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Triphenylphosphonium conjugated 
gold nanotriangles impact Pi3K/
AKT pathway in breast cancer cells: 
a photodynamic therapy approach
Nadar Manimaran Vinita 1, Umapathy Devan 2, Sabapathi Durgadevi 1, Selvaraj Anitha 1, 
Dhamodharan Prabhu 3, Sundarraj Rajamanikandan 3,4, Muthusamy Govarthanan 5,6, 
Ananthanarayanan Yuvaraj 7, Muniyandi Biruntha 1, Arockiam Antony Joseph Velanganni 2, 
Jeyaraman Jeyakanthan 8, Pitchan Arul Prakash 9, Mohamed Sultan Mohamed Jaabir 9 & 
Ponnuchamy Kumar 1*

Although gold nanoparticles based photodynamic therapy (PDT) were reported to improve efficacy 
and specificity, the impact of surface charge in targeting cancer is still a challenge. Herein, we 
report gold nanotriangles (AuNTs) tuned with anionic and cationic surface charge conjugating 
triphenylphosphonium (TPP) targeting breast cancer cells with 5-aminoleuvinic acid (5-ALA) based 
PDT, in vitro. Optimized surface charge of AuNTs with and without TPP kill breast cancer cells. By 
combining, 5-ALA and PDT, the surface charge augmented AuNTs deliver improved cellular toxicity as 
revealed by MTT, fluorescent probes and flow cytometry. Further, the 5-ALA and PDT treatment in the 
presence of AuNTs impairs cell survival Pi3K/AKT signaling pathway causing mitochondrial dependent 
apoptosis. The cumulative findings demonstrate that, cationic AuNTs with TPP excel selective 
targeting of breast cancer cells in the presence of 5-ALA and PDT.

Despite significant lab and clinical research, the prevalence of breast cancer continues to rise, inflicting misery 
on  women1,2. As a result, low- and middle-income countries face several obstacles in cancer detection, diagnosis, 
and their related  therapies3–5. Hence, providing patients with effective drugs that minimize harmful effects is the 
need of the hour. To combat this issue, nanotechnology has emerged as a superior platform for the simultaneous 
delivery of  drugs6–9.

In this journey, therapeutic nanoparticles selectively target tumors, enhance anticancer effectiveness and 
circumventing drug  resistance10–12. For instance, gold nanoparticles are among the most promising agents for 
cancer treatment due to these reasons; (i) small and capable of selectively penetrating cancer cells through the 
enhanced permeability and retention (EPR)  effect13,14 (ii) their ability to bind proteins and drugs in targeting 
cancer cells that possess cell surface  receptors15,16 (iii) can absorb light radiations and provide better contrast 
images than conventional  agents17,18.

Over the last few decades, gold nanoparticles have been conjugated with various functionalizing moieties, 
including ligands, therapeutic agents, DNA, amino acids, proteins, peptides, oligonucleotides,  etc19–22. Recently, a 
research study demonstrated the utilization of PEG ligands with gold nanoparticles to functionalize doxorubicin 
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(DOX) at low  pH23. Similarly, phthalocyanines were functionalized on the surface of gold nanoparticles for 
efficient oxygen  production24.

A few research has also shown that gold nanoparticles of varying shapes may display compelling surface 
plasmon resonance when exposed to  light25,26. Considering the fact, photothermal ablation using gold nano-
particles has been tested on various target cells, including  cancer27–29. Moreover, light-induced heating may be 
utilized to release therapeutic drugs coupled with gold  nanoparticles30. Altogether, it has been shown that gold 
nanoparticles may be employed successfully in photodynamic therapy (PDT), in which light is used to promote 
localized singlet oxygen  production31,32.

In view of the above, the most popular choice for PDT with gold nanoparticles is 5-aminolaevulinic acid 
(5-ALA), a naturally occurring amino acid. Recent studies have shown that PDT using nanoparticles coated with 
5-ALA causes minimal harm to fibroblasts and kills cancer cells  effectively33. In addition, PDT of K562 cells with 
5-ALA linked gold nanoparticles was also shown to be  efficient34. Likewise, PDT involving 5-ALA with gold 
nanoparticles results in a significant decrease in cancer  cells34.

In the meanwhile, targeting essential cellular organelles can boost the therapeutic index of PDT by enhancing 
its  efficacy35–38. To achieve this, mitochondria are considered a potential therapeutic target for several diseases, 
including  cancer39,40. This is possible by conjugating exogenous molecules to the surface of gold nanoparticles. 
For example, utilizing lipophilic cationic molecules (such as triphenylphosphonium, TPP) may act selectively on 
mitochondria can be considered for cancer  therapy41. A recent study has shown that nanoparticles functionalized 
with TPP target CHO and HeLa cells for sub-cellular  imaging42. Similarly, increased PDT has been accomplished 
by targeting breast cancer cells with gold nanoparticles incorporating  TPP43.

In light of the above, the present study attempt to synthesize gold nanotriangles (AuNTs) with positive and 
negative surface charges followed by TPP functionalization for PDT in the presence of 5-ALA. In addition, the 
molecular mechanism that drives the demise of breast cancer cells was also explored. To our knowledge, this is 
the first-time mitochondria have been targeted precisely using AuNTs@TPP with enhanced effectiveness of PDT.

