג) and ð(ג) are FHFRVs. So, 

⊕k
ı=1 ∝ı ð(גı ) and 

⊕k
ı=1 ∝ı ð(גı ) are also FHFRVs. 

Therefore, FHFRWA (ð(1ג),ð(2ג), ...,ð(גℓ)) is a FHFRV under FHF approximation space (U , ð).

Example 3.2  Consider the set

with weight vector W = {0.25, 0.42, 0.33}T . It follows that

Theorem 2  Consider the collection ð(גı ) = (ð(גı ),ð(גı )) (ı = 1, 2, 3, ..., ℓ) of FHFRVs with weight vectors 
W = (∝1,∝2, ...,∝ℓ)

T such that 
⊕ℓ

ı=1 ∝ı= 1 and ∝ı∈ [0, 1]. Then the FHFRWA operator must fulfill the fol-
lowing properties:

(1) Idempotency: If ð(גı ) = G(ג) for (ı = 1, 2, 3, ..., ℓ), where G(ג) =
(
G(ג),G(ג)

)
=

(
(∂ , d), (∂ , d)

)
. Then

FHFRWA(ð(1ג),ð(2ג), ...,ð(גk))

=

�
k�

ı=1

∝ı ð(גı ),

k�

ı=1

∝ı ð(גı )

�

=





 �

µı∈ζhð(ג)

3

��
1−

k
⊠
ı=1

�
1−

�
µı

�3�∝ı

�
,

�
Vı∈Jhð(ג)

k
⊠
ı=1

�
Vı

�∝ı







�
µı∈ζh

ð(ג)

3

��
1−

k
⊠
ı=1

�
1− (µı )

3
�∝ı

�
,

�
Vı∈Jh

ð(ג)

k
⊠
ı=1

�
Vı

�∝ı







.

ConsiderFHFRWA
�
ð(1ג),ð(2ג), ...,ð(גk+1)

�

=




��k
ı=1 ∝ı ð(גı )⊕ ∝k+1 ð(גk+1)

�
,��k

ı=1 ∝ı ð(גı )⊕ ∝k+1 ð(גk+1)
�


,

=





 �

µı∈ζhð(ג)

3

��
1−

k+1

⊠
ı=1

�
1−

�
µı

�3�∝ı

�
,

�
Vı∈Jhð(ג)

k+1

⊠
ı=1

�
Vı

�∝ı







�
µı∈ζh

ð(ג)

3

��
1−

k+1

⊠
ı=1

�
1− (µı )

3
�∝ı

�
,

�
Vı∈Jh

ð(ג)

k+1

⊠
ı=1

�
Vı

�∝ı







.

ג ⊆ U =





�
ϕ1, �{0.20, 0.30, 0.40}, {0.20, 0.40, 0.70}�,
�{0.50, 0.70, 0.90}, {0.20, 0.50, 0.70}�

�
,

�
ϕ2, �{0.40, 0.70, 0.90}, {0.50, 0.80, 0.90}�,
�{0.20, 0.30, 0.40}, {0.10, 0.20, 0.30}�

�
,

�
ϕ3, �{0.20, 0.30, 0.40}, {0.10, 0.50, 0.70}�,
�{0.40, 0.60, 0.80}, {0.20, 0.40, 0.60}�

�
,





,

FHFRWA(ð(1ג),ð(2ג),ð(3ג)) =

�
3�

ı=1

∝ı ð(גı ),

3�

ı=1

∝ı ð(גı )

�

=










��
1− (1− 0.23)0.25(1− 0.43)0.42(1− 0.23)0.33

�� 1
3 ,

��
1− (1− 0.33)0.25(1− 0.73)0.42(1− 0.33)0.33

�� 1
3 ,

��
1− (1− 0.43)0.25(1− 0.73)0.42(1− 0.43)0.33

�� 1
3


,

� �
0.20.25 × 0.50.42 × 0.10.33

�
,
�
0.40.25 × 0.80.42 × 0.50.33

�
,�

0.70.25 × 0.90.42 × 0.70.33
�

�










��
1− (1− 0.53)0.25(1− 0.23)0.42(1− 0.43)0.33

�� 1
3 ,

��
1− (1− 0.73)0.25(1− 0.33)0.42(1− 0.63)0.33

�� 1
3 ,

��
1− (1− 0.93)0.25(1− 0.43)0.42(1− 0.83)0.33

�� 1
3


,

� �
0.20.25 × 0.10.42 × 0.20.33

�
,
�
0.50.25 × 0.20.42 × 0.40.33

�
,�

0.70.25 × 0.30.42 × 0.60.33
�

�







=

�
({0.3172, 0.5592, 0.5781}, {0.2337, 0.5760, 0.7779}),
({0.3846, 0.5632, 0.7641}, {0.1494, 0.3161, 0.4660})

�
.
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(2) Boundedness: Let (ð(ג))− =
(
min
ı

ð(גı ), max
ı

ð(גı )
)
 and (ð(ג))+ = 

(
max
ı

ð(גı ), min
ı

ð(גı )
)
. Then

(3) Monotonicity: Suppose G(ג) =
(
G(גı ),G(גı )

)
(ı = 1, 2, ..., n) be another collection of FHFRVs such that 

G(גı ) ≤ ð(גı ) and G(גı ) ≤ ð(גı ) . Then

(4) Shiftinvariance: Consider another FHFRV G(ג) =
(
G(ג),G(ג)

)
=

(
(∂ , d), (∂ , d)

)
. Then

(5) Homogeneity: For any real number ς > 0;

(6) Commutativity: Suppose ð′
ıג) ) =

(
ð
′
ıג) ),ð

′
ıג) )

)
 and ð(גı ) = (ð(גı ),ð(גı )), (ı = 1, 2, 3, ..., ℓ) is a collection 

of FHFRVs. Then

Proof  (1) Idempotency: As ð(גı ) = G(ג) (for all ı = 1, 2, 3, ..., ℓ ) where G(גı ) =
(
G(ג),G(ג)

)
=

(
(∂ı , dı ), (∂ı , dı )

)
.

for all i,  ð(גı ) = G(ג) = 
(
G(ג),G(ג)

)
=

(
(∂ı , dı ), (dı , eı )

)
. Therefore,

Hence FHFRWA​(ð(1ג),ð(2ג), ...,ð(גℓ)) = G(ג).
(2) Boundedness: As

and ð(גı ) =
[(
ζı ,Jı

)
,
(
ζı ,J ı

)]
. To prove that

Since for each ı = 1, 2, 3, ..., ℓ, this implies that

FHFRWA(ð(1ג),ð(2ג), ...,ð(גℓ)) = G(ג).

(ð(ג))− ≤ FHFRWA(ð(1ג), ð(2ג), ...,ð(גℓ)) ≤ (ð(ג))+.

FHFRWA(G(1ג),G(2ג), ...,G(גℓ)) ≤ FHFRWA(ð(1ג),ð(2ג), ...,ð(גℓ)).

FHFRWA(ð(1ג)⊕ G(ג), ð(2ג)⊕ G(ג), ...,ð(גℓ)⊕ G(ג)) =

FHFRWA(ð(1ג),ð(2ג), ...,ð(גℓ))⊕ G(ג).

FHFRWA(ςð(1ג), ςð(2ג), ..., ςð(גℓ)) = ς · FHFRWA(ð(1ג),ð(2ג), ...,ð(גℓ)).

FHFRWA(ð(1ג),ð(2ג), ...,ð(גℓ)) = FHFRWA
(
ð
′
ð,(1ג)

′
,(2ג) ...,ð

′
(ℓג)

)
.

