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A systematic survey of RUM 
process parameter optimization 
and their influence on part 
characteristics of nickel 718
Dipesh Popli 1, Usha Batra 2, Velaphi Msomi 3* & Shubham Verma 4*

This research is focused on the drilling of Nickel based super alloy with diamond metal core drill and 
identified the significant parameters of rotary ultrasonic machining that optimise the machining 
rate (MR) and surface quality. Four general parameters: workpiece material, workpiece thickness, 
tool material, and tool size; and four RUM parameters: tool rotational, feed rate, ultrasonic power 
rating, and abrasive grit size of the tool were tested against and surface quality of the cut. The results 
indicated that the maximum value of MR of 0.8931mm3/sec is acquired at higher level of tool rotation, 
feed rate, ultrasonic power and moderate level of abrasive grit size of diamond. The minimum surface 
roughness (Ra) 0.554 µm is observed at higher level of rotational rotation, Moderate value of feed rate, 
ultrasonic power and diamond abrasive grit size. In addition, for single-objective and multi-objective 
functions, the particle swarm optimization (PSO) approach is used to find the optimum values 
for process parameters. Furthermore, a scanning electron microscope is also utilized to check the 
machined surface after RUM. It is concluded that microcracks are observed on the machined surface.

With the development of aircraft engine technology, composite and hard-to-cut materials are being used in 
the new engines more and more. This finding shows that there is a greater need for processing techniques and 
component capabilities for the machining of challenging materials.

A nickel based super alloys are unique class of metallic materials with a remarkable combination of elevated 
temperature strength, toughness, and resistance to deterioration in corrosive or oxidising  conditions1.

Figure 1 shows the advancement in nickel based super alloy’s temperature capability which has increased year 
by year owing to the advanced processing, alloy development, use of the thermal barrier coatings, innovative and 
effective cooling  schemes2. The components of aircraft engine, such as the casing, compressor discs, bearing ring, 
blades, turbine disc, and other parts operating in the high temperature, are made with nickel-based superalloys 
because of their high strength, strong corrosion resistance, excellent thermal fatigue properties, and thermal 
 stability3. The numerous superalloys based on nickel that are used in jet engines are listed in Fig. 2.

Fifty percent parts of the jet engine is made by Inconel 718. Inconel is a Ni–Fe–Cr  alloy4. However, the tensile 
strength Inconel 718 can reach 1393 MPa at room temperature. The component’s machining become hard due 
to its machinability. It has machinability only 8–20% of steel which leads to inefficient processing.

Additionally, the machining of nickel-based superalloys results in increased tool oxidation wear, adhesive wear, 
mechanical & diffusion wear, and, which reduces tool life. For instance, the rough and fine drilling of a nickel-based 
superalloy blade with a medium drilling length requires more time. For machining of super alloys, a frequent tool 
wear is considered to be the direct factor that limits the processing efficiency, while the sharp temperature rise 
caused by the heavily work-hardened surface being machined is a key factor to accelerate the tool  wear5.

According to Habeeb et al.6, thermally induced cracking was the main reason for tool failure at high cutting 
rates. This happens as a result of the edges being subjected to a significant amount of thermal shock as a result 
of the high temperature brought on by fast cutting speeds and significant temperature  change7. Conventional 
drilling is commonly faced with some difficulties due to heat localization in the cutting zone resulted by drill 
embedding in workpiece. The cutting temperature directly affects dimensional accuracy of drilled hole, surface 
quality, and tool life. Lofti et al. used ultrasonic assisted drilling under presence of nano-fluid minimum quantity 
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lubrication for 1045 steel and found that due to reduction of friction coefficient caused by application of ultra-
sonic vibration, the wear mode of drilled surface is changed from adhesive type to abrasive one and formation 
of built-up edge is restricted that results in better surface  finish8,9. Lofti et al. developed a mechanistic model of 
workpiece deflection for aluminium 7075. With ultrasonic assisted and without ultrasonic assisted drilling was 
performed on the workpiece. It was found that in both the experimental and theoretical approaches, with the 
increase in feed rate causes an increase in the deflection of the workpiece. This is due to the increase in thrust 
force values that was significantly influenced by feed  motion10. Although super hard cutting tools like CBN and 
PCBN play some roles in improving the processing efficiency of nickel-based superalloys, ceramic cutting tools 
like alumina matrix and Si3N4 still play an important part. It is found that CBN tool is capable of machining 
of Inconel 718 as compared to carbide tool. In the present-day scenario, rotary ultrasonic machining (RUM) 
can be employed for machining of complex and tough structure material such as ceramic, titanium, glass, etc.11 
Figure 3 indicates the processing method of RUM. A rotary core drill with metal-bonded diamond abrasives 
is ultrasonically vibrated and fed toward the workpiece at a constant feed rate or a constant force (pressure). 
Coolant pumped through the core of the drill washes away the swarf, prevents jamming of the drill, and keeps 
it cool. There are two mechanisms for the RUM process: firstly, by the process of ultrasonic vibration, material 