Materials and methods
Chemicals. Sigma-Aldrich, India provided Chloroauric acid  (HAuCl4.3H2O), cetyltrimethylammonium 
chloride (CTAC), sodium poly(styrene sulfonate) (PSS, Mw: 70 kDa) and methyltriphenylphosphonium bro-
mide. HiMedia Laboratories India provided cell cultured based media and chemicals. Primers and antibodies 
used in the study were received from Eurofins and Cell-signaling technologies. India, respectively.

Instruments. Optical studies were conducted in UV–vis spectrophotometer (Evolution, 201, Thermo, 
USA), Fourier transform infrared (FTIR, Nicholet is5, Thermo, USA), Fluorescence spectroscopy (HORIBA 
Fluromax 4, USA), Micro-Raman spectroscopy (Seiki, Japan) and Inductively coupled plasma emission spec-
troscopy (ICPE-9800 series). Diffraction pattern based studies were carried out in X-ray diffraction (X’Pert 
Pro-PAnalytic, UK), X-ray photoelectron (XPS, PHI-VERSAPROBE III, USA) and Energy dispersive X-ray 
spectroscopy (EDS, TESCAN OXFORD). Surface morphology of nanomaterials were ascertained by High-res-
olution-transmission electron microscope (HR-TEM, Joel-2100) attached with selected area energy diffraction 
(SAED). The hydrodynamic diameter and zeta potential was carried out by Zetasizer, Nano-Zs90, Malvern, UK.

Synthesis of gold nanotriangles (AuNTs). In the present study, cationic AuNTs (CTAC©AuNTs) were 
prepared according to the method outlined by Bhattarai et al.44. Further, the surface charge was modified by 
allowing anionic PSS (2 mg/mL in 6 mM NaCl) to react with CTAC©AuNTs (50 µg/mL), thereafter centrifuging 
at 12,000 rpm for 15 min to remove excess unbound PSS. The obtained CTAC©AuNTs and PSS@CTAC©AuNTs 
were stored at 4 °C until before use. The concentration of AuNTs prepared in this study was determined using 
ICP-OES analysis.

Development of gold nanoconjugates. To facilitate conjugation, two types of surface charge-impreg-
nated gold nanotriangles (CTAC©AuNTs and PSS@CTAC©AuNTs) were allowed to react with TPP (0–300 µg/
mL) for 3   h45. After the completion of the reaction, the unbound TPP was separated using centrifugation at 
12,000 rpm for 15 min. The final product thus obtained was redispersed in 2 mL of sterile distilled water and 
stored (4 °C) for further use. In addition, high-throughput characterization of the conjugated entities was per-
formed to evaluate their loading efficiency and surface charge. In our study, TPP means thiolated-TPP which 
was synthesized following the methodology of Yang et al.43.

Cell culture. The cells used in the study were purchased from National Centre for Cell Science (NCCS), Pune, 
India. The obtained cells were cultured in Dulbeco’s modified eagle’s medium (DMEM) with 10% fetal bovine 
serum  (FBS) and 1% antibiotics (Streptomycin/Penicillin) under a humidified environment (37  °C with 5% 
 CO2) for various assays and then harvested using trypsinization.

Cell cytotoxicity assay. In the present study, the cytotoxicity of gold nanoconjugates (CTAC©AuNTs 
and PSS@CTAC©AuNTs) for 24 h were assessed by MTT assay against breast cancer cells (MCF-7 and MDA-
MB-231)46.

PDT treatment. For PDT treatment, the normal and cancer cells were incubated with photo-sensitizer, 
5-ALA (0.5 mM) for 4 h in serum free media. After incubation, the media containing 5-ALA was replaced with 
fresh serum free media and nanoconjugates (TPP-CTAC©AuNTs and TPP-PSS@CTAC©AuNTs). Subsequently, 
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the cells with nanoconjugates were irradiated using a halogen lamp for 1 min and incubated for 24 h. After 24 h, 
MTT assay was performed to study the effect of  PDT46. Similar experiments were carried without irradiation to 
authenticate PDT efficiency.

Cytotoxicity assay. The cytotoxicity of gold nanoconjugates on breast cancer cells (MCF-7 and MDA-
MB-231) was evaluated by MTT assay for 24 h in a dose-dependent manner. In addition, the percentage of cell 
viability was calculated by measuring absorbance at 595 nm using a microtiter plate reader (BIORAD, USA). In 
addition, HEK-293 cells were used to assess the biocompatibility of gold nanoconjugates.

Detection of apoptosis utilizing fluorescent probes. To assess the morphological alterations in breast 
cancer cells (MCF-7 and MDA-MB-231) during the event of apoptosis, fluorescent probes such as Acridine 
Orange/Ethidium bromide (AO/EtBr, dual), Hoechst 33342 (nuclear), propidium iodide (PI), Rhodamine 123 
(mitochondrial membrane potential, ΔΨm) and 2′,7′-Dichlorofluorescein diacetate (DCFH-DA, Reactive Oxy-
gen Species) staining was performed upon treatment with various gold nanoconjugates. Fluorescence micro-
scopic studies were recorded using an Accu-Scope EXI-310 microscope.