FHFRWA(ð(1ג),ð(2ג), ...,ð(גℓ))

=

��ℓ

ı=1
∝ı ð(גı ),

�ℓ

ı=1
∝ı ð(גı )

�

=




�
µı∈ζhð(ג)

3

��
1−

ℓ

⊠
ı=1

�
1−

�
µı

�3�∝ı

�
,

�
Vı∈Jhð(ג)

ℓ

⊠
ı=1

�
Vı

�∝ı

�
µı∈ζh

ð(ג)

3

��
1−

ℓ

⊠
ı=1

�
1− (µı )

3
�∝ı

�
,

�
Vı∈Jh

ð(ג)

ℓ

⊠
ı=1

�
Vı

�∝ı



,

=




�
bı∈ζhð(ג)

3

��
1−

ℓ

⊠
ı=1

�
1−

�
∂ı
�3�∝ı

�
,

�
dı∈Jhð(ג)

ℓ

⊠
ı=1

�
dı
�∝ı

�
∂ı∈ζh

ð(ג)

3

��
1−

ℓ

⊠
ı=1

�
1−

�
∂ı
�3�∝ı

�
,

�
dı∈Jh

ð(ג)

ℓ

⊠
ı=1

�
dı
�∝ı



.

=
��
1−

�
1− ∂ı

�
, ∂ı

�
,
�
1−

�
1− dı

�
, ∂ ı

��
=

�
G(ג),G(ג)

�
= G(ג).

(ð(ג))− =
[(

min
ı

{µı }, max
ı

{
Vı

})
,

(
min
ı

{µı }, max
ı

{
V ı

})]

(ð(ג))+ =
[(

max
ı

{µı }, min
ı

{
Vı

})
,

(
max
ı

{µı }, min
ı

{
V ı

})]

(ð(ג))− ≤ FHFRWA(ð(1ג),ð(2ג), ...,ð(גℓ)) ≤ (ð(ג))+.
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Hence 

Next for each ı = 1, 2, 3, ..., ℓ , we have

This follows that

Likewise, we can demonstrate that

and

Therefore, based on Equations (1), (2), (3) and (4) we have

(3) Monotonicity: Since G(ג) =
(
G(גı ),G(גı )

)
=

(
(∂ , d),

(
∂ , d

))
 and ð(גı ) =

(
ð(גı ),ð(גı )

)
 to show that 

G(גı ) ≤ ð(גı ) and G(גı ) ≤ ð(גı ) (for ı = 1, 2, 3, ..., ℓ ), so

next

Likewise, we can show that

Thus, based on the Equations (5), (6), (7) and (8), we get G(גı ) ≤ ð(גı ) and G(גı ) ≤ ð(גı ). Therefore,

( 4 )  S h i f t i n v a r i a n c e :  A s  G(ג) =
(
G(ג),G(ג)

)
=

(
(∂ı , dı ), (∂ ı , dı )

)
 i s  a  F H F R V  a n d 

ð(גı ) =
(
ð(גı ),ð(גı )

)
=

[(
ζı ,Jı

)
,
(
ζı ,J ı

)]
 is the collection of FHFRVs, so

As

min
ı

{µı } ≤{µı } ≤ max
ı

{µı } ⇐⇒ 1−max
ı

{µı } ≤ 1− {µı } ≤ 1− {µı }

⇐⇒
ℓ

⊠
ı=1

(
1−max

i
{µı }

)∝ı

≤
ℓ

⊠
ı=1

(
1− {µı }

)∝ı ≤
n
⊠
ı=1

(
1−min

ı

{µı }
)∝ı

⇐⇒
(
1−max

ı

{µı }
)
≤

ℓ

⊠
ı=1

(
1− {µı }

)∝ı ≤
(
1−min

ı

{µı }
)

⇐⇒1−
(
1−min

ı

{µı }
)
≤ 1−

ℓ

⊠
ı=1

(
1− {µı }

)∝ı ≤ 1−
(
1−max

ı

{µı }
)
.

(1)min
ı

{µı } ≤ 1−
ℓ

⊠
ı=1

(
1− {µı }

)∝ı ≤ max
ı

{µı }

min
ı

{
Vı

}
≤
{
Vı

}
≤ max

ı

{
Vı

}
⇐⇒

ℓ

⊠
ı=1

(
min
ı

{
Vı

})∝ı

≤
ℓ

⊠
ı=1

(
Vı

)∝ı

≤
ℓ

⊠
ı=1

(
max
ı

{
Vı

})∝ı

.

(2)min
ı

{
Vı

}
≤

ℓ

⊠
ı=1

{
Vı

}∝ı

≤ max
ı

{
Vı

}
.

(3)min
ı

{µı } ≤
ℓ

⊠
ı=1

{µı }
∝ı

≤ max
ı

{µı }

(4)min
ı

{
V ı

}
≤

ℓ

⊠
ı=1

{
V ı

}∝ı

≤ max
ı

{
V ı

}
.

(ð(ג))− =
[(

min
ı

{µı }, max
ı

{
Vı

})
,

(
min
ı

{µı }, max
ı

{
V ı

})]
.

(5)
∂ı ≤µı ⇒ 1− ∂ı ≤ 1− µı ⇒

ℓ

⊠
ı=1

(
1− µı

)∝ı ≤
ℓ

⊠
ı=1

(
1− ∂ı

)∝ı

⇒1−
ℓ

⊠
ı=1

(
1− ∂ı

)∝ı ≤ 1−
ℓ

⊠
ı=1

(
1− µı

)∝ı

(6)d
ı
≥ Vı ⇒

ℓ

⊠
ı=1

d∝ı

ı
≥

ℓ

⊠
ı=1

Vı

∝ı .

(7)1−
ℓ

⊠
ı=1

(
1− ∂ ı

)∝ı ≤ 1−
ℓ

⊠
ı=1

(1− µı )
∝ı

(8)
ℓ

⊠
ı=1

(
∂ ı
)∝ı ≥

ℓ

⊠
ı=1

(
V ı

)∝ı

FHFRWA(G(1ג),G(2ג), ...,G(גℓ)) ≤ FHFRWA(ð(1ג),ð(2ג), ...,ð(גℓ)).

ð(1ג)⊕ G(ג) =
[
ð(1ג)⊕ G(ג), ð(גı )⊕ G(ג)

]
.
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Thus, FHFRV G(ג) =
(
G(ג),G(ג)

)
=

(
(∂ı , dı ), (∂ı , dı )

)
. It follows that

(5) Homogeneity: For real number ς > 0 and ð(גı ) =
(
ð(גı ),ð(גı )

)
 be a FHFRVs. Consider

Now

(6) Commutativity: Suppose

((
1−

(
1− µı

)(
1− dı

)
,Vıdı

)
,
(
1− (1− µı )

(
1− dı

)
,V ıdı

))
.

