
1

Vol.:(0123456789)

Scientific Reports |         (2023) 13:1479  | https://doi.org/10.1038/s41598-023-28680-3

www.nature.com/scientificreports

Deep learning‑based hemorrhage 
detection for diabetic retinopathy 
screening
Tamoor Aziz 1*, Chalie Charoenlarpnopparut 1 & Srijidtra Mahapakulchai 2

Diabetic retinopathy is a retinal compilation that causes visual impairment. Hemorrhage is one of the 
pathological symptoms of diabetic retinopathy that emerges during disease development. Therefore, 
hemorrhage detection reveals the presence of diabetic retinopathy in the early phase. Diagnosing the 
disease in its initial stage is crucial to adopt proper treatment so the repercussions can be prevented. 
The automatic deep learning-based hemorrhage detection method is proposed that can be used as the 
second interpreter for ophthalmologists to reduce the time and complexity of conventional screening 
methods. The quality of the images was enhanced, and the prospective hemorrhage locations were 
estimated in the preprocessing stage. Modified gamma correction adaptively illuminates fundus 
images by using gradient information to address the nonuniform brightness levels of images. The 
algorithm estimated the locations of potential candidates by using a Gaussian match filter, entropy 
thresholding, and mathematical morphology. The required objects were segmented using the regional 
diversity at estimated locations. The novel hemorrhage network is propounded for hemorrhage 
classification and compared with the renowned deep models. Two datasets benchmarked the 
model’s performance using sensitivity, specificity, precision, and accuracy metrics. Despite being 
the shallowest network, the proposed network marked competitive results than LeNet-5, AlexNet, 
ResNet50, and VGG-16. The hemorrhage network was assessed using training time and classification 
accuracy through synthetic experimentation. Results showed promising accuracy in the classification 
stage while significantly reducing training time. The research concluded that increasing deep network 
layers does not guarantee good results but rather increases training time. The suitable architecture of 
a deep model and its appropriate parameters are critical for obtaining excellent outcomes.

The International Diabetes Federation (IDF) estimated that 700 million people will be living with Diabetes 
mellitus (DM) by 20451. DM develops fat and cholesterol in blood vessels that obstruct the flow of blood and 
nutrients required by human organs. The physiologic autoregulatory response to this progression increases the 
intracranial pressure of blood vessels2—This change in the retina yields rupture of small arteries that compiles 
Diabetic retinopathy (DR). DR is a retinal compilation that damages blood vessels, and DM is one of the causes 
of its development. DR cannot be cured permanently, but its progression rate can be reduced significantly by 
effective control of serum glucose, blood pressure and timely treatment.

DR is broadly categorized into non-proliferative diabetic retinopathy (NPDR) and proliferative diabetic 
retinopathy (PDR). NPDR is classified by visible pathological features like microaneurysms (MAs), hemorrhages 
(HEs), exudates, and microvascular abnormalities. In comparison, PDR is diagnosed by the emergence of new 
blood vessels called neovascularization3. Figure 1 depicts two stages of DR.

MAs and HEs are grouped into red lesions. MAs are the earliest clinically manifest of DR and appear as small 
circular red dots in fundus images. Causes of MAs development are endothelial cell dysfunction, hypercoagulabil-
ity, and atherosclerosis4. When MAs are weakened enough to rupture and swell, they rise to HEs. These dot-HEs 
are indistinguishable from MAs. HEs are disastrous for eyesight, predominantly when emerging in the macular 
region. Therefore, they often lead to significant and perpetual ocular impairment5.

Fluorescein angiography (FA), optical coherence tomography (OCT), and ophthalmoscopy are eminent 
methods of DR diagnosis. FA is a standard gold method and is capable of assessing microvascular changes. It 
helps to determine the origin of the leakage. Conversely, FA is time-consuming, invasive, and requires injection 
of intravenous fluorescein dye that may cause adverse side effects6. OCT is advanced for microvascular evaluation 
and captures a cross-section of the retina. OCT is non-invasive and does not require fluorescent dye injection. 
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OCT assists in determining the progression rate of compilation and efficacy of therapy7, but complexities and 
risks are evident. Therefore, it necessitates computationally efficient, affordable, and non-invasive diagnostic 
method. Retinal ophthalmoscopy can be an alternative to address these problems8. It allows examination of 
retinal structures and can identify clinical pathological symptoms. This method does not constitute any risks; 
therefore, it is used for regular eye examinations.