PpIX formation. In the present study, the intracellular PpIX was measured in breast cancer cells (MCF-7 
and MDA-MB-231) using a serum free medium containing gold nanoconjugates and 0.5 mM 5-ALA, followed 
by irradiation. Cultures without treatment were used as control. The PpIX kinetics was measured using a micro-
titer plate reader at different time intervals based on the methodology reported  elsewhere43.

Cell cycle analysis. The cell cycle pattern alteration in breast cancer cells (MCF-7 and MDA-MB-231) was 
studied by using a flow cytometer in the presence of PI. After 24 h, PDT-treated cells were fixed (4 mL ice-cold 
ethanol), stained (0.5 mL of PI), and subjected to flow cytometric measurements.

Annexin-V FITC/PI apoptosis assay. After PDT, the progression of apoptosis in breast cancer cells 
(MCF-7 and MDA-MB-231) was ascertained by employing the Annexin V-FITC kit. First, the breast cancer cells 
were harvested and washed with PBS (thrice), and about 5 µL of Annexin-V-FITC reagent was added, followed 
by incubation for 10 min dark. Later, the cells were washed with PBS and resuspended in binding buffer (190 µL) 
and propidium iodide (10 µL) solution. Finally, the obtained mixture was instantly subjected to flow cytometer 
analysis followed by data processing.

Co-localization experiment. Micro-raman analysis was performed to ascertain the co-localization of 
TPP within the breast cancer  cells43. Briefly, the cells treated with gold nanoconjugates in petri dishes were 
subjected to Raman spectroscopy in PBS between 300 and 4500  cm−1. All spectra are baseline corrected for PBS 
solution and petri dish glass bottom.

Gene expression studies. After PDT, the mRNA from breast cancer cells (MCF-7 and MDA-MB-231) 
was extracted using a Trizol  reagent47. cDNA was constructed using PrimeScript 1st strand cDNA Synthesis kit 
one-step RT-PCR (Takara, Japan). Next, the cDNA was amplified using genes for which the details of the primers 
were listed in Supporting Information SI, Table. 1. The final product was subjected to electrophoresis, and gels 
were visualized using GE Image Quant LAS 500, USA, followed by quantification of band intensity by ImageJ 
Software.

Western blot analysis. Following PDT therapy, breast cancer cells (MCF-7 and MDA-MB-231) treated 
with gold nanoconjugates were subjected to western blot analysis to examine their protein  levels47. Proteins 
were extracted, quantified, separated (on a 12% gel), and transferred to a nitrocellulose membrane (50 mV for 
1 h).The nitrocellulose membrane was then blocked (5% BSA in TBA for 2 h), incubated with the primary anti-
body for 12 h, and washed three times in tris-buffered saline with 0.2% Tween-20 (TBST, every 10 min). After 
washing, the nitrocellulose membrane was further incubated with a secondary antibody (for 1 h) before being 
washed (three times) with TBST. Chromogenic chemicals were used to develop the blots, and a GE Image Quant 
LAS 500, USA, was used for visualization. In addition, ImageJ software was used to analyze the band’s intensity 
quantitatively.

Statistical analysis. All experiments carried out in our study were repeated at least three times (Mean ± SE). 
Using two-way ANOVA, a p-value of experiments was carried out at a 5% confidence level using GraphPad 
Prism 8 software.

Result and discussion
Synthesis of positively charged gold nanotriangles (CTAC©AuNTs). In the present study, posi-
tively charged AuNTs were produced by a seed-mediated method based on the Murphy preparation of AuNTs, 
which includes an intermediate and final growth  solution44. The following are the outcomes of blending two 
reaction mixtures: Fig. 1a illustrates the UV–vis absorption spectra of the initial seed solution prior to the syn-
thesis of CTAC©AuNTs (0–1 min). When the growth solution is added, a distinct surface plasmon resonance 
(SPR) at 548 nm designates the growth of CTAC©AuNTs between 2 and 16 h, as shown in Fig. 1a. High resolu-
tion—transmission electron micrograph (HR-TEM) shows the synthesis of highly pristine CTAC©AuNTs with 
sizes varying from 20 to 25 nm (Fig. 1b and c). The selected area electron diffraction (SAED) pattern shows 
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two concentric face-centred cubic (FCC) rings that correspond to the crystal planes for gold at (111) and (200) 
(Fig. 1d). At the same time, the XRD diffraction peaks of CTAC©AuNTs exhibit FCC crystalline phase with 
JCPDS No. 04-0784 (Fig. 1e). Figure 1f represents high-resolution XPS spectra which disclose the presence of 
doublet peaks for gold with binding energies of 82.28 and 85.99 eV, corresponding to Au4f 7/2 and Au4f 5/2, 
respectively. Energy-dispersive X-ray (EDX) analysis (Fig. 1g) also confirms the existence of signals from gold. 
The capping of CTAC on the surface of AuNTs provided a positive surface charge of + 33 ± 2.9 mV (Fig. 1h). The 
hydrodynamic diameter of CTAC©AuNTs was 50.33 ± 6.69 nm (Fig. 1i). These findings were consistent with 
previous studies on the nucleation of CTAC©AuNTs44,48.