FHFRWA(ð(1ג)⊕ G(ג),ð(2ג)⊕ G(ג), ...,ð(גℓ)⊕ G(ג))

=

��ℓ

ı=1
∝ı ð(גı )⊕ G(ג),

�ℓ

ı=1
∝ı (ð(גı )⊕ G(ג))

�

=








�
µı∈ζhð(ג)

3

��
1−

ℓ

⊠
ı=1

�
1−

�
µı

�3�∝ı �
1− ∂ı

�∝ı

�
,

�
Vı∈Jhð(ג)

ℓ

⊠
ı=1

�
Vı

�∝ı

d
∝ı

ı



,





�
µı∈ζh

ð(ג)

3

��
1−

ℓ

⊠
ı=1

�
1− (µı )

3
�∝ı

��
1− ∂ı

�∝ı

,
�

Vı∈Jh
ð(ג)

d
ı

ℓ

⊠
ı=1

�
V ı

�∝ı








=








�
µı∈ζhð(ג)

3
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1− (1− ∂)

ℓ

⊠
ı=1

�
1−

�
µı

�3�∝ı

�
,
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Vı∈Jhð(ג)

d
ℓ

⊠
ı=1

�
Vı
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

,




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3

�
�
1− ∂
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1−

ℓ

⊠
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�
1− (µı )

3
�∝ı

�
,

�
Vı∈Jh

ð(ג)

d
ℓ

⊠
ı=1

�
V ı

�∝ı








=









 �

µı∈ζhð(ג)

3

��
1−

ℓ

⊠
ı=1

�
1−

�
µı

�3�∝ı

�
,

�
Vı∈Jhð(ג)

ℓ

⊠
ı=1

�
Vı

�∝ı


⊕

�
∂ı , dı

�


,






 �

µı∈ζh
ð(ג)

3

��
1−

ℓ

⊠
ı=1

�
1− (µı )

3
�∝ı

�
,

�
Vı∈Jh

ð(ג)

ℓ

⊠
ı=1

�
V ı

�∝ı


⊕

�
∂ı , dı

�







=





 �

µı∈ζhð(ג)

3

��
1−

ℓ

⊠
ı=1

�
1−

�
µı

�3�∝ı

�
,

�
Vı∈Jhð(ג)

ℓ

⊠
ı=1

�
Vı

�∝ı


,


 �

µı∈ζh
ð(ג)

3

��
1−

ℓ

⊠
ı=1

�
1− (µı )

3
�∝ı

�
,

�
Vı∈Jh

ð(ג)

ℓ

⊠
ı=1

�
V ı

�∝ı






⊕

��
∂ı , dı

�
,
�
∂ı , dı

��

=FHFRWA(ð(1ג),ð(2ג), ...,ð(גℓ))⊕ G(ג).

ςð(גı ) =
�
ςð(גı ), ςð(גı )

�

=








�
µı∈ζhð(ג)

�
3

��
1−

�
1− µı

3
�ς��

,
�

Vı∈Jhð(ג)

�
Vı

ς
�


,





�
µı∈ζh

ð(ג)

�
3

��
1−

�
1− µı

3
�ς�

�
,

�
Vı∈Jhð(ג)

�
V

ς

ı

�





FHFRWA(ςð(1ג), ςð(2ג), ..., ςð(גℓ))

=





 �

µı∈ζhð(ג)

3

��
1−

ℓ

⊠
ı=1

�
1−

�
µı

�3�ς
�
,

�
Vı∈Jhð(ג)

ℓ

⊠
ı=1

�
Vı

�ς

,


 �

µı∈ζh
ð(ג)

3

��
1−

ℓ

⊠
ı=1

�
1− (µı )

3
�ς
�
,

�
Vı∈Jhð(ג)

ℓ

⊠
ı=1

�
V ı

�ς






=ςFHFRWA(ð(1ג),ð(2ג), ...,ð(גℓ)).
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L e t  
(
ð
′
ð,(1ג)

′
,(2ג) ...,ð

′
(ℓג)

)
 b e  a  p e r mut at i on  of  (ð(1ג),ð(2ג), ...,ð(גℓ)). T he n  we  h ave 

ð(גı ) = ð
′
ıג) )(ı = 1, 2, 3, ..., ℓ)

Definition 3.3  Consider the collection ð(גı ) = (ð(גı ),ð(גı )) (ı = 1, 2, 3, ..., ℓ) of FHFRVs with weight vector 
W = (∝1,∝2, ...,∝ℓ)

T such that 
⊕ℓ

ı=1 ∝ı= 1 and 0 ≤ ∝ı≤ 1. The FHFROWA operator is as follows:

Theorem  3  Let ð(גı ) = (ð(גı ),ð(גı )) (ı = 1, 2, 3, ..., ℓ) be the collection of FHFRVs with weight vectors 
W = (∝1,∝2, ...,∝ℓ)

T . Then FHFROWA operator is given as:

where ðρ(גı ) = (ðρı ıג) ),ðρı ıג) )) demonstrates the highest permutation value from a collection of FHFRVs

Proof  This proof follows the proof of Theorem-1.

Theorem 4  Let ð(גı ) = (ð(גı ),ð(גı )) (ı = 1, 2, 3, ..., ℓ) be a collection of FHFRVs and W = (∝1,∝2, ...,∝ℓ)
T is a 

weight vector such that 
⊕ℓ

ı=1 ∝ı= 1 and 0 ≤ ∝ı≤ 1. The FHFROWA operator needs to satisfy all of the following 
conditions:

(1) Idempotency: If ð(גı ) = G(ג) for ı = 1, 2, 3, ..., ℓ where G(ג) =
(
G(ג),G(ג)

)
=

(
(∂ , d), (∂ , d)

)
, then

FHFRWA(ð(1ג),ð(2ג), ...,ð(גℓ)),

=

��ℓ

ı=1
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�ℓ
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�
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
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⊠
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⊠
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⊠
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�
V ı
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



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⊠
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⊠
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�
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
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,

=

��ℓ
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ςıð

′
ıג) ),

�ℓ
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ςıð

′
ıג) )

�
,

=FHFRWA
�
ð
′
ð,(1ג)

′
,(2ג) ...,ð

′
(ℓג)

�
.

FHFROWA(ð(1ג),ð(2ג), ...,ð(גℓ))
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�
ℓ�
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ℓ�
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�
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⊠
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�
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�
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⊠
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�
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
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3

��
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⊠
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�
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⊠
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�
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
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
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FHFROWA(ð(1ג),ð(2ג), ...,ð(גℓ))

=

�
ℓ�

ı=1

∝ı ðρı ıג) ),
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ı=1

∝ı ðρı ıג) )
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
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��
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⊠
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�
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�
µρı
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(2) Boundedness: Let (ð(ג))− =
(
min
ı

ð(גı ), max
ı

ð(גı )
)
 and (ð(ג))+ = 

(
max
ı

ð(גı ), min
ı

ð(גı )
)
. Then

(3) Monotonicity: Suppose G(ג) =
(
G(גı ),G(גı )

)
(ı = 1, 2, ..., n) is another collection of FHFRVs such that 

G(גı ) ≤ ð(גı ) and G(גı ) ≤ ð(גı ) . Then

(4) Shiftinvariance: Consider another FHFRV G(ג) =
(
G(ג),G(ג)

)
=

(
(∂ , d), (∂ , d)

)
. Then

(5) Homogeneity: For any real number ς > 0;

(6) Commutativity: Suppose ð′
ıג) ) =

(
ð
′
ıג) ),ð

′
ıג) )

)
 and ð(גı ) = (ð(גı ),ð(גı )), (ı = 1, 2, 3, ..., ℓ) is any FHFRVs. 

Then

Proof  The proof is similar to the proof of Theorem-2.