Figure 1.  The development in creep rupture temperature capability of Ni-base superalloys under 
1100 ℃—137  MPa3.

Figure 2.  Utilises for nickel-based superalloys, which typically account for around 50% of a jet engine’s weight.
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removal is done; secondly through the traditional diamond abrasive grinding process. It includes the hammer-
ing, abrasion, and extraction process for machining on RUM.

As per the work reported yet, Pei et al.11 is the first who one started the research on RUM of ceramic mate-
rial. The RUM process can be employed for various operations such as drilling, grinding, and face milling of 
ceramics at different process parameters. After that, it is accelerated by Hu et al.12 for zirconia ceramic. It is found 
that the maximum material removal rate (MRR) is achieved at a power rating of 40–70%. In 2005, Li et al.13 
employed RUM for machining two different ceramic composites. Zeng et al.14compared ultrasonic machining 
with RUM for ceramic materials. It is observed that RUM provided better MRR than ultrasonic machining. 
Zhang et al.15employed RUM for machining operations on K9 glass. It is found that the rotational speed has no 
significant impact on productivity. Lv et al.16 used RUM for BK7 glass. It is observed that the subsurface damage 
in RUM differentiated as grinding, chipping, and cracking on the glass. Besides this, numerous research work 
is also carried on titanium alloys by employing  RUM17. Furthermore, few research works are carried out on the 
use of optimization techniques. Cong et al.18 created an experimental design technique for predicting the cutting 
force of CFRP material.in rotary ultrasonic machining. The developed model can predict the cutting force based 
on input variables i.e. tool amplitude, tool rotational speed, feed rate, abrasive mesh size and abrasive particle’s 
concentration. Lui et al.19 investigated the microchipping at the outside of the hole during the drilling process 
on RUM. The experiments are designed as per the response surface methodology using desirability approach. 
Teimouri et al.20 conducted the experiments with ultrasonic machine over titanium alloy grade- I using two 
different tools; high carbon steel (HSC) with hardness of 56 HRC and the titanium (Ti) alloy with hardness of 
42 HRC. With the regression model multi objective optimization technique was employed and compare the 
data with other algorithms. The results indicated that the ICA outperforms the other algorithms in both cases 
of execution time and values of objective function at global optima. In the present study, a mechanistic model 
of workpiece deflection applicable to both conventional and UAD has been developed.

It is revealed from the literature review that the previous reported works focussed on RUM of ceramics, tita-
nium, and glass. there has been only few research study reported on RUM of nickel based super alloys material. 
Nickel based alloys has wide application in the fabrication of jet engine and nuclear reactor  structure21–23.The 
use of response surface methodology (RSM) with a view to design the experiments along with the assessment of 
parameters’ influence on process responses has also not been carried out so far. The parameter termed as ‘‘abrasive 
grit size” of tool has been omitted throughout many the investigation performed in RUM of numerous work 
materials. The variable ‘‘ultrasonic power’’ has been investigated at very low level (30–40%) in the past research 
studies. Thus, there is a need to expose the machining of Inconel 718 at higher power levels. In the contemplation 
of the above discussion, this article has been targeted to explore the impact of several process factors such as feed 
rate, spindle speed, ultrasonic power, abrasive grit size on machining characteristics, that is, MR, and Ra in RUM 
of Inconel 718 by employing RSM in the form of central composite design (CCD). A statistical tool ‘analysis of 
variance’ (ANOVA) is also utilized to check the viability of the statistical model. The mathematical model devel-
oped through this approach will be helpful in industrial revelation. The optimization of machining characteristics, 
that is, MR and Ra on machined surface with PSO (Particle swarm optimization) has also never been attempted 
earlier in reported studies on RUM. The concurrent optimization of both the machining responses will further 
make the method’s applicability more meaningful while settling real-life industrial problems. Multi-response 