Synthesis of negatively charged gold nanotriangles (PSS@CTAC©AuNTs). In this section, an 
anionic surfactant polystyrene sulfonate (PSS) was coated onto the surface of CTAC©AuNTs to yield nega-
tively charged AuNTs (PSS@CTAC©AuNTs)45. UV–vis absorption spectral analysis confirms the conjugation 
of PSS onto the surface of CTAC©AuNTs with a redshift in surface plasmon resonance (650  nm) (Fig.  2a). 
HR-TEM analysis of PSS@CTAC©AuNTs revealed a similar structure to CTAC©AuNTs with an increased 
size (25–30 nm) due to coating with PSS (Fig. 2b and c). SAED pattern confirmed the crystallinity of PSS@
CTAC©AuNTs with reference to FCC gold rings at (111), (200), (220), and (311) (Fig. 2d). The XRD measure-
ment of PSS@CTAC©AuNTs (Fig. 2e) with JCPDS No. 04-0784 is well in agreement with SAED studies. XPS 
analysis surmounts a shift in binding energy for PSS@CTAC©AuNTs at 82.25 and 85.85 eV for gold (Fig. 2f). 
The EDX measurement of PSS@CTAC©AuNTs validates the occurrence of metallic gold (Fig. 2g). Undeniably, 
the coating of PSS on the surface of CTAC©AuNTs provides a negative surface charge value of − 42.9 ± 9.88 mV 
(Fig. 2h) with an average hydrodynamic diameter of 51.64 ± 5.79 nm (Fig. 2i). Meanwhile, the polyelectrolyte 
coating of PSS provides better stability and biocompatibility for the  AuNTs49. However, the toxicology aspect of 
CTAC©AuNTs and PSS@CTAC©AuNTs needs to be addressed. The results from the study are consistent with 
earlier reports on the preparation of gold nanorods using a  PSS45.

Figure 1.  Optical and structural characterization of CTAC©AuNTs in DI water. (a) UV–vis absorption spectra 
at three different reaction times (0–1 min, 2 h, and 16 h). (b, c) TEM and HR-TEM micrographs. (d) SAED 
pattern. (e) X-ray diffraction pattern (JCPDS No. 04-0784). (f) A typical XPS spectrum. (g) Elemental mapping 
by EDAX. (h) Apparent zeta potential value (+ 33 ± 2.9 mV). (i) Size distribution by intensity (50.33 ± 6.69 nm).
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Conjugation of TPP on the surface of AuNTs. In this study, a zwitterion  Ph3P+(CH2)3SH- (so-
called, thiolated-TPP) was conjugated onto the surface of positive (CTAC©AuNTs) and negatively (PSS@
CTAC©AuNTs) charged gold  nanoparticles43. The conjugation of TPP onto the surface of CTAC©AuNTs 
and PSS@CTAC©AuNTs is monitored by UV–vis absorption spectroscopy (Fig. 3a,b). An apparent increase 
in peak upon increasing concentration of TPP (0–300 μg/mL) at 229 nm for both CTAC©AuNTs and PSS@
CTAC©AuNTs infers successful  conjugation47,50. Based on this, the loading efficacy (n = 3) of TPP on the surface 
of CTAC©AuNTs and PSS@CTAC©AuNTs was found to be 96.93% and 96.36% (Fig. 3c,d).

Further, the conjugation of TPP onto the surface of CTAC©AuNTs and PSS@CTAC©AuNTs is ascertained by 
FTIR spectroscopy. For CTAC©AuNTs (Fig. 4a), the broadband at 3466  cm−1 can be assigned to –OH stretch in 
H-bonded water. A weak signals at 2920 and 2848  cm−1 an be ascribed to the –CH2 stretch of the CTAC  chain51. 
The peaks observed between 1600 and 1400  cm−1 results from the deformation vibrations of –CH3 and  CH2 
groups. A strong peak at 720  cm−1 is designated to the existence of –CH3 and –CH2  groups51 on the surface of 
AuNTs. Upon conjugation with TPP (Fig. 4c), a reduction in the signature peaks for CTAC is noticed. In addition, 
authenticated peaks for TPP between 1600 and 1100  cm−1 corresponding to a carbonyl group (C=O) is observed, 
confirming the successful conjugation (Fig. 4c). SI, Fig. 1 shows the FTIR spectrum of TPP.