Fundus images are often blurry and poorly illuminated. Intensity profiles of HEs appear similar to the macula, 
blood vessels, and dark regions caused by the lighting conditions. Therefore, the classification of HEs from other 
objects is a challenging task. Furthermore, the lack of a standardized description of HEs locations obstructs 
comparing various prognosis approaches. Localization of hemorrhage is a critical subject when prescribing 
treatment by an ophthalmologist. For instance, macular hemorrhage is more disastrous than other HEs9 because 
it deteriorates central vision. Therefore, the detection of HEs with their precise locations is exceptionally impera-
tive. A fundus image may have many HEs with different sizes, and the intensity profiles of their surrounding 
regions are inconsistent. Hence, it demands an adaptive segmentation process to deal with differing sizes and 
inconsistent regions for effective HEs identification. Effective implementation of deep models requires sufficient 
data for training a model. A deep network provides obscure results that are difficult to interpret when trained on 
insufficient training samples. Therefore, these challenges compel the development of an efficient computer-based 
technique for HEs recognition that may act as a second interpreter. It may assist medical experts in prescribing 
appropriate treatment due to the heterogeneous nature of treatment modalities.

In this study, the impediments mentioned above to HEs detection are incorporated. Modified adaptive 
gamma correction by employing gradient information adjusts the image’s brightness level for better contrast. The 
algorithm localizes prospective candidates with accurate locations using empirical image processing. This step 
eliminates redundant information and expedites the detection process by considering only those objects that are 
likely to be HEs. Besides, this localization process provides sufficient data by generating windows/patches for the 
training of the classification model. It helps to design a computer-aided design (CAD) that works efficiently for 
limited images. The HEs can be located anywhere with random sizes in the retinal region and surrounded by areas 
with different intensity profiles. Therefore, the novel smart window-based adaptive thresholding incorporates 
regional diversity and segments HEs regardless of their sizes and encompassing regions. Removing unrequired 
intensity information from the image makes the HEs classification task simple. Therefore, the shallow Hemor-
rhage net (HemNet) is designed to learn from deep features in the training stage and differentiates HEs from 
other retinal structures. Despite HemNet containing fewer deep layers, it is competitive with other deep models 
that are extensively deep. Its generalization capability is proven through synthetic experimentation, which shows 
that HemNet takes less training time and has higher evaluation metrics than other models.

The research work is organized as follows. Section one is the introduction and importance of the research 
problem. It illustrates the application of computer-aided design in ophthalmology, the impediments to detecting 
the HEs, and how difficulties are addressed to identify HEs automatically. Section two is the review of relevant 
methods proposed by the research community. Section three explains the propounded preprocessing stage for 
quality enhancement and discusses the estimation of prospective HEs candidates. Then the segmentation tech-
nique is explained thoroughly to generate sufficient windows/patches for training a novel HemNet. “Experimental 
results” section is about experimentation design and compares deep models using evaluation metrics. It also 
includes synthetic experimentation to validate the performance of HemNet. Section five is the conclusion and 
contains the points for future consideration.

Related Work
Li et al.10 comprehensively review fundus photography’s deep learning applications. It has been reported that 
training convolution neural networks (CNN) is time-consuming. Khojasteh et al.11 use probability maps provided 
by the SoftMax layer for retinal abnormalities classification. Enhancement and segmentation are performed, and 
then annotated patches train CNN. A trained classifier analyzes testing data where the probability map identifies 
the DR symptoms. In this study, 18,882 HEs-related examples are utilized for network training, which requires 
a long time to train CNN. A fully automated HEs detection method is presented by Lehmiri and Shmuel12. Vari-
ational mode decomposition processes retinal fundus images to obtain high-frequency components. Four sets 
of texture features train a classifier that discriminates healthy from unhealthy images. Short processing time 