Figure 3.  Process principal of RUM.
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optimization has been attempted to optimize MR and Ra simultaneously using MOPSO approach. Scanning 
electron microscopy (SEM) analysis of machined samples has been analysed and presented.

Experimentation and methodology
Workpiece and tool. In this current research, the work material Inconel 718 is selected for trials. The 
dimension of the square sheet is 50 × 50 × 5 mm. The properties of the material are depicted in Table 1. An EDS 
test is carried out before machining to ensure the quality of the workpiece. Figure 4a and b shows the results of 
EDS test. For the drilling of workpiece, a metal bonded diamond core drill tool is used for Inconel 718. Figure 5 
shows the pictorial view of the diamond core drill tool. The outside (OD) and inside (ID) diameters of the dia-
mond core drill tool are selected as 8 mm and 6.5 mm, respectively.

Experimental setup and methodology. In present research work, RUM (Sonic-Mill Series 10-Sonic-
Mill, Albuquerque, NM, United States) is used for drilling operations for Inconel 718. Figure 6 depicts the pho-
tographic view of experimental setup. For finding the optimum results, the various trials are executed at different 
level of the process parameters i.e. tool rotation, feed rate, power rating, and abrasive size of the diamond. Table 2 
depicts the different values of input machining parameters for present study. Besides this, the other process 
parameters like tool diameter 8 mm, the frequency of vibration 21 kHz, the amplitude of vibration 25.3–25.8 µm, 
and coolant pressure 300 kPa are kept constant. In addition, a diluted water-soluble coolant cum cutting oil 
(Mobilmet S-122, Mobil Oil Corporation, Fairfax, VA, United States) having oil to water ratio of 1:20 is employed 
during cutting operation in order to remove the heat and debris during the process.

Table 1.  Chemical and mechanical properties of Inconel 718.

Chemical composition (by weight %) of Inconel 718

Element Ni Cb Cr Nb Mn C Co Al Si Ti Mo Fe

Weight (%) 50–55 4.75–5.5 17–21 5.7 0.35 max 0.08 max 0.2 0.2–00.8 0.35 max 0.65–1.15 2.8–3.3 Balance

Mechanical properties

Yield strength 1034 MPa

Ultimate strength 1242 MPa

Hardness 97 HRB

Specific Gravity 8.19 g/cm3

Element   Series   unn. C norm. C Atom. C 
                  [wt.-%] [wt.-%] at. -%] 
----------------------------------------- 
Chromium K-series   19.65   20.40   21.29 
Iron     K-series   17.45   18.12   17.60 
Nickel   K-series   53.06   55.09   50.92 
Sulfur   K-series    5.09    5.28    8.93 
Titanium K-series    1.06    1.11    1.25 
----------------------------------------- 
           Total:   96.31  100.00  100.00 

(b)(a)

Figure 4.  EDS analysis of Inconel 718.
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The experiments are designed as per central composite design (rotatable design). As per the design, a total 21 
experiments are carried out. Table 3 represents the experiments design for present research work. The tests are 
performed with a two replication. The average value of the observations is given in Table 4.

Machining rate (MR) and surface roughness  (Ra). In current study, machining rate (MR) and sur-
face roughness  (Ra) are considered as response parameters. The machining rate is calculated from the weight 

Figure 5.  Photographic view of fabricated metal bonded diamond core drill picture.