Definition 3.4  Let ð(גı ) = (ð(גı ),ð(גı )) (ı = 1, 2, 3, ..., ℓ) be the collection of FHFRVs and W = (∝1,∝2, ...,∝ℓ)
T 

is a weights vector such that 
⊕ℓ

ı=1 ∝ı= 1 and 0 ≤ ∝ı≤ 1. Let ̺ = (̺1, ̺2, ..., ̺ℓ)
T such that 

⊕ℓ
ı=1 ̺ı = 1 and 0 ≤ 

̺ı ≤ 1 be the weight vectors of specified collection of FHFRVs. Then FHFRHWA operator is given by:

Theorem 5  Let ð(גı ) = (ð(גı ),ð(גı )) (ı = 1, 2, 3, ..., ℓ) be the collection of FHFRVs and W = (∝1,∝2, ...,∝ℓ)
T , be 

a weight vector such that 
⊕ℓ

ı=1 ∝ı= 1 and 0 ≤ ∝ı≤ 1. Let ̺ = (̺1, ̺2, ..., ̺ℓ)
T be the collection of FHFRVs with 

the properties that 
⊕ℓ

ı=1 ̺ı = 1 and 0 ≤ ̺ ı ≤ 1 , then the FHFRHWA operator is characterized as:

where ð̃ρ(גı ) = n ∝ı ð(גı ) = (n ∝ı ð(גı ), n ∝ı ð(גı )) indicates the superior permutation value from the set of 
FHFRVs, and n denotes the balancing coefficient.

Proof  This proof is similar to the proof of Theorem-1.

Theorem 6  Let ð(גı ) = (ð(גı ),ð(גı )) (ı = 1, 2, 3, ..., ℓ) be the collection of FHFRVs and W = (∝1,∝2, ...,∝ℓ)
T be 

a weight vector such that 
⊕ℓ

ı=1 ∝ı= 1 and 0 ≤ ∝ı≤ 1. Then FHFRHWA operator must accomplish the following 
conditions:

(1) Idempotency: If ð(גı ) = G(ג) for ı = 1, 2, 3, ..., ℓ where G(ג) =
(
G(ג),G(ג)

)
=

(
(∂ , d), (∂ , d)

)
, then

(2) Boundedness: Let (ð(ג))− =
(
min
ı

ð(גı ), max
ı

ð(גı )
)
 and (ð(ג))+ = 

(
max
ı

ð(גı ), min
ı

ð(גı )
)
. Then

FHFROWA(ð(1ג),ð(2ג), ...,ð(גℓ)) = G(ג).

(ð(ג))− ≤ FHFROWA(ð(1ג), ð(2ג), ...,ð(גℓ)) ≤ (ð(ג))+.

FHFROWA(G(1ג),G(2ג), ...,G(גℓ)) ≤ FHFROWA(ð(1ג),ð(2ג), ...,ð(גℓ)).

FHFROWA(ð(1ג)⊕ G(ג), ð(2ג)⊕ G(ג), ...,ð(גℓ)⊕ G(ג))

=FHFROWA(ð(1ג),ð(2ג), ...,ð(גℓ))⊕ G(ג).

FHFROWA(ςð(1ג), ςð(2ג), ..., ςð(גℓ)) = ς · FHFROWA(ð(1ג),ð(2ג), ...,ð(גℓ)).

FHFROWA(ð(1ג),ð(2ג), ...,ð(גℓ)) = FHFROWA
(
ð
′
ð,(1ג)

′
,(2ג) ...,ð

′
(ℓג)

)
.

FHFRHWA(ð(1ג),ð(2ג), ...,ð(גℓ)) =

(
ℓ⊕

ı=1

̺ı ð̃ρ(גı ),

ℓ⊕

ı=1

̺ı ð̃ρ(גı )

)
.
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=

�
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,

FHFRHWA(ð(1ג),ð(2ג), ...,ð(גℓ)) = G(ג).

(ð(ג))− ≤ FHFRHWA(ð(1ג),ð(2ג), ...,ð(גℓ)) ≤ (ð(ג))+.



15

Vol.:(0123456789)

Scientific Reports |         (2023) 13:6676  | https://doi.org/10.1038/s41598-023-28722-w

www.nature.com/scientificreports/

(3) Monotonicity: Suppose G(ג) =
(
G(גı ),G(גı )

)
(ı = 1, 2, ..., n) is collection of FHFRVs such that G(גı ) ≤ ð(גı ) 

and G(גı ) ≤ ð(גı ) . Then

(4) Shiftinvariance: Consider FHFRVs G(ג) =
(
G(ג),G(ג)

)
=

(
(∂ , d), (∂ , d)

)
. Then

 (5) Homogeneity: For any real number ς > 0;

(6) Commutativity: Suppose ð′
ıג) ) =

(
ð
′
ıג) ),ð

′
ıג) )

)
 and ð(גı ) = (ð(גı ),ð(גı )), (ı = 1, 2, 3, ..., ℓ) is a collection 

of FHFRVs. Then

Proof  This proof is similar to the proof of Theorem-2.

Multi‑attribute decision making framework
In this part, we provide an approach for dealing with uncertainty in MCGDM employing FHFR information. 
Assume a DM problem having {A1,A2, ...,Aℓ} a set of n alternatives and {c1, c2, ..., cℓ} is a set of attributes along 
a weight vector W = (∝1,∝2, ...,∝ℓ)

T that is, ∝ı∈ [0, 1] , 
⊕ℓ

ı=1 ∝ı= 1. Suppose 
{
D̊1, D̊2, ..., D̊̂

}
 is a collec-

tion of decision makers and (�1,�2, ...,�ı)T  is the weight vector of decision makers such that �ı ∈ [0, 1], 

⊕ℓ
ı=1 �ı = 1 . To assess the trustworthiness of k th alternative Aı under the attribute cı , the matrix for expert 

evaluation is outlined as follows:

where ð(ג) =
{〈

 , ζhð(ג)
(),Jhð(ג)

()
〉
| ∈ U

}
 and ð(גı j) =
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 , ζh

ð(ג)
(),Jh

ð(ג)
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〉
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}
 such that 
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)3
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≤ 1 and 0 ≤
(
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)3
+

(
min(Jh

ð(ג)
())

)3
≤ 1 are the 

FHFR values. The following are the main steps for MAGDM: 

Step-1	� Establish the expert evaluation matrices as follows: 

 where ̂  represents the number of experts.
Step-2	� Examine the normalised expert matrices (N)̂ , as 

Step-3	� Employing a FHFRWA aggregation operator, compute the FHFR collected information from DMs. 

FHFRHWA(G(1ג),G(2ג), ...,G(גℓ)) ≤ FHFRHWA(ð(1ג),ð(2ג), ...,ð(גℓ)).
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Step-4	� Utilizing the suggested aggregation information, examine the aggregated FHFRVs for each alternative 
in the context of specified set of attributes/criteria.

Step-5	� Evaluate the ranking of alternatives based on the score function outlined in the following way: 

Step-6	� Rank each possible scoring alternative in decreasing order from highest to lowest. The alternative that 
provides a higher value is considered to be the ideal alternative.

Numerical implementation of the MCGDM framework
This part explores a real-world application of the GSS in the chemical processing industries in order to demon-
strate the trustworthiness, supremacy, and precision of the suggested aggregation operators.