Figure 1.   Stages of diabetic retinopathy in fundus images (a) Normal image (b) NPDR (c) PDR.
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with higher accuracy is reported. Orlando et al.13 detected red lesions using hand-crafted and deep features. The 
augmented ensemble vector and random forest (RF) classifier identify red lesions in fundus images. Three RF 
classifiers are trained using ensemble vector, hand-crafted, and deep features, and their performances are com-
pared. Son et al.14 develop a method for the simultaneous detection of retinal pathologies that include HEs. A 
large amount of data trains CNN, and results are compared with ophthalmologists’ manual annotations of retinal 
fundus images. CNN architecture provides probability and a heatmap, which is a normalized single-channel 
low-resolution image. This image contains lesions identified by the algorithm and is superimposed onto the 
original image to highlight lesions. Most importantly, the classification result correlates with the gray values of 
the heatmap to identify the locations. Gayathri et al.15 devised a novel CNN architecture to extract features from 
the retinal fundus images. Extracted deep features train various classifiers like support vector machine (SVM), 
AdaBoost, Naïve Bayes, RF, and J48. These classifiers are evaluated using specificity, precision, recall, false positive 
rate (FP), Kappa-score, and accuracy. The performance of the J48 classifier with the proposed feature extraction 
model is the best among all classifiers. Hacisoftaoglu et al.16 developed an automated diagnostic model specially 
designed for low-quality images captured using smartphones’ small field of view (FOV). The transfer learning 
approach employs well-known architectures of Alexnet, Googlenet, and Resnet50. These CNN models evaluate 
the effects of single, cross, and multiple datasets. The proposed Resnet50 model is applied to smartphone-based 
synthetic images, evaluated on an independent dataset, and yields promising results. Qureshi et al.17 propounded 
a label-efficient CNN called active deep learning (ADL-CNN) using expected gradient length (EGL). ADL-CNN 
selects critical samples by using ground truth labels for feature extraction. Then, retinal pathologies are seg-
mented and graded according to severity levels. Hemanth et al.18 propounded a compound of image processing 
and a deep learning-based hybrid method for DR diagnosis. Image quality is enhanced using histogram equali-
zations. Each channel of a color image is enhanced and concatenated to improve quality. The sizes of images are 
normalized to 150 × 225 for the CNN classification stage. Four hundred retinal fundus images of the MESSIDOR 
dataset are used for validation, and the algorithm reports promising results.

Training CNN is time-consuming, and obtaining high accuracy is a challenging task. Some techniques 
increase classification metrics and reduce training time using various approaches. The first approach estimates 
required objects that are more likely to be objects of interest. The second approach includes and excludes train-
ing examples based on their contribution to classification. For instance, a two-stream red-lesions detection is 
proposed by Asiri et al.19. Regions of prospective candidates are extracted using vessel segmentation and mor-
phological operations to reduce computational complexity. This preprocessing step yields better results because 
it explores prospective candidates, enhancing accuracy in the classification stage. Pre-trained visual geometry 
group (VGGNet) is tuned for vessel and potential candidates’ segmentation. These candidates are classified 
using Faster RCNN, which provides promising results. Grinsven20 proposed a technique for HEs detection to 
expedite the training process. Training examples are heuristically sampled and misclassified negative samples are 
dynamically selected. Performances of trained CNNs using selective sampling and without selective sampling 
are evaluated. The method reduces a substantial number of epochs and provides promising classification results.

The proposed detection scheme ventures similar approaches presented earlier to reduce training complexity. 
First, prospective HEs candidates are estimated to eliminate irrelevant objects. It reduces the number of examples 
that are to be explored by CNN and expedites the detection process. Secondly, windows of fundus images are 
segmented to remove unrelated information before being provided to a CNN model. This step reduces intensities 
from the windows, and CNN extracts the features related to the HEs. Therefore, this research evaluates various 
CNN models trained on data from a small dataset.

Method
Dataset description.  Two datasets of DIARETDB121 and DIARETDB022 are employed for experimenta-
tion. The first dataset contains 89 fundus images, of which five are standard, and the rest have various retinal 
pathological symptoms. The second dataset contains 130 images, of which 110 have DR signs. These images are 
captured by the 50-degree field of view using a fundus camera under various illumination conditions. Figure 2 
depicts multiple steps of the propounded detection scheme.