In the meantime, FTIR analysis claimed the existence of functional groups for PSS on the surface of 
CTAC©AuNTs (Fig. 4b). Based on the results, it is confirmed that the capping of CTAC and PSS on the surface 
of AuNTs provides precise interaction with TPP (Fig. 4d). Furthermore, a few characteristics peak unveiled by 
FTIR is in concise with earlier reports for the existence of  PSS52 weak signals at 2921 and 2834  cm−1 designate 
the presence of CTAC with –CH2 stretch; peaks at 2106 and 1640  cm−1 infer the in-plane skeletal vibrations of 

Figure 2.  Optical and structural characterization of PSS@CTAC©AuNTs in DI water. (a) UV–vis absorption 
spectra at various time intervals (0–180 min). (b, c) TEM and HR-TEM micrographs. (d) SAED pattern. (e) 
X-ray diffraction pattern (JCPDS No. 04-0784). (f) A typical XPS spectrum. (g) Elemental mapping by EDAX. 
(h) Apparent zeta potential value (− 42.9 ± 5.45 mV). (i) Size distribution by intensity (51.643 ± 8.8 nm).
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benzene ring; the peaks at 1546 and 1451  cm−1 defines the symmetric and asymmetric vibrations of -SO3 group; 
the existence peaks at 669  cm−1 infers the existence of C-H aromatic stretching vibrations. However, the conjuga-
tion of TPP with PSS@CTAC©AuNTs is consistent with TPP-CTAC©AuNTs based on the peaks for the carbonyl 
group (C=O) between 1600 and 1100  cm-1.

We presume that, a non-covalent interaction (electrostatic and hydrogen bonding) between TPP and two dif-
ferent surface-charged AuNTs can  exist47,50. Before conjugation, the surface charge of CTAC©AuNTs and PSS@
CTAC©AuNTs was found to be + 33 ± 10.9 and − 42.9 ± 9.88 mV, respectively (Figs. 1h, 2h). However, a change in 
surface charge for both TPP-CTAC©AuNTs (23.9 ± 3.93 mV) and TPP-PSS@CTAC©AuNTs (− 28.4 ± 4.93 mV) 
(Fig. 5a,b) is noted inferring successful conjugation. Meanwhile, an increased hydrodynamic diameter assumes 
the contact of TPP with CTAC©AuNTs (48.50 ± 2.60 nm) and PSS@CTAC©AuNTs (110.7 ± 2.41 nm) (Fig. 5c,d). 
We also noticed that the TPP-CTAC©AuNTs and TPP-PSS@CTAC©AuNTs were stable in Milli-Q-water and 
PBS (SI, Table 2). Based on the above, it is clear that both TPP-CTAC©AuNTs and TPP-PSS@CTAC©AuNTs 
can be further taken for biomedical application.

Cytotoxicity assay. To assess the cell viability of CTAC©AuNTs, PSS@CTAC©AuNTs, TPP, TPP-
CTAC©AuNTs, and TPP-PSS@CTAC©AuNTs were subjected to MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphe-
nyl tetrazolium bromide) assay to measure the total mitochondrial activity, which is directly proportional to 
the number of viable  cells47,50. In our study, all the compounds caused dose-dependent cell death in MCF-7 and 
MDA-MB-231 breast cancer cell lines (SI, Table 3). TPP-CTAC©AuNTs had a higher cytotoxicity than TPP-
PSS@CTAC©AuNTs > CTAC©AuNTs > PSS@CTAC©AuNTs > TPP. Furthermore, the cytotoxicity of the above 
compounds against normal human embryonic cells (HEK-293) is lower than that of cancer cells, as shown in 
SI, Table 3. It is also noted that nanomaterial’s surface charge might play a pivotal role in killing breast can-
cer  cells53,54. Based on the results, positively charged materials were more cytotoxic than negatively charged 
 components43.

Figure 3.  UV–vis absorption spectra of TPP conjugation on the surface of TPP-CTAC©AuNTs (a) and TPP-
PSS@CTAC©AuNTs (b). A linear plot displaying absorbance of TPP measured at 229 nm upon conjugation 
with CTAC©AuNTs (c) and PSS@CTAC©AuNTs (d).
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Cellular PDT measurement. The PDT effect of TPP-CTAC©AuNTs and TPP-PSS@CTAC©AuNTs against 
normal (HEK-293) and cancer cells of the breast (MCF-7 and MDA-MB-231) was measured by incubating the 
cells in media containing 0.5 mM 5-ALA  solution43. Later, the media containing 0.5 mM 5-ALA was thoroughly 
removed, followed by the treatment with CTAC©AuNTs, PSS@CTAC©AuNTs, TPP, TPP-CTAC©AuNTs, and 
TPP-PSS@CTAC©AuNTs. As a prerequisite for PDT therapy, the cells were immediately exposed to a halogen 
light for 1 min before being incubated in a  CO2 incubator for evaluating cytotoxicity by MTT assay after 24 h. Fur-
ther, the MTT assay confirmed that the irradiating cells with TPP-CTAC©AuNTs and TPP-PSS@CTAC©AuNTs 
exposed to 5-ALA (0.5 mM) showed increased cytotoxicity compared to non-radiated cells (SI, Table 4). In addi-
tion, the effect of IR-TPP-CTAC©AuNTs and IR-TPP-PSS@CTAC©AuNTs against normal cells (HEK-293) was 
found to be minimal. The study also noted that IR-TPP-PSS@CTAC©AuNTs have a substantially better killing 
effect than IR-TPP-CTAC©AuNTs. Our findings are consistent with previous reports on surface charge-based 
PDT  measurement32,43. On the contrary, the exact killing mechanism of IR-TPP-CTAC©AuNTs and IR-TPP-
PSS@CTAC©AuNTs requires further investigation.