Case study (green supplier selection in industrial systems).  The selection of suppliers has recently 
risen as one of the important responsibilities of management, as well as one of the most vital and intricate con-
cerns they must address. In addition, GSS performance measures must be taken into account throughout the 
supplier selection process, and GSS decision-making in the chemical process industry has received relatively 
significant attention. Due to the rising consumption levels, the GSS has become the most crucial component 
for environmental conservation and sustainable growth. Since the previous couple of decades, environmental 
concerns have increased and spread quicker than a wildfire, from nation to region to worldwide territory, which 
is a significant contributor to rising temperatures and climate variability. Furthermore, the depletion of natural 
resources and air pollution have a negative impact on the fauna and flora, as well as human life through the infec-
tious illnesses they aggravate, such as diabetes and cardiovascular disease, brain hemorrhage, lung cancer, and 
chronic obstructive pulmonary disorder, intestinal parasites, typhoid fever, Hepatitis, Cholera, and water-borne 
diseases. While the GSS idea is used to alleviate potential ecological impacts and control air, water, and waste 
contaminants through the adoption of environmentally sustainable industry operations. This research aims to 
give a comprehensive framework for choosing green suppliers by including both economic and environmental 
factors. The following are the most important attributes for selecting the ideal green supplier:

(c1) Cost: Cost may be considered as a significant factor in supplier selection decisions. Appropriate suppliers 
may minimize costs and give purchasers with enhanced market skills. Cost involves transportation, manufactur-
ing, inventory, energy, maintenance, inspecting expenses, and safety expenditure. In addition to waste disposal 
expenses as an ecological component and reducing costs capability.

(c2) Quality: The administration must address quality assurance and procedure improvement to enhance 
quality performance. Quality management may fulfil consumer needs for efficient resource usage and aligns with 
an organisational objectives. Consideration is given to whole management of quality and reliability certifications 
such as ISO 9000, BS 5750, and EN 29000. Low toxicity and consumer rejection may also indicate quality. Firms 
may accomplish this objective by fast response, minimal wastage, high production, low inventories, no damage, 
few faults, and so forth.

(c3) Green products: In recent years, there has been a greater focus on green competence among customers 
and suppliers, which has significant implications and enhances brand reputation. Green packaging is a form 
of packaging that tries to preserve the natural environment by employing recyclable or reusable, efficient and 
environmentally materials.

(c4) Environmental management: The objectives of environmental sustainable approaches are to persuade 
businesses to alleviate the negative effects of production on the ecology and to make consumers more environ-
mentally conscious, therefore, influencing the decision-making of industries. Environment-related certifications 
such as ISO 14000, green manufacturing management, an internal control mechanism, and low carbon initiatives 
are the primary indications of sustainable development.

The evaluation procedure for ideal green supplier selection: Assuming an industry desires to assess the 
framework for selecting green product suppliers. They will appoint a panel of professionals to evaluate a suitable 
supplier. Let {A1,A2,A3,A4} be the set of four alternatives for supplier, and the penal will choose the optimal one. 
Let {c1, c2, c3, c4} be the set of attributes of each alternative according tothe determining variables established as 
follows: cost (c1) , quality (c2), green products (c3) and environmental management (c4) of green products farming. 
Due of uncertainty, the information utilized by decision makers to make decisions is given as FHFR informa-
tion. The attribute weight vector under consideration is w = (0.180, 0.250, 0.310, 0.260)T and decision makers 

FHFRWA(ð(1ג),ð(2ג), ...,ð(גℓ))

=

�
ℓ�

ı=1

∝ı ð(גı ),

ℓ�

ı=1

∝ı ð(גı )

�

=




�
µı∈ζhð(ג)

3

��
1−

ℓ

⊠
ı=1

�
1−

�
µı

�3�∝ı

�
,

�
Vı∈Jhð(ג)

ℓ

⊠
ı=1

�
Vı

�∝ı

�
µı∈ζh

ð(ג)

3

��
1−

ℓ

⊠
ı=1

�
1− (µı )

3
�∝ı

�
,

�
Vı∈Jh

ð(ג)

ℓ

⊠
ı=1

�
Vı

�∝ı




�(ð(ג)) =
1

4




2+ 1
MR

�
µı∈ζhð(ג)

(µı )+
1

NR

�
µı∈ζh

ð(ג)

(µı )

1
MR

�
Vı∈Jhð(ג)

(Vı )−
1

MR

�
Vı∈Jh

ð(ג)

(Vı )


,



17

Vol.:(0123456789)

Scientific Reports |         (2023) 13:6676  | https://doi.org/10.1038/s41598-023-28722-w

www.nature.com/scientificreports/

weights vector is w = (0.230, 0.380, 0.390)T . To assess the MCDM problem using the established framework for 
analyzing alternatives, the following computations are carried out as follows:

[Step-1]Analyses of the information provided by three experts using FHFRVs are demonstrated in 
Tables 2, 3, 4.

[Step-2] All of the expert information is of the benefit type. In this situation, it is not necessary to normalize 
the FHFRVs.

[Step-3] Table 5 assesses the collective information of three expert analysts using the FHFRWA aggregation 
operator.

[Step-4] In order to use the suggested aggregation operators, the aggregate information of the alternative 
under the specified set of attributes is evaluated.

Case-1: The aggregation information utilizing FHFRWA operator is displayed in Table 6:

Table 2.   Expert-1 information.

(a)

c1 c2

A1

(
{(0.10, 0.20, 0.50), (0.30, 0.40)},
{(0.30, 0.80, 0.90), (0.40, 0.60)}

) (
{(0.50, 0.70, 0.90), (0.50, 0.60, 0.80)},
{(0.30, 0.50, 0.60), (0.70, 0.90)}

)

A2

(
{(0.50, 0.60, 0.70), (0.70, 0.90)},
{(0.30, 0.50, 0.70), (0.60, 0.70)}

) (
{(0.20, 0.40, 0.50), (0.50)},
{(0.60, 0.70), (0.30, 0.50, 0.90)}

)

A3

(
{(0.40, 0.50, 0.60), (0.60, 0.70, 0.80)},
{(0.70, 0.80), (0.10, 0.40, 0.70)}

) (
{(0.10), (0.50, 0.60)},
{(0.40, 0.60, 0.70), (0.50, 0.70)}

)

A4

(
{(0.60, 0.70, 0.90), (0.30, 0.40, 0.60)},
{(0.20, 0.70), (0.70, 0.80, 0.90)}

) (
{(0.30, 0.40, 0.50), (0.40, 0.70, 0.90)},
{(0.10, 0.20), (0.20, 0.30)}

)

(b)

c3 c4

A1

(
{(0.20, 0.30, 0.40), (0.30, 0.40, 0.70)},
{(0.10, 0.50), (0.30, 0.50)}

) (
{(0.50, 0.60),(0.40, 0.50, 0.70)},
{(0.60, 0.80, 0.90), (0.60, 0.70, 0.90)}

)

A2

(
{(0.40, 0.50, 0.80), (0.40, 0.50, 0.70)},
{(0.20, 0.50), (0.40, 0.50)}

) (
{(0.40, 0.60, 0.80), (0.30, 0.50)},
{(0.70), (0.10, 0.30, 0.40)}

)

A3

(
{(0.30, 0.60, 0.70), (0.50, 0.70, 0.80)},
{(0.50, 0.90), (0.50, 0.80)}

) (
{(0.30, 0.60), (0.50, 0.60, 0.80)},
{(0.10, 0.30, 0.70), (0.30, 0.40)}

)

A4

(
{(0.30, 0.40, 0.50), (0.70, 0.80, 0.90)},
{(0.60, 0.70), (0.40, 0.70)}

) (
{(0.20, 0.30, 0.40), (0.50, 0.60, 0.90)},
{(0.30, 0.40), (0.70, 0.80)}

)

Table 3.   Expert-2 information.