Methodology.  Quality enhancement.  Qualities of retinal fundus images vary due to different illumination 
conditions. A rigorous visual inspection of images reveals that excess light provides over-saturation in some 
regions, the edges of required objects are blurry, and insufficient light produces dark regions. Therefore, the 
qualities of fundus images are enhanced to reduce the effects of low-quality characteristics of digital images. 
First, the contrast of an image is enhanced using contrast-limited adaptive histogram equalization (CLAHE)23.

An adaptive process is required to adjust brightness levels because some images have adequate brightness 
levels while some are dark. The brightness level is adjusted using gamma correction24,25, and the gradient value 
is used to produce the adaptivity. This process is applied to the individual color channel. Let ϕ be a threshold 
value that separates smooth regions from the edges of the Sobel gradient image and is considered as the bright-
ness interpretation of an image. Low correction is required when ϕ is large, which yields an adequate brightness 
level of the image. Conversely, high correction applies when ϕ is small, which reveals a low brightness level of 
the image. Therefore, γ is calculated by adjusting ϕ as:

(1)γ = α ∗
⌊ϕ × 100⌋

10
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where α is the brightness adjustment coefficient and used as α = 2. Equation (2) adjusts the brightness level of 
the image, where I ∈ {0, Imax} and Imax is the maximum intensity of an image.

Blurriness reduces texture and edge information in the image. The green component is sharpened using non-
linear unsharp masking to improve edge information. This method computes the intensity difference using the 
fuzzy relationship between focused and neighboring pixels in a 3× 3 window. Pixels are sharpened using non-
linear relationships depending on the luminance difference of the adjacent pixels26. The sample of the quality 
enhancement method is given in Fig. 2.

Seed points extraction.  The intended research work automatically detects HEs using seed points. Seed points 
highlight the locations of prospective HEs candidates. HEs share intensity information with blood vessels 
because of their similar appearances, and they are dark objects surrounded by bright regions. These characteris-
tics lead to the development of an inverted Gaussian-based matched filter27. The kernels of the matched filter are 
applied to enhance dark objects, including HEs. Kernels with 0◦ and 90° angles can be depicted in Fig. 3.

The matched filter effectively enhances HEs and blood vessels due to the strong correlation. However, it 
provides a low response to the intensity variations of the image due to a weak correlation. GLCM-based local 
cross-entropy thresholding28 removes the low response of the matched filter. This method estimates the intensi-
ties into background to the background (BB), foreground to foreground (FF), background to the foreground 
(BF), and foreground to background (FB), given a threshold value t  . BB and FF represent smooth regions, while 
BF and FB contain the information of edges. The edges do not contain substantial information; therefore, the 
entropies of BB and FF quadrants are used to find the optimum threshold value t∗ , successively.

The formation of HEs starts from the leakage of blood vessels, so some of them can be attached to the blood 
vessels. Their isolation is critical for the early detection of DR. Mathematical morphology analyzes the spatial 
structures. The morphological opening is applied to break the larger objects than structuring elements. A square 
structure element of size 11× 11 is used in our experiment. The image containing the seed points for subsequent 
segmentation is shown in Fig. 2.

(2)V
(

x, y
)

= Imax

(

I

Imax

)γ

Figure 2.   Illustration of the proposed detection technique.
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Image calibration.  HEs emerge at the retina’s vitreous humour, and the black background does not contain 
any information. Black background misleads the detection process for the HEs at the retina’s rim. Therefore, the 
illumination of the black background assists in automatic detection and reduces the search space. The median 
filter is applied on the green channel to suppress the random intensity variations on the black background then 
the image is binarized to get the retinal mask. The eroded mask is subtracted from the retinal mask to achieve the 
exact retinal boundary. The hand-crafted image is obtained by adding complimented retinal mask multiplied by 
the average gray value, retinal periphery, and the enhanced green channel. Figure 2 shows the calibrated image 
with a bright background where the retinal information is not undermined and is used for feature extraction.