Morphological analysis utilizing fluorescent probes. To investigate the effect of IR-TPP-
CTAC©AuNTs and IR-TPP-PSS@CTAC©AuNTs, we performed various staining methods to study the basic 
morphological changes of apoptosis, nuclear fragmentation, generation of ROS, and mitochondrial membrane 
permeation in breast cancer cells (MCF-7 and MDA-MB-231) (SI, Figs. 2–6). We found no substantial morpho-
logical changes in control (untreated) cells employed in our investigation. However, the induction of apoptosis 
is revealed by live/dead cells with green and red fluorescence (SI, Fig. 2). On the other hand, investigations on 
nuclear fragmentation exhibit blue fluorescence, implying chromatin condensation with irreversible pyknotic 
nuclei (SI, Fig. 3, 4). ROS measurements support the reduction in green fluorescence owing to an increased 
oxidative stress  environment50,47 (SI, Fig. 5). Mitochondrial membrane potential study implies decay in green 
fluorescence that hampers electron transport and oxidative  phosphorylation55 (SI, Fig. 6). Based on the findings, 

Figure. 4.  FTIR spectroscopic analysis. (a) CTAC©AuNTs. (b) PSS@CTAC©AuNTs. (c) TPP-CTAC©AuNTs. 
(d) TPP-PSS@CTAC©AuNTs.
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we detected all conceivable apoptotic events, such as fragmented nuclei, increased ROS production, and mito-
chondrial membrane potential, after treating two breast cancer cells (MCF-7 and MDA-MB-231) with IR-TPP-
CTAC©AuNTs and IR-TPP-PSS@CTAC©AuNTs in the presence of 5-ALA mediated PDT. Experiments with 
CTAC©AuNTs, PSS@CTAC©AuNTs, TPP-CTAC©AuNTs, and TPP-PSS@CTAC©AuNTs show similar results 
with a half maximum inhibitory concentration  (IC50) (SI, Figs. 7–11). We presume that irradiation by PDT in the 
presence of 5-ALA improves the targeting of breast cancer cells by inducing apoptosis. Moreover, the morpho-
logical examination should be correlated well with gene and protein expression studies.

Figure. 5.  Dynamic light scattering measurements. Zeta potential for (a) TPP-CTAC©AuNTs (23.9 ± 3.93 mV 
and (b) TPP-PSS@CTAC©AuNTs (− 28.4 ± 4.93 mV). Particle size distribution analysis for (c) TPP-
CTAC©AuNTs (48.50 ± 2.60 nm with PDI value of 0.324) and (d) TPP-PSS@CTAC©AuNTs (110.7 ± 2.41 nm 
with PDI value of 0.277).

Figure 6.  Cell cycle arrest induced by gold nanoconjugates in the presence of 5-ALA mediated PDT on 
breast cancer cells. MCF-7(a-c) and MDA-MB-231 (d–f) breast cancer cells. (a) Control (untreated cells). 
(b) IR-5-ALA-TPP-CTAC©AuNTs  (IC50–0.71 ± 0.14 µg/mL). (c) IR-5-ALA-TPP-PSS@CTAC©AuNTs  (IC50-
0.67 ± 0.89 µg/mL). (d) Control (untreated cells). (e) IR-5-ALA-TPP-CTAC©AuNTs  (IC50-0.78 ± 0.55 µg/mL). 
(f) IR-5-ALA-TPP-PSS@CTAC©AuNTs  (IC50- 0.58 ± 0.23 µg/mL).
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PpIX measurements. The present study utilizes a photo-sensitizer, (5-ALA) that induces PDT in breast 
cancer cells upon irradiation with IR-TPP-CTAC©AuNTs and IR-TPP-PSS@CTAC©AuNTs as shown in SI, 
Fig.  12. As a result, cells produce more singlet oxygen than those treated cells without 5-ALA. It has been 
reported that, the increased singlet oxygen production is related to the conversion of 5-ALA into protoporphy-
rin IX (PpIX), that occurs majorly in  mitochondria43. It is also reported that, the generation of singlet oxygen 
will directly influence cell death by two indicators, viz. endogenous (mediated by loss of mitochondrial mem-
brane potential) and exogenous (mediated by endoplasmic reticulum)  mechanism56. Considering the fact, the 
mitochondrial targeting agent (TPP) accumulates well within mitochondria leading to enhanced membrane 
 permeability57.

Co-localization experiments. By utilising spectral deconvolution, the co-localization of molecules within 
intracellular compartments can be successfully explored. In light of this, the co-localization of TPP in MCF-7 and 
MDA-MB-231 breast cancer cells was investigated using Raman spectroscopy, as depicted in SI, Fig. 13. Upon 
exposure of cells with TPP, a band in the region at 900–1200  cm−1 is attributed to Ph-P  vibrations43. Similarly, 
breast cancer cells treated to TPP-CTAC©AuNTs and TPP-PSS@CTAC©AuNTs exhibited identical signature 
peaks, indicating the co-localization of nanoprobes. It is also noticed that the signals from TPP-CTAC©AuNTs 
and TPP-PSS@CTAC©AuNTs were weak, suggesting that TPP and AuNTs were conjugated. The study’s find-
ings are consistent with previous reports on the co-localization of nanomaterials using Raman  spectroscopy58,59.