(a)

c1 c2

A1

(
({0.20, 0.30, 0.40}, {0.20, 0.50}),
({0.40, 0.60}, {0.20, 0.50})

) (
({0.40, 0.50, 0.60}, {0.30, 0.70, 0.80}),
({0.20, 0.70, 0.80}, {0.20, 0.80, 0.90})

)

A2

(
({0.10, 0.30, 0.40}, {0.50, 0.80}),
({0.50, 0.60}, {0.80, 0.90})

) (
({0.30, 0.40, 0.60}, {0.70, 0.80}),
({0.10, 0.50}, {0.30, 0.70, 0.80})

)

A3

(
({0.60, 0.70, 0.80}, {0.30, 0.40}),
({0.30, 0.80, 0.90}, {0.20, 0.50, 0.70})

) (
({0.30, 0.40, 0.50}, {0.40, 0.70, 0.90}),
({0.40, 0.60, 0.70}, {0.70, 0.80, 0.90})

)

A4

(
({0.10, 0.20, 0.30}, {0.50, 0.70}),
({0.20, 0.40}, {0.70, 0.80})

) (
({0.50, 0.70, 0.80}, {0.30, 0.50, 0.70}),
({0.30, 0.40, 0.60}, {0.40, 0.50, 0.70})

)

(b)

c3 c4

A1

(
({0.20, 0.40}, {0.30, 0.50}),
({0.40, 0.70, 0.80}, {0.20, 0.60})

) (
({0.10, 0.20},{0.40, 0.60}),
({0.20, 0.50}, {0.70, 0.90})

)

A2

(
({0.30, 0.50, 0.70}, {0.20, 0.60}),
({0.60, 0.70, 0.80}, {0.20, 0.80})

) (
({0.20, 0.30}, {0.40, 0.60, 0.70}),
({0.10, 0.30, 0.50}, {0.20, 0.30, 0.50})

)

A3

(
({0.50, 0.60, 0.70}, {0.30, 0.50}),
({0.70, 0.80, 0.90}, {0.20, 0.30, 0.50})

) (
({0.20, 0.70, 0.80}, {0.20, 0.70}),
({0.10, 0.20}, {0.50, 0.60, 0.70})

)

A4

(
({0.60, 0.70, 0.90}, {0.20, 0.50}),
({0.60, 0.90}, {0.20, 0.50})

) (
({0.30, 0.50}, {0.40, 0.60, 0.70}),
({0.20, 0.30, 0.60}, {0.40, 0.50, 0.70})

)
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Table 4.   Expert-3 information.

(a)

c1 c2

A1

(
({0.40, 0.70, 0.90}, {0.30, 0.60, 0.80}),
({0.20, 0.30, 0.80}, {0.70, 0.80, 0.90})

) (
({0.40, 0.70, 0.80}, {0.70, 0.80}),
({0.30, 0.50, 0.60}, {0.70, 0.80})

)

A2

(
({0.10, 0.30, 0.40}, {0.50, 0.60, 0.90}),

({0.20, 0.30, 0.70}, {0.20, 0.60, 0.80})

) (
({0.20, 0.30, 0.70}, {0.30, 0.80, 0.90}),
({0.10, 0.50, 0.80}, {0.20, 0.70, 0.80})

)

A3

(
({0.20, 0.30, 0.50}, {0.40, 0.80, 0.90}),
({0.10, 0.80, 0.90}, {0.40, 0.70})

) (
({0.20, 0.30, 0.80}, {0.20, 0.80}),
({0.50, 0.80, 0.90}, {0.20, 0.90})

)

A4

(
({0.10, 0.50, 0.70}, {0.50, 0.80}),
({0.30, 0.50, 0.70}, {0.40, 0.90})

) (
({0.20, 0.30}, {0.50, 0.60}),
({0.30, 0.80, 0.90}, {0.70, 0.80, 0.90})

)

(b)

c3 c4

A1

(
({0.20, 0.30, 0.80}, {0.50, 0.60, 0.70}),
({0.30, 0.50, 0.60}, {0.20, 0.80, 0.90})

) (
({0.20, 0.30, 0.70}, {0.20, 0.30, 0.70}),
({0.20, 0.30, 0.80}, {0.50, 0.70})

)

A2

(
({0.10, 0.30, 0.60}, {0.40, 0.60, 0.80}),
({0.60, 0.70, 0.90}, {0.30, 0.80, 0.90})

) (
({0.10, 0.20, 0.30}, {0.20, 0.50}),
({0.30, 0.40, 0.60}, {0.10, 0.20})

)

A3

(
({0.10, 0.20, 0.30}, {0.30, 0.50, 0.90}),
({0.20, 0.30, 0.40}, {0.20, 0.40, 0.60})

) (
({0.20, 0.80, 0.90}, {0.10, 0.20}),
({0.20, 0.40, 0.50}, {0.70, 0.80})

)

A4

(
({0.20, 0.30, 0.70}, {0.80, 0.90}),
({0.20, 0.30, 0.80}, {0.10, 0.20, 0.30})

) (
({0.20, 0.30, 0.80}, {0.20, 0.30}),
({0.30, 0.50, 0.80}, {0.40, 0.50})

)

Table 5.   Collective aggregation of FHFR information.

(a)

c1 c2

A1




�
{0.240, 0.544, 0.755},

{0.257, 0.510, 0.840}

�
,

�
{0.323, 0.617, 0.760},

{0.274, 0.626, 0.959}

�







�
{0.428, 0.644, 0.663},

{0.469, 0.711, 0.950}

�
,

�
{0.270, 0.599, 0.728},

{0.382, 0.775, 0.937}

�




A2




�
{0.314, 0.420, 0.367},

{0.521, 0.693, 0.921}

�
,

�
{0.388, 0.500, 0.612},

{0.436, 0.811, 0.959}

�







�
{0.248, 0.367, 0.629},

{0.465, 0.842, 0.959}

�
,

�
{0.380, 0.460, 0.624},

{0.256, 0.647, 0.822}

�




A3




�
{0.471, 0.566, 0.681},

{0.393, 0.596, 0.921}

�
,

�
{0.467, 0.751, 0.919},

{0.223, 0.541, 0.804}

�







�
{0.239, 0.327, 0.655},

{0.321, 0.800, 0.960}

�
,

�
{0.445, 0.703, 0.808},

{0.397, 0.812, 0.960}

�




A4




�
{0.380, 0.520, 0.672},

{0.444, 0.648, 0.889}

�
,

�
{0.249, 0.420, 0.532},

{0.562, 0.837, 0.976}

�







�
{0.388, 0.553, 0.639},

{0.391, 0.580, 0.852}

�
,

�
{0.276, 0.641, 0.763},

{0.424, 0.534, 0.838}

�




(b)

c3 c4

A1




�
{0.200, 0.345, 0.634},

{0.366, 0.510, 0.801}

�
,

�
{0.328, 0.599, 0.673},

{0.219, 0.643, 0.959}

�







�
{0.322, 0.406, 0.578},

{0.232, 0.535, 0.921}

�
,

�
{0.392, 0.587, 0.760},

{0.592, 0.770, 0.976}

�




A2




�
{0.295, 0.444, 0.699},

{0.307, 0.575, 0.844}

�
,

�
{0.610, 0.721, 0.815},

{0.274, 0.718, 0.959}

�







�
{0.264, 0.406, 0.544},

{0.285, 0.535, 0.873}

�
,

�
{0.467, 0.328, 0.513},

{0.130, 0.256, 0.622}

�




A3




�
{0.388, 0.527, 0.700},

{0.494, 0.679, 0.950}

�
,

�
{0.560, 0.761, 0.814},

{0.188, 0.320, 0.480}

�







�
{0.231, 0.731, 0.815},

{0.188, 0.414, 0.950}

�
,

�
{0.155, 0.325, 0.517},

{0.506, 0.611, 0.873}

�




A4




�
{0.459, 0.553, 0.793},

{0.458, 0.700, 0.976}

�
,

�
{0.406, 0.565, 0.814},

{0.179, 0.377, 0.625}

�







�
{0.248, 0.403, 0.634},

{0.321, 0.457, 0.852}

�
,

�
{0.270, 0.421, 0.677},

{0.454, 0.557, 0.873}

�



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Case-2: Information aggregated employing the FHFROWA operator is displayed in Table 7:
Case-3: Aggregation information using FHFRHWA operator presented in Table 8 with associated weights 

vector that is (0.180, 0.230, 0.280, 0.310)T .
Step-5 & 6] The score values for all alternatives determined by the specified aggregation operators are sum-

marized in Table 9.
Graphical representations of rankings for each alternative are illustrated in Fig. 2.