SWAT segmentation.  Segmentation of two types of HEs is challenging and requires a highly strenuous and 
intelligent method. First, the HEs that are located at the retinal periphery blended with the dark background. 
Secondly, those are attached to the blood vessels. The black background has been illuminated using image cali-
bration that aids in performing segmentation at the retina’s border. Smart window-based adaptive thresholding 
(SWAT) can sense gray dissimilarity between HEs and blood vessels. It also provides adaptivity in segmentation 
to deal with the HEs encompassed by various regions. SWAT uses Otsu’s method for thresholding and finds the 
effectiveness value η using:

where η is the ratio of inter-region variance σ 2
B(τ

∗) to the total variance σ 2
T of the image. The value of σ 2

B(τ
∗) 

depends upon the selection of an appropriate number of regions ̺  in a window W
(

x, y
)

 . SWAT finds the optimum 
number of regions  ̺, iteratively using Eq. (4), that yields maximum effectiveness value η within the range 0–1 
and produces robustness in the segmentation process.  ̺generates a vector ϑ containing ̺ − 1 threshold levels. 
The window is binarized using Eq. 5.

HEs with bigger sizes are prioritized because they are more disastrous for eyesight than small HEs. Therefore, 
two more oversized objects are retained, and the rest are removed. This maneuver reduces the risk of false detec-
tion because dark shades are often bigger and may mislead the segmentation stage. Furthermore, the window 
originates from a seed point that probably belongs to a HE. This estimation criterion is proposed because seed 
points are extracted using the characteristics of HEs. Therefore, the object with a minimum distance is a HE, 
and the other one is removed by computing the Euclidean distance as:

where Ii
(

y
)

 and Ii(x) are the y and x spatial locations of the ith object, and i = {1, 2} . The object’s spatial locations 
assist in segmenting the complete HEs using SWAT. The size of the bounding box is increased to the particular 
directions according to the border pixels using the following relations:

(3)η =
σ 2
B(τ

∗)

σ 2
T

(4)ϑ =

{

̺ → ̺ + 1, if η < 0.8,AND̺ ≤ 20
stop, otherwise

(5)W1

(

x, y
)

=

{

0, ifW
(

x, y
)

> min(ϑ)
1, else

(6)di = min

√

{W1(xc)− Ii(x)}
2 +

{

W1

(

yc
)

− Ii
(

y
)}2

Figure 3.   Rotation of matched filters (a) kernel with 0° angle (b) kernel with 90° angle.
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where S is the search region to achieve automation in the detection process. The search region S restricts SWAT 
from searching within the image domain. The region S is obtained by extending the retinal mask eighty pixels 
wide in each direction. It provides sufficient space, especially for those HEs that reside at the retinal periphery. 
The vector Q contains binary variables q1, q2, q3, and q4 for corresponding left, top, right, and bottom border 
pixels. Equation 7 updates the vertices v1, v2, v3, and v4 of vector V  , accordingly. The window sample in Fig. 2 is 
used to train a classifier.

Training of deep network.  Some seed points belong to other retinal structures like blood vessels, dark shades, 
and intensity variations. SWAT segments and other retinal structures originated from those seed points and are 
redundant in our experiment. Therefore, it demands a classifier to discriminate HEs in the detection process. We 
propose a novel HE network (HemNet) that is shallower than conventional deep models and efficiently classifies 
HEs from other retinal structures. Our deep model contains nineteen individual layers, including input and out-
put layers. Table 1 elaborates on the architecture of the proposed HemNet and can be depicted visually in Fig. 4.

After segmenting the required objects using seed points, windows are extracted by the vector V  from an 
enhanced colored image. This colored data is labeled and transformed into HSV29 and CIE Lab30 color spaces 
inspired by the HEs detection using conventional features31. For instance, the edges of HEs are sharper than the 

(7)V =











v1 → v1 − 5, ifq1 = 1ANDv1 ∩ S
v2 → v2 − 5, ifq2 = 1ANDv2 ∩ S
v3 → v3 + 10, ifq3 = 1ANDv3 ∩ S
v4 → v4 + 10, ifq4 = 1ANDv4 ∩ S

Table 1.   The architecture of the proposed deep convolution network.