Figure 6.  Experimental Setup of RUM.
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measurement method. In this method, an electronic weighing machine (± 0.0002 g) is utilized for calculating 
the weight of the workpiece before and after each experiment. The Eq. (1) is used for calculating the MR. The 
volume is calculated by multiplying the density to the mass. The surface roughness of sample is computed by 
using roughness tester (Make: Surfcom, Flex)

Results and discussions
Table 4 depicts the outcomes of the current study. It represents the average values of MR and  Ra of two experi-
ments for each input value. It is observed that maximum MR is obtained in experiment run 1 whereas minimum 
roughness is obtained in experiment run 12. Three criteria are used such as lack-of-fit test, the sequential model 
sum of squares, and model overview statistics. For better results, a backward elimination process is used to 
eliminate the insignificant terms in the models. This elimination process enhances the adequacy of the model 
by removing the non-significant terms from the quadratic model to preserve the model hierarchy.

Analysis of MR and  Ra. Tables 5 and 6 shows the values of the results after the backward elimination pro-
cess. It is clear from Tables 5 and 6 that all the input parameters are important. Besides this, F values and P values 
also tell about the adequacy of the model. This model’s F Table -value is evaluated by splitting the average square 
value of the model into the average square residual values. The F-value defines the relation between model vari-
ance and the residual variance. If variance values are almost identical, the fraction is almost equal to 1 and the 
model does not have an important impact on performance. The obtained F value of the model for MR and Ra is 

(1)Machining rate =
Volume of material removed from workpiece

time of machining
.

Table 2.  Different levels of paremeters.

Sr. no Symbol Input factors

Levels

Units − 2  − 1 0  + 1  + 2

1 A Tool rotation 4200 4600 5000 5400 5800 RPM

2 B Feed rate 0.01 0.0125 0.0150 0.0175 0.02 mm/sec

3 C Power rating 55 60 65 70 75 %

4 D Diamond abrasive size 80 100 120 140 160 mesh

Table 3.  Experimental design as per CCD.

Std Run

Tool rotation (A) Feed rate (B) Ultrasonic power (C) Diamond abrasive size (D)

Rpm mm/sec % Mesh

15 1 5000 0.01 65 120

18 2 5000 0.015 65 120

6 3 5000 0.02 65 120

21 4 4600 0.0125 60 100

14 5 5800 0.015 65 120

11 6 5000 0.015 65 80

2 7 5000 0.015 55 120

8 8 5000 0.015 75 120

10 9 4600 0.0175 70 140

17 10 5000 0.015 65 120

5 11 5000 0.015 65 160

19 12 5400 0.0125 60 140

3 13 5400 0.0175 60 100

16 14 4600 0.0175 60 140

9 15 5400 0.0175 70 100

20 16 5000 0.015 65 120

12 17 5400 0.0125 70 140

1 18 5000 0.015 65 120

7 19 4600 0.0125 70 100

4 20 4200 0.015 65 120

13 21 5000 0.015 65 120
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472.61 and 47.598, respectively and for both MR and Ra the P-value are less than 0.05. Tables 5 and 6 shows that 
the model obtained for MR and Ra  significant24.

The  R2 is called the determination coefficient which tells the degree of closeness between experimental value 
and predicted value. The percentage of closeness to the 1 showed the good experimental value against the pre-
dicted value. In the present work, the obtained  R2 value for MR and  Ra came out to be 98.7% and 96.9% respec-
tively as shown in Tables 5 and 6. Some more properties such as adjusted  R2, predicted  R2 adequate precision 
also plays a good role for the adequacy of the model. It shows healthy agreement between experimental value 
and predicted value. “Adequate precision” signifying the signal-to-noise ratio (S/N). In general, the value greater 
than 4 is  acceptable25. In both ANOVA Tables 5 and 6 not only individual parameters but also in an interactive 
way it influences response parameters i.e., MR and Ra.

Table 4.  Design Matrix and their results.