The comparative evaluation
In this section, we intend to enhanced the VIKOR scheme for the FHFR information in order to deal with 
MCGDM problems.

The improved FHFR‑VIKOR technique.  The following is a detailed explanation of the modified form of 
VIKOR approach based on FHFR information: 

Table 6.   Aggregated information using q-ROHFRWA.

A1

(
({0.710, 0.811, 0.893}, {0.302, 0.544, 0.796}),
({0.739, 0.877, 0.940}, {0.330, 0.694, 0.886})

)

A2

(
({0.670, 0.773, 0.872}, {0.345, 0.605, 0.819}),
({0.820, 0.827, 0.894}, {0.218, 0.511, 0.781})

)

A3

(
({0.703, 0.907, 0.950}, {0.305, 0.581, 0.873}),
({0.759, 0.880, 0.935}, {0.292, 0.513, 0.677})

)

A4

(
({0.726, 0.814, 0.915}, {0.377, 0.567, 0.839}),
({0.695, 0.827, 0.929}, {0.334, 0.510, 0.768})

)

Table 7.   Information aggregated utilizing FHFROWA.

A1

(
({0.716, 0.818, 0.893}, {0.306, 0.555, 0.879}),
({0.738, 0.877, 0.941}, {0.342, 0.701, 0.955})

)

A2

(
({0.688, 0.774, 0.837}, {0.381, 0.655, 0.902}),
({0.790, 0.837, 0.898}, {0.241, 0.549, 0.819})

)

A3

(
({0.705, 0.840, 0.925}, {0.292, 0.582, 0.943}),
({0.792, 0.919, 0.963}, {0.309, 0.562, 0.786})

)

A4

(
({0.749, 0.835, 0.915}, {0.375, 0.561, 0.877}),
({0.677, 0.820, 0.904}, {0.388, 0.566, 0.836})

)

Table 8.   Information aggregated employing FHFRHWA.

A1

(
({0.722, 0.853, 0.925}, {0.316, 0.557, 0.874}),
({0.741, 0.889, 0.940}, {0.333, 0.698, 0.956})

)

A2

(
({0.714, 0.794, 0.865}, {0.358, 0.598, 0.791}),
({0.821, 0.861, 0.911}, {0.235, 0.542, 0.820})

)

A3

(
({0.737, 0.863, 0.936}, {0.296, 0.580, 0.945}),
({0.820, 0.929, 0.966}, {0.314, 0.549, 0.768})

)

A4

(
({0.772, 0.847, 0.920}, {0.376, 0.561, 0.880}),
({0.714, 0.842, 0.918}, {0.367, 0.536, 0.815})

)

Table 9.   Ranking of alternative.

Proposed operators Score values of alternatives Ranking

A1 A2 A3 A4

FHFRWA​ 0.618 0.631 0.657 0.625 A3 > A2 > A4 > A1

FHFROWA 0.6037 0.606 0.639 0.608 A3 > A4 > A2 > A1

FHFRHWA 0.611 0.635 0.650 0.623 A3 > A2 > A4 > A1
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Step-1	� Construct evaluation matrices for the experts in the form of FHFRVs.
Step-2	� Through using FHFRWA aggregation operator, compute the collected information of decision makers 

along their weights vector and obtained the aggregated decision matrix.
Step-3	� Compute the positive ideal solutions (PIS) T + and negative ideal solutions (NIS) T − in the form of 

FHFR information as follows: 

Step-4	� To determine the FHFR group utility measure Sı (ı = 1, 2, 3, ..., ℓ) and the regret measure 
Rı (ı = 1, 2, 3, ..., ℓ) of all alternatives L = (A1,A2,A3, ...,Aℓ) applying the formulas mentioned below: 

Step-5	� Determine the maximum and minimum values of S and R, respectively as follows: 

 Lastly, we integrate the features of both the group utility Sı and the individual regret Rı in order to assess the 
ranking measure Qı for the alternative L = (A1,A2,A3, ...,Aℓ) as follows: 

 where χ is the strategic weight of the majority of parameters (the parameter with the largest group utility) and 
is essential for assessing the compromised solution. The value chosen from the range [0, 1],  however 0.5 is a 
common number, we utilized it.
Step-6	� Furthermore, the alternatives are ordered in decreasing order for the group utility measure Si , indi-

vidual regret measure Rı , and ranking measure Qı . Here, we obtained three ranking lists that will help 
us determine the best compromise alternative.

 

Numerical example of the improved FHFR‑VIKOR methodology.  In this section, we implement 
an improved FHFR-VIKOR approach to the MAGDM problem in order to identify the best green supplier in 
process industries through using four criteria mentioned in the following numerical example. 

T + =
(
Y

+
1 ,Y+

2 ,Y+
3 , ...,Y+

ℓ

)
=

(
max
ı

Yı1,max
ı

Yı2,max
ı

Yı3, ..., max
ı

Yın.

)
,

T − =
(
Y

−
1 ,Y−

2 ,Y−
3 , ...,Y−

ℓ

)
=

(
min
ı

Yı1,min
ı

Yı2,min
ı

Yı3, ..., min
ı

Yın.

)

Sı =

ℓ⊕

j=1

∝j d
(
Yı j ,Y

+
j

)

d
(
Y

+
j ,Y−

j

) , ı = 1, 2, 3, 4, ...,m.

Rı =max
∝j d

(
Yı j ,Y

+
j

)

d
(
Y

+
j ,Y−

j

) , ı = 1, 2, 3, 4, ...,m

S♦ = min
ı

Sı , S
◦ = max

ı

Sı , R
♦ = min

ı

Rı , R
◦ = max

ı

Rı , ı = 1, 2, 3, ..., ℓ.

Qı = χ
Sı − S♦

S◦ − S♦
+ (1− χ)

Rı − R♦

R◦ − R♦
,Rı , ı = 1, 2, 3, ..., ℓ,

Figure 2.   The pictorial diagram of the ranking of underdeveloped operators.
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Step-1	� The information based on FHFRVs of the three professional experts is analyzed in Tables 2, 3, 4.
Step-2	� The aggregated information of the team of experts, as determined by the FHFRWA aggregation 

operator, is summarized in Table 5.
Step-3	� The FHFR PIS ( T + ) and the FHFR NIS ( T − ) are computed in Table 10:
Step-4	� The FHFR group utility measure Sı (ı = 1, 2, 3, 4) and the regret measure Rı (ı = 1, 2, 3, 4) of the 

alternatives under consideration are summarized in Table 11.
Step-5 & 6	� Alternative rankings based on the group utility measure Sı , the individual regret measure Rı , and 

the ranking measure Qı are indicated in Table 12. Figure 3 depicts a graphical illustration of the 
ranking according to the modified VIKOR approach.