Layer type Layer name Kernel size Number of filters Stride length Output shape

Image input – – – – (256, 256, 3)

Convolution conv_1 11× 11 16 3 (86, 86, 16)

ReLU relu_1 – – – –

Batch normalization batchnorm_1 – – – (86, 86, 16)

Average pooling avgpool2d_1 2× 2 – – (86, 86, 16)

Convolution conv_2 5× 5 16 2 (43, 43, 16)

ReLU relu_2 – – – –

Batch normalization batchnorm_2 – – – (43, 43, 16)

Average pooling avgpool2d_2 2× 2 – – (43, 43, 16)

Average pooling avgpool2d_3 5× 5 – – ((43, 43, 16)

Batch normalization batchnorm_3 – – – (43, 43, 16)

Addition Addition – – – (43, 43, 16)

Convolution conv_4 11× 11 16 2 (22, 22, 16)

ReLU relu_4 – – – (22, 22, 16)

Batch normalization batchnorm_4 – – – (22, 22, 16)

Average pooling avgpool2d_4 2× 2 – – (22, 22, 16)

Fully connected Fc – – – (1, 1, 2)

SoftMax SoftMax – – – (1, 1, 2)

Classification output Classentropy – – – (1, 1, 2)

Figure 4.   Overview of Proposed HemNet.
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edges of the macula, so the first and second-order based gradient features distinguish HEs from the macula. 
The blood vessels are line-shaped retinal structures, and HEs are comparatively rounded-shaped elements. So, 
connected component-based shape features classify them. Color features discriminate the objects of interest 
from black shades in the green channel. Therefore, similar characteristics are transformed to train HemNet that 
models conventional features. Three channels are used to train the network: the green channel of RGB, the value 
channel of HSV, and the luminance channel of CIE Lab color spaces. In addition, surrounded regions of HEs are 
eliminated, and the segmented objects are used in the training so the deep network can effectively classify HEs 
from blood vessels and other retinal structures.

Experimental results
Experimental composition.  The machine with a 2.4 GHz Core-i5 processor, 16 GB RAM, and a single 
6 GB GPU is used for the implementation. The performance of our detection method is evaluated using the 
DIARETDB1 and the DIARETDB0 datasets. Images of the DIARETDB1 dataset that contain HEs are used for 
the training. Our proposed algorithm intends to detect HEs, and the interpretation of HEs from ground truths 
reveals that forty-five out of eighty-nine images contain hemorrhages. These forty-five images are separated 
into training and testing sets. The training set comprises twenty-five images, and the testing set includes twenty 
images. The training set is further divided into the training and validation sets. These examples are annotated 
using the ground truths. Twenty images of the DIARETDB1 dataset are tested randomly, and the results are com-
pared. Twenty images of the DIARETDB0 dataset are randomly taken to independently benchmark the algo-
rithm’s performance . The classification results are determined using sensitivity (SE), specificity (SP), accuracy 
(AC), and precision (P). AC is an effective measurement for evaluating models’ performance because it is a ratio 
of classified examples from the total number of samples32. These evaluation metrics are measured as follows:

Time is a critical factor for screening and diagnosing diseases using medical images. Deep networks are 
efficient but often take a long time to train. Insufficient training of networks reduces classification accuracy. 
Therefore, the proposed network is analyzed using training time versus classification accuracy by synthetic 
experimentations using two datasets. Image of concrete crack33 and Modified National Institute of Standards 
and Technology (MNIST)34 digits datasets benchmark the HemNet. Thirty thousand images of the concrete 
crack dataset are included, where training, validation, and testing sets consist of twenty thousand, five thousand, 
and five thousand, respectively. Ten epochs are used with a learning rate of 0.009 in this trial. This experiment 
is assessed using training time, validation accuracy, and testing accuracy, and their statistics are provided in 
Table 4. Ten thousand images of the MNIST digits dataset are employed for the second synthetic experiment. One 
thousand images are equally distributed for validation and testing. While eight thousand images train the net-
work using fifteen epochs and a 0.01 learning rate. The results of the digits classification are provided in Table 5.