Cell cycle. Flow cytometric analysis of MCF-7 and MDA-MB-231 breast cancer cell cycle pattern upon 
treatment with 5-ALA-based PDT in the presence of IR-TPP-CTAC©AuNTs and IR-TPP-PSS@CTAC©AuNTs 
AuNTs is shown in Fig. 6. MCF-7 cells treated with IR-TPP-CTAC©AuNTs and IR-TPP-PSS@CTAC©AuNTs 
exhibited a G0/G1 cell cycle arrest of 64.95 and 79.26%, respectively, compared to untreated  cells60. Meanwhile, 
IR-TPP-CTAC-AuNTs and IR-TPP-PSS@CTAC-AuNTs showed similar G0/G1 phase cycle arrest outcomes in 
MDA-MB-231 breast cancer cells, with 44.88 and 40.13%, respectively. The study found that 5-ALA-based PDT 
treatment inhibited G0/G1 phase in breast cancer cells by accumulating cell populations after 24 h in the pres-
ence of IR-TPP-CTAC©AuNTs and IR-TPP-PSS@CTAC©AuNTs (SI, Fig. 14).

Annexin V-FITC/Propidium Iodide. In the present study, flow cytometric analysis was used to validate 
the progression of cell death following 5-ALA-based  PDT61. Annexin-V-FITC has been demonstrated to detect 
phosphatidyl-serine (PS) exposed on the cell surface during apoptosis, which is an early sign. After 24 h of expo-
sure, IR-TPP-CTAC©AuNTs and IR-TPP-PSS@CTAC©AuNTs (at  IC50 values) caused apoptosis in breast cancer 
cells, which is consistent with prior studies on morphological characteristics in breast cancer cells. As depicted 
in Fig. 7, the progression of apoptosis was evident in the dot plots. According to flow cytometric data, PDT with 
5-ALA induce apoptosis in approximately 60, and 90 percent of MCF-7 and MDA-MB-231 breast cancer  cells62 
(SI, Fig. 15).

Molecular mechanism. In recent years, drug delivery systems have been developed to target specific 
organs or tissues with the desired therapeutic  concentration63,64. However, targeting cancer with TPP-function-
alized gold nanoprobes is limited (TPP-CTAC©AuNTs). Taking this into consideration, we engineered TPP 
functionalized gold nanoparticles with two different surface charges (IR-TPP-CTAC©AuNTs and IR-TPP-PSS@
CTAC©AuNTs) and evaluated its PDT efficacy in the presence of 5-ALA in breast cancer cells (MCF-7 and 
MDA-MB-231) via the inhibition of Pi3k/Akt signaling  pathway65,66.

Activation of PTEN in Pi3K/Akt signaling. The Pi3K/AKT/mTOR pathway regulates an extensive array 
of biological functions, including cell growth, proliferation, metabolism, and  angiogenesis67. However, Phos-
phatase and tensin (PTEN) protein homolog activation can negatively regulate the Pi3K-AKT  pathway68. As a 
result of PTEN activation, the downstream signaling events are hindered in their ability to protect tumor devel-
opment. Thus, the Pi3K/AKT pathway may be an ideal target for cancer therapeutic  intervention69. In view of 
this, we examined the gene and protein expression of Pi3K, AKT, and PTEN in IR-TPP-CTAC©AuNTs and IR-
TPP-PSS@CTAC©AuNTs treated breast cancer cells (MCF-7 and MDA-MB-231) (Fig. 8). The gene and protein 
expression pattern of Pi3K, AKT and PTEN is shown in SI, Fig. 16, 17.

In two breast cancer (MCF-7 and MDA-MB-231) cells treated with IR-TPP-CTAC©AuNTs and IR-TPP-PSS@
CTAC©AuNTs, the Pi3K/AKT gene expression was significantly reduced (Fig. 8)70. Compared to untreated cells, 
the tumor suppressor gene PTEN was up-regulated considerably, thereby regulating cell proliferation. A western 
blot study in breast cancer cell lines revealed that the Pi3K/AKT pathway was down-regulated (Fig. 8). In con-
trast, PTEN expression was up-regulated, associated with the deregulation of growth and extracellular signals 
(Fig. 8)71. Hence, it is clear from the study that 5-ALA-based PDT in the presence of IR-TPP-CTAC©AuNTs and 
IR-TPP-PSS@CTAC©AuNTs significantly down-regulate Pi3K/AKT pathway leading to the apoptotic  events72.