Std Run Tool Rotation (rpm) Feed Rate (mm/sec) Ultrasonic Power (%)
Diamond Abrasive 
Size (Mesh) MR  (mm3/sec) Ra (µm)

15 1 5000 0.01 65 120 0.4382 0.711

18 2 5000 0.015 65 120 0.7047 1.016

6 3 5000 0.02 65 120 1.0020 1.398

21 4 4600 0.0125 60 100 0.6077 1.033

14 5 5800 0.015 65 120 0.7045 0.912

11 6 5000 0.015 65 80 0.7311 1.233

2 7 5000 0.015 55 120 0.7110 1.019

8 8 5000 0.015 75 120 0.6890 1.005

10 9 4600 0.0175 70 140 0.8226 1.196

17 10 5000 0.015 65 120 0.7104 1.041

5 11 5000 0.015 65 160 0.7568 1.131

19 12 5400 0.0125 60 140 0.5434 0.603

3 13 5400 0.0175 60 100 0.8795 1.159

16 14 4600 0.0175 60 140 0.8078 1.311

9 15 5400 0.0175 70 100 0.8912 1.136

20 16 5000 0.015 65 120 0.7203 1.001

12 17 5400 0.0125 70 140 0.5455 0.902

1 18 5000 0.015 65 120 0.7014 0.999

7 19 4600 0.0125 70 100 0.6207 0.98

4 20 4200 0.015 65 120 0.7102 1.161

13 21 5000 0.015 65 120 0.7114 0.996

Table 5.  ANOVA for response surface of MR. 

Source SS df Mean Sq F value p value Prob > F

Model 0.30995 8 0.038743 472.361  < 0.0001 Significant

A-Tool rotation 0.00001 1 0.000007 0.08188 0.0096

B-Feed rate 0.29987 1 0.299870 3656.02  < 0.0001

C-Ultrasonic power 0.00003 1 0.000029 0.35749 0.04610

D-Diamond abrasive grit size 0.00033 1 0.000330 4.02447 0.0379

AB 0.00526 1 0.005261 64.1453  < 0.0001

BC 0.00039 1 0.000392 4.87433 0.0486

B2 0.00043 1 0.000425 5.18258 0.0419

D2 0.00205 1 0.002049 24.9827 0.0003

Residual 0.00098 12 0.000082

Lack of fit 0.00079 8 0.000099 2.0791466 0.2502
Not significant

Pure Error 0.00019 4 0.000048

Cor Total 0.31093 20

Std. Dev 0.00828 R-Sq 0.987569

Mean 0.70468 Adj R-Sq 0.985581

C.V. % 1.176223 Pred R-Sq 0.977345

PRESS 0.003935 Adeq Prec 95.73918
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Figure 7 represents the standard residual probability curve which shows that residues are inside ± 3 limits 
and that they are fixed by the MR and Ra straight lines. Figure 8 demonstrates that the estimated model values 
are true to MR and Ra experimental values. This reveals that ANOVA table findings are reliable. Equation (2) 
and (3) represents the regression model for MR and  Ra respectively.

(2)

R =+ 3.52990− 0.000542× Tool Rotation− 179.577× Feed Rate − 0.00812× Ultrasonic Power

− 0.00488× Diamond Abrasive Grit Size

+ 0.0362× Tool Rotation× Feed Rate + 0.523× Feed Rate × Ultrasonic Power

+ 632.769× Feed Rate
2
+ 0.0000217× Diamond Abrasive GritSize

2

Table 6.  ANOVA for response surface of Ra. 