Analysis of results.  The performance of HemNet was compared with the state-of-the-art CNN models for 
HE detection and classification. Despite the fact that HemNet was a shallower network, it provided competi-
tive results when compared with other deep networks like LeNet-535, AlexNet36, ResNet5037, and VGG-1638 on 
the DIARETDB1 dataset. The SE of the HemNet was closer to the SE of VGG16, which was the highest, stating 
the true positive detection rate of HEs. While HemNet marked 94.21% SE, which was higher than LeNet-5, 
ResNet50, and AlexNet. It shows that HemNet identifies most of HEs with low false-negative rate. Additionally, 
the 94.76% SP of HemNet was slightly less than AlexNet but greater than VGG-16 and LeNet-5. The difference 
in SP was negligible when comparing ResNet50 and the proposed model. SP shows the misclassification of 
some segmented objects as HEs but they do not belong to this class. AC of ResNet50 and AlexNet was 97.46% 
and 97.88% and were the highest, but HemNet scored 97.19%. This difference was negligible and not critical 
because the SE of the proposed HemNet is higher than ResNet50 and AlexNet. It shows truly classified HEs 
detection of the HemNet. The AC of HemNet was greater than VGG-16 and LeNet-5. AlexNet and the proposed 
model marked high P of 76.90% and 76.87%, respectively. These statistics validated the excellent performance of 
HemNet in terms of misclassification rates; false-positives and false-negatives. The classification results of vari-
ous deep learning models on DIARETDB1 are statistically compared in Table 2 and visualized in Fig. 5.

A SoftMax layer of a deep model normalizes each training data example into a probability distribution as a 
prediction score. These predicted probabilities can be distributed into regions by a threshold classification rule. 
The precision and recall values change with respect to threshold values. Therefore, it is critical to identify the 
optimum threshold. Using this evaluation criterion, the best classification model is considered to have a maxi-
mum area under the curve (AUC). The precision-recall (PR) curve plots the behavior of a deep model’s precision 

(8)SE =
TP

TP + FN

(9)SP =
TN

TN + FP

(10)P =
TP

TP + FP

(11)AC =
TP + TN

TP + TN + FP + FN
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and recall over threshold values ranging from 0.0 to 1.0. Figure 6a shows the responses of LeNet-5, AlexNet, 
ResNet50, VGG-16, and proposed HemNet on the DIARETDB1 dataset. The AUC of the proposed HemNet 
was 0.988, closest to the optimum AUC of 0.991 provided by AlexNet. The plot shows the worst performance of 
VGG-16 with AUC of 0.826. Similarly, AlexNet and HemNet yielded the highest AUC in the receiver operating 
characteristic (ROC) curves of deep models can be depicted in Fig. 6b.

Discussion
The outcomes of the proposed HemNet model are also encouraging when independently benchmarked on the 
DIARETDB0 dataset. Effectively, the HemNet marked the highest SE of 90.98% among all the deep networks. 
However, its SP was less than AlexNet and ResNet50 but higher than VGG-16 and LeNet-5. AC of HemNet was 
97.12%, which was also the highest and closer to AlexNet’s 97.08%. Conversely, ResNet50 and AlexNet outclassed 
the proposed network by scoring the P of 87.25% and 89.58%, respectively. While HemNet marked 86.43% P, 

Table 2.   Classification of HEs using various models on the DIARETDB1 Dataset.

Methods SE (%) SP (%) AC (%) P (%)

VGG-16 95.88 94.87 94.93 54.69

LeNet-5 89.35 96.69 96.13 69.42

ResNet50 92.24 97.81 97.46 73.86

AlexNet 92.21 98.24 97.88 76.90

Proposed HemNet 94.21 97.46 97.19 76.87

Figure 5.   Comparison of deep models with proposed HemNet Network on DIARETDB1 Dataset.

Figure 6.   Comparison of Deep Models on the DIARETDB1 Dataset (a) PR curves (b) ROC curves.
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which was greater than LeNet-5 and VGG-16. The classification results of various deep learning models on 
DIARETDB0 are statistically compared in Table 3 and pictorially depicted in Fig. 7.

The assessment of training time with classification accuracy is problematic because it is laborious due to 
complex HEs detection applications and cannot be justified. Therefore, this criterion was analyzed using synthetic 
images by freezing parameters like learning rate and epochs in training. Table 4 explains the results of various 
deep networks on the concrete crack dataset. Ten epochs were fixed so that the convergence rate could also be 
assessed. It can be seen from the statistics, the propounded network’s training time was the lowest, which is 
11.19 min, but validation and testing accuracies were lower than AlexNet, ResNet50, and VGG-16. The conver-
gence rate of VGG-16 was the highest as it scored 99.70% and 99.50% validation and testing accuracies within the 
ten epochs. VGG-16 outperformed all other deep models in terms of validation and testing accuracies. However, 
it took 16.56 min which was more than the 11.19 min of HemNet. Although, the differences in accuracies were 
not substantial because they could be increased by slightly increasing the epochs.