Targeting mitochondrial membrane permeability. The permeability of the mitochondrial membrane 
during apoptosis is controlled by the Bcl-2 family of proteins, which may be anti-apoptotic or pro-apoptotic73. 
For example, Bax (pro-apoptotic) protein is primarily found in the cytoplasm, while Bcl-2 (anti-apoptotic) is 
located in the nucleus and mitochondria. However, during the progression of apoptosis, Bax gets triggered and 
travels mitochondria by hampering the expression of Bcl-274. As a result, cytochrome c is released, leading to 
a decrease in mitochondrial membrane  potential75. Thus, the expression pattern of anti-apoptotic (Bcl-2) and 
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pro-apoptotic (Bax & cytochrome c) needs to be addressed upon treatment with IR-TPP-CTAC©AuNTs and 
IR-TPP-PSS@CTAC©AuNTs (Fig. 8).

In our study, the gene and protein expression patterns of Bcl-2 were considerably down-regulated in both 
cancer cells after treatment with IR-TPP-CTAC©AuNTs and IR-TPP-PSS@CTAC©AuNTs76 In addition, the 
gene expression level of Bax was elevated, confirming the mitochondrial membrane potential has decreased. 
Meanwhile, a high Bax/Bcl-2 ratio has been hypothesized to trigger the breakdown of the mitochondrial mem-
brane potential, releasing cytochrome c and inducing cell  death77. Our findings also demonstrate that reduced 
Bcl-2 protein expression and increased Bax protein expression results in cytochrome c activation. The activation 
of cytochrome c from mitochondria is a crucial beginning step in the process of  apoptosis78. Figure 8 depicts 
the elevation of cytochrome c gene and protein expression levels in breast cancer cells treated with IR-TPP-
CTAC©AuNTs and IR-TPP-PSS@CTAC©AuNTs (SI, Fig. 16, 17).

Role of caspase in apoptosis induction. During apoptosis, mitochondrial membranes become perme-
able, allowing cytochrome c to enter the cytoplasm and activate caspases through oligomerization of the adap-
tor molecule apoptosis-protease activating factor 1 (Apaf-1) called  apoptosomes79. Each apoptosome recruits 
seven dimers of caspase-9, favouring the activation of caspase-3, leading to intrinsic  apoptosis80. Meanwhile, the 
extrinsic pathway of apoptosis triggers the death-inducing signaling complex (DISC) by activating a plethora of 
signaling events leading to the activation of caspase-881. As a result, active caspase-9 gets activated, mobilzing 
downstream caspases (Caspase-3) and thereby initiating  apoptosis82.

In our study, treatment with IR-TPP-CTAC©AuNTs and IR-TPP-PSS@CTAC©AuNTs increases mRNA 
expression patterns for caspase-9, caspase-8, and caspase-3 (Fig. 8). This helps us understand the activation of 
both intrinsic and extrinsic cell death signals in breast cancer cells (MCF-7 and MDA-MB-231)83–85. In addi-
tion, the protein expression pattern cleaved caspase-9 was significantly over-expressed and coincides with the 
induction of apoptosis, as revealed by western blot analysis upon treatment with IR-TPP-CTAC©AuNTs and 
IR-TPP-PSS@CTAC©AuNTs treated cells following 5-ALA-based PDT than control cells (SI, Fig. 16, 17).

On the whole, 5-ALA-based PDT activates the tumor suppressor gene (PTEN) in IR-TPP-CTAC©AuNTs 
IR-TPP-PSS@CTAC©AuNTs treated cells, inhibiting Pi3K/AKT signaling. In addition, it is also noticed from 
the study that 5-ALA-based PDT in combination with IR-TPP-CTAC©AuNTs and IR-TPP-PSS@CTAC©AuNTs 
may lead to the activation of mitochondrial-mediated apoptosis by the down-regulation of anti-apoptotic and 
upregulation of pro-apoptotic (BAX, cytochrome-c, caspase-8, 9 and 3) entities.

Figure 7.  Effect of gold nanoconjugates in the presence of 5-ALA mediated PDT targeting MCF-7 (a-c) and 
MDA-MB-231 (d–f) breast cancer cells. (a) Control (untreated cells). (b) IR-5-ALA-TPP-CTAC©AuNTs  (IC50–
0.71 ± 0.14 µg/mL). (c) IR-5-ALA-TPP-PSS@CTAC©AuNTs  (IC50-0.67 ± 0.89 µg/mL). (d) Control (untreated 
cells). (e) IR-5-ALA-TPP-CTAC©AuNTs  (IC50-0.78 ± 0.55 µg/mL). (f) IR-5-ALA-TPP-PSS@CTAC©AuNTs 
 (IC50-0.58 ± 0.23 µg/mL).
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Conclusion
We have developed surface charge optimized nanoconjugates system that impairs cell survival Pi3K/AKT signal-
ing. The nanoconjugates system comprise of anionic and cationic AuNTs conjugated with TPP containing S–H 
group. The surface charge optimized AuNTs conjugated with TPP offers cytotoxicity upon 5-ALA based PDT 
treatment. As a result, induction of apoptosis occurs via DNA damage; generate ROS species and deregulate 
mitochondria. The combined effect of 5-ALA and PDT with gold nanoconjugates persuades apoptosis in breast 
cancer cells. We believe that, the proposed gold nanoconjugates system is a promising anti-cancer agent that 
targets mitochondria leading to cellular apoptosis in breast cancer.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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