The improved TOPSIS approach based on FHFR information.  Hwang and Yoon76 invented the 
TOPSIS technique for optimum solution, allowing decision makers to examine the PIS and NIS. TOPSIS is 
based on the idea that the best alternative is the one that is nearer to the positive ideal while being the far away 
from the negative ideal solution77,78. The supplier selection in the process industries through using four criteria 
mentioned in the following numerical example. The following are the major components of aforesaid scheme: 

Step-1	� The information provided by three professionals experts is analyzed employing FHFRVs in Tables 2 
through 4.

Step-2	� The collective information of professional experts utilizing the FHFRWA AOPs is given in Table 5.
Step-3	� The FHFR PIS T + and the FHFR NIS T − on the basis of their score values are computed in Table 10:

Table 10.   The PIS and NIS based on FHFR information.

Criteria T
+

T
−

c1




�
{0.380, 0.520, 0.672},

{0.444, 0.648, 0.889}

�
,

�
{0.249, 0.420, 0.532},

{0.562, 0.837, 0.976}

�







�
{0.314, 0.420, 0.367},

{0.521, 0.693, 0.921}

�
,

�
{0.388, 0.500, 0.612},

{0.436, 0.811, 0.959}

�




c2




�
{0.248, 0.367, 0.629},

{0.465, 0.842, 0.959}

�
,

�
{0.380, 0.460, 0.624},

{0.256, 0.647, 0.822}

�







�
{0.239, 0.327, 0.655},

{0.321, 0.800, 0.960}

�
,

�
{0.445, 0.703, 0.808},

{0.397, 0.812, 0.960}

�




c3




�
{0.459, 0.553, 0.793},

{0.458, 0.700, 0.976}

�
,

�
{0.406, 0.565, 0.814},

{0.179, 0.377, 0.625}

�







�
{0.295, 0.444, 0.699},

{0.307, 0.575, 0.844}

�
,

�
{0.610, 0.721, 0.815},

{0.274, 0.718, 0.959}

�




c4




�
{0.264, 0.406, 0.544},

{0.285, 0.535, 0.873}

�
,

�
{0.467, 0.328, 0.513},

{0.130, 0.256, 0.622}

�







�
{0.322, 0.406, 0.578},

{0.232, 0.535, 0.921}

�
,

�
{0.392, 0.587, 0.760},

{0.592, 0.770, 0.976}

�




Table 11.   Sı , Rı , Qı for each alternative.

Alternatives Sı Rı Qı

A1 1.0520 0.3599 0.9918

A2 0.4900 0.3099 0.5000

A3 1.3689 0.4050 1.2319

A4 0.7422 0.3421 0.6588

Table 12.   Alternative ranking depending on Sı , Rı , and Qı.

Alternatives Ranking order of Sı Ranking order of Rı Ranking order of Qı

A1 2 2 2

A2 4 4 4

A3 1 1 1

A4 3 3 3
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Step-5	� Both the PIS and the NIS are determined using the score value. In this context, the PIS and NIS are 
referred to as T + =

(
Y

+
1 ,Y+

2 ,Y+
3 , ...,Y+

ℓ

)
 and T − =

(
Y

−
1 ,Y−

2 ,Y−
3 , ...,Y−

ℓ

)
 respectively. For PIS T + , 

it can be determined by employing the formula as follows: 

 In a similar fashion, the NIS can be obtained using the formula as follows: 

 After that, determine the geometric distance between each of the alternatives and the PIS T + using the formula 
as follows: 

 In a similar manner, the geometric distance between each of the alternatives and NIS T − may be expressed as 
follows: 

Step-6	� The following are the relative closeness indices calculated for all decision makers of the alternatives: 

T + =
(
Y

+
1 ,Y+

2 ,Y+
3 , ...,Y+

ℓ

)

=
(
max
ı

score(Yı1), max
ı

scoreYı2,max
ı

scoreYı3, ..., max
ı

scoreYın.

)

T − =
(
Y

−
1 ,Y−

2 ,Y−
3 , ...Y−

ℓ

)

=
(
min
ı

scoreYı1,min
ı

scoreYı2,min
ı

scoreYı3, ..., min
ı

scoreYın.

)

d(αı j ,T
+) =

1

8







1
♯h

�♯h
s=1

����
�
µ
ı j(s)

�2
−

�
µ+
ı

�2����

+

����
�
µ
ı j(s)

�2
−

�
µ+
ı(s)

�2����




+




1
♯g

�♯g
s=1

����
�
V
ı j(s)

�2
−

�
V
+
ı(s)

�2����

+

����
�
Vh

ı j

�2
−

�
Vh

+

ı

�2����







,

where ı =1, 2, 3, ..., ℓ, and j = 1, 2, 3, ...,m.

d(αı j ,T
−) =

1

8







1
♯h

�♯h
s=1

����
�
µ
ı j(s)

�2
−

�
µ−
ı(s)

�2����

+

����
�
µ
ı j(s)

�2
−

�
µ−
ı(s)

�2����




+




1
♯g

�♯g
s=1

����
�
V
ı j(s)

�2
−

�
V
−
ı(s)

�2����

+

����
�
Vh

ı j

�2
−

�
Vh

−

ı

�2����







,

where ı =1, 2, 3, ..., ℓ, and j = 1, 2, 3, ...,m.

Figure 3.   The graphical depiction of ranking according to the modified VIKOR-method.
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Step-7	� The alternatives may be ranked according to their desirability, and the choice with the lowest distance 
can be selected.

Numerical example of the improved TOPSIS approach.  A numerical example relevant to “green 
supplier selection in industrial systems” is provided to illustrate the effectiveness of the proposed approach as 
follows: 

Step-1	� The information of decision makers is displayed in the form of FHFRNs in Tables 2, 3, 4, 5.
Step-2	� The distance between PIS is computed as follows: 

 and similarly the the distance between NIS is calculated as follows: 

Step-4	� The following are the relative closeness indices for all decision-makers evaluating the alternatives: 

Step-5	� According to the aforementioned ranking of alternatives visualized in Fig. 4, the A3 has the shortest 
distance. Hence, A3 is the best option.

Concluding remarks and future recommendations
This research presented an enhanced model of the Fermatean hesitant fuzzy rough set, a novel hybrid structure 
of the Fermatean FSs, the HFSs, and the rough set for GSS in process industries79–82. The addition of RS theory 
makes this method more adaptable and efficient for modelling fuzzy systems and crucial DM under ambiguity. A 
variety of AOPs, including FHFRWA, FHFR ordered WA, and FHFR hybrid WA operators, is presented utilizing 
algebraic t-norm and t-conorm. In addition, the key properties of developed operators are elaborately discussed. 
This study presented an assessment approach for determining each potential supplier’s overall performance. The 
optimal selection may then be made based on the overall rating of the supplier. Using a suggested model can assist 
organisational decisions by employing a suggested approach towards selecting the most appropriate supplier. 
The possible uses of the MCDM approach for determining the best decision were illustrated utilising numerical 
examples. The suggested techniques and the improved FHFR-VKOR and TOPSIS methods are used to compare 
the final ranking and best decision for selecting the green suppliers in process industries. The comparison dem-
onstrated the capability, superiority, and trustworthiness of the suggested approaches.

In the future, the presented approach may be extended to solve MAGDM problems involving generalised 
aggregated information with applications in machine learning, artificial intelligence, medical diagnostics, and 
DM challenges.

Data availability
All data generated or analysed during this study are included in this manuscript.

RC(αı j) =
d(αı j ,T

+)

d(αı j ,T −)+ d(αı j ,T +)
.

0.2936 0.1399 0.0940 0.3029

0.1652 0.1429 0.2486 0.2467

0.6399 0.4947 0.2744 0.5511

Figure 4.   The schematic depiction of the ranking based on the improved TOPSIS approach.
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