Source SS df Mean Sq F value p value Prob > F

Model 0.3819 8 0.04774 47.598  < 0.0001 Significant

A-Tool rotation 0.0132 1 0.01321 13.173 0.0035

B-Feed rate 0.2763 1 0.27635 275.499  < 0.0001

C-Ultrasonic power 0.0004 1 0.00046 0.4662 0.03077

D-Diamond abrasive grit size 0.0094 1 0.00945 9.4294 0.0097

AC 0.0096 1 0.00963 9.6044 0.0092

BC 0.0047 1 0.0047 3.3229 0.0485

BD 0.0051 1 0.00514 5.1307 0.0428

D2 0.0227 1 0.02277 22.705 0.0005

Residual 0.0120 12 0.00100

Lack of fit 0.0098 8 0.00123 2.3096 0.2183
not significant

Pure Error 0.0021 4 0.00053

Cor total 0.3940 20

Std. Dev 0.03167 R-Sq 0.96944

Mean 0.82890 Adj R-Sq 0.94908

C.V. % 3.82090 Pred R-Sq 0.85564

PRESS 0.05687 Adeq Prec 25.8174

Figure 7.  Residuals plots (a) MR and (b)  Ra.
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Process parameter effect analysis. Figure  9 depicts the impact of parameters i.e., rotational speed 
(rpm), feed rate (mm/sec), ultrasonic power rating (%) and abrasive grit size (mesh) on machining rate. It is 
observed that rotational speed does not significantly affect the MR as shown in Fig. 9a. Conversely, it is observed 
that the MR is significantly changed from 0.5512 to 0.8525  mm3/sec with change in the penetration rate from 
0.0125 to 0.0175 mm/sec as depicted in Fig. 9b. It is attributed towards the deep grooving of abrasive particles 
at higher feed rate and resulted in higher MR. Figure 9c shows the impact of ultrasonic power on MR. It is vis-
ible that the MR is increased from 0.6965 to 0.7109  mm3/sec for an increase in power from 60 to 65%. Further 
increase in power upto 70%, MR decreases from 0.7109 to 0.6937  mm3/sec. The obtained results are consistent 
with the previous study of  researchers26,27.

The effect of the size of the diamond on MR is shown in Fig. 9d. Abrasive grit size is inversely proportional 
to the mesh value of abrasive grit. It is observed that MR not significantly changed with change in the abrasive 
grit size. In addition, the curvature is observed in abrasive grit size effect on MR. It is an indication of the size 
of the grain of the diamond use in bonded tool enhance the machining rate. This is owing to deeper indentation 
of abrasive particles into the  workpiece28.

Figure 10a depicts the interaction effects on MR. It is verified from Eq. (2) that two interactions are found 
significant for MR. It is clearly visible that the maximum MR is obtained in a region where feed rate and tool 
rotation is high. It is attributed towards the increase in the contact length of diamond abrasive particles. Con-
versely, minimum MR is observed in a region where feed rate is low and tool rotational speed is higher. This is 
owing to lower point of contact between the tool and the workpiece. Interaction effect between the ultrasonic 
power and feed rate on MR is shown in Fig. 10b. It is observed that MR is achieved to be maximum in regions 
where feed rate and ultrasonic power is maximum. This happens due to increase in the vibration with increase 
in the ultrasonic force that eliminates swarf and debris efficiently from machining surfaces. On the other hand, 
minimum MR is obtained at lower penetration rate and ultrasonic power.

Figure 11 illustrates the impact of process parameters on the machined surface. Figure 11a depicts the effect 
of tool rotational speed on  Ra. It is concluded that the  Ra is decreased with increase in the tool rotational speed. 
It is attributed towards the enhancement in the grinding action per unit time of the tool with increase in the 
rotational speed. Another reason for better surface roughness is to reduce the development rate of micro-cracks 
on the  surface29. Figure 11b shows the effect of feed rate on  Ra. It is observed that the  Ra is increased steeply from 
0.676 to 0.938 µm with an increase in penetration rate from 0.0125 to 0.0175 mm/sec. This increase is owing 
to the extension in the micro-cracks on the workpiece surface. The effect of ultrasonic power on  Ra is shown in 
Fig. 11c. It is found that the Ra is decreased with increase in the ultrasonic power. This change is not found to be 
significant. Moreover, it is also observed that the amplitude difference has no effect on the Ra. Figure 11d depicts 
that Ra is decreased from 0.861 to 0.807 µm with increase in grit size from 100 to 120 mesh size. Conversely, it 

(3)

Ra = 7.135− 0.00122× Tool Rotation+ 71.014× Feed Rate − 0.06371

× Ultrasonic Power − 0.02914× Diamond Abrasive Grit Size

+ 0.00001735× Tool Rotation× Ultrasonic Power − 1.608

× Feed Rate × Ultrasonic Power + 0.717× Feed Rate × Diamond Abrasive Grit Size

+ 0.0000715× Diamond Abrasive Grit Size
2
.

Figure 8.  Predicted vs actual (a) MR and (b)  Ra.
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is increased little from 0.807 to 0.811 µm as grit size increases from 120 to 140 mesh. This is owing to coarse 
abrasive grains that results in enhancement of fracturing rate. In addition, during the RUM process, the diamond 
particles continuously move in the hole cavity. The increased size of the granulate increases the frictional forces 
at the lateral interface and contributes to the surface damage incurred by this uniform lateral  wear30.