Table 5 elaborates the performances of deep models using the MNIST dataset. The training time of pro-
pounded HemNet was 2.33 min which was the minimum, and it scored 99.70 validation and testing accuracies. 
VGG-16 marked 100% validation accuracy and 99.90 testing accuracy, slightly higher than HemNet. However, 
its training time was 6.59 min, more than 2.33 of HemNet. The performance metrics of deep models can be 
observed in Table 5.

Table 3.   Classification of HEs using various models on the DIARETDB0 dataset.

Methods SE (%) SP (%) AC (%) P (%)

VGG-16 89.10 96.95 96.01 80.07

LeNet-5 83.72 97.18 95.57 80.15

ResNet50 86.41 98.27 96.84 87.25

AlexNet 84.17 98.74 97.08 89.58

Proposed HemNet 90.98 97.98 97.12 86.43

Figure 7.   Comparison of Deep Models with Proposed HemNet Network on DIARETDB0 Dataset.

Table 4.   Analysis of deep models using time versus classification accuracy on concrete crack dataset.

Method Time (min) Validation accuracy (%) Testing accuracy (%)

LeNet-5 32.50 86.04 86.84

AlexNet 22.15 98.76 98.44

ResNet50 30.57 98.56 98.34

VGG-16 16.56 99.70 99.50

Proposed HemNet 11.19 96.28 95.92
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Conclusion
The statistics of health organizations from various regions of the world indicate the proliferation of Diabetic 
retinopathy patients in the future. The insufficient medical resources and time-consuming treatment modali-
ties would be unable to manage the outbreak. Furthermore, the ophthalmologist’s involvement in the screening 
process and manual inference of the pathology causes adverse effects on the eye due to human error. It demands 
computer-based algorithms to expedite the screening process and to prevent the side effects of human interpret-
ability. Additionally, these methods can assist in automating the diagnosis process, making it more efficient and 
less reliant on human interpretation.

This research has demonstrated automatic hemorrhage detection for screening Diabetic retinopathy using a 
novel hemorrhage network. The detection process is intelligent because it first estimates the prospective hemor-
rhage’s locations which are imperative to infer the severity level of the ailment. The estimation process generates 
the data that suffices to deal with the limited data for training a deep model. The propounded network provides 
promising results while reducing training time significantly. A very deep network may not produce good results 
for some applications, as the experiment suggests that AlexNet and the proposed network are shallow but provide 
the highest results. Their overall performance is the best among all comparing networks. VGG-16 scored the best 
results for simple concrete crack and MNIST datasets. Its convergence rate is the highest. Conversely, its results 
are worse when applied to complex HEs classification problems. The reason might be the oscillation around the 
optimum solution due to the excess convergence rate. Therefore, it can be deduced that increasing the network’s 
layer may not guarantee good results rather than increasing the training time. The arrangement of deep layers 
and the appropriate selection of parameters are crucial for enhancing the network’s metrics.

The rigorous assessment of the propounded method reveals that the proposed detection scheme depends on 
seed point extraction. The constituent hemorrhage cannot be detected if a seed point is eliminated during the 
extraction phase. The parameters of the gaussian matched filter are empirically selected and should not be greater 
than the cross-section of the main artery. However, manual parameter selection may have adverse effects on the 
detection process. Therefore, the cross-section of the main artery could be automatically estimated for the robust 
selection of matched filter parameters and is proposed for future considerations. The feed-forward strategy in 
the architecture of a deep model might be effective for many applications, as represented by HemNet. Further 
experimentation needs to be conducted to evaluate the effects of feed-forward on deep networks. However, 
encouraging evaluation metrics of HemNet have been presented that show the efficacy of HemNet for hemor-
rhage detection. It is intended to conduct extensive experimentation for assessing this concept in the future.

Data availability
Publicly available datasets were analyzed in this study. The datasets can be found here: https://​www.​it.​lut.​fi/​proje​
ct/​image​ret/​diare​tdb1/​index.​html, https://​www.​it.​lut.​fi/​proje​ct/​image​ret/​diare​tdb0/​index.​html.
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