Figures 12 illustrates the interaction effect on Ra. It is verified from Eq. (3) that three interactions are found 
to be significant for Ra. Figure 12a shows the mix effect of ultrasonic power and tool rotational speed. The 
minimum value of Ra is obtained in an area where ultrasonic power is minimum and tool rotational speed is 
maximum. This is owing to an increase in the grinding pass of the tool that results in the fineness of machining 
surfaces. The interaction effect of feed rate and ultrasonic power on Ra is depicted in Fig. 12b. The minimum 
Ra of 0.665 µm is obtained in a region of low feed rate and low ultrasonic power. It is owing to lower abrasive 
diamond indentation depth on the workpiece. The maximum Ra of 0.965 is found in a region where feed rate is 
maximum and ultrasonic power is minimum. This is owing to higher indentation depth of abrasive particles on 
the workpiece surface. Figure 12c shows the effect of feed rate and abrasive grit size on Ra. It is clearly visible in 
Fig. 12c that the minimum value of Ra i.e., 0.762 µm is obtained for low feed rate and fine grit size (140 mesh). 
It is attributed towards lower indentation depth of diamond particles on the workpiece surface. The value of Ra 
is maximum at higher feed rate at all abrasive grit size. This is owing to a change in the grit size from coarse to 
fine i.e., 0.9083 µm31.

Microstructural analysis of machined surface. The SEM machine is utilized to study the surface of 
base material, maximum surface roughness specimen (experimental run 3, minimum surface roughness speci-
men (experimental run 12) as shown in Fig. 13. This is evident from Fig. 13a that the surface of the base material 
(Inconel 718) is uniform without any micro-cracks and grooves. Conversely, the machined surfaces consisted of 

Figure 9.  Effects of RUM parameters on MR (a) rotational speed, (b) feed rate, (c) ultrasonic power, (d) 
abrasive grit size.
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microcracks and grooves on the surface. Figure 13b and c depicts the surfaces of maximum roughness surfaces. 
Two kinds of fracture are observed on the machined surface of maximum surface roughness i.e., ductile fracture 
and brittle fracture as shown in Fig. 13b. In addition, sharp edges, deep holes, and micro-cracks are also observed 
on the machined surface as shown in Fig. 13c. Due to high feed rate of the tool, the material removed from the 
surface in bigger chunk. Furthermore, sometimes depleted edges are also observed on the machine surface. It is 
an indication of brittle fracture that showed the promulgation of intergranular and trans-granular cracks. These 
types of surfaces are observed owing to vibration movement of the tool during the process. Figure 13d depicts 
the machined surface of minimum surface roughness. Small holes and deep abrasive marks are observed on the 
surface. Moreover, the edge quality of the machined workpiece is also analysed by using an optical microscope 
as shown in Fig. 13e. There is no crack and burr is observed on the drilled hole edge.

Optimization through particle swarm optimization. The word “Optimization” means to make the 
best possible use of resources. In present research, a metaheuristic optimization technique i.e., particle swarm 
optimization (PSO) is also used to get the optimum values of process parameters of RUM for Inconel 718. 
According to best knowledge of the author, Kennedy and  Eberthart32 introduced PSO in 2006. It is a stochastic 
algorithm that is capable of solving optimization problems with the evolutionary algorithm such as genetic algo-
rithm, differential evolutionary, etc. This technique is also capable of producing the food searching behaviour of 
society such as a bird swarm or school of fish. Each member of the swarm in PSO is considered a particle. Each 
and every particle in the search space represents the potential solution. In addition, the information collected 
from the particles is sorted for getting the best particle in the swarm such as global best (gbest).

Figure 10.  3D-contour plot of interaction effect (a) feed rate and tool rotation (b) feed rate and ultrasonic 
power on MR.
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Moreover, each particle position is defined in terms of vectors such as position vector and velocity vector. 
The position and the velocity vector of the ith particle in the d-dimensional search space can be expressed as 
xi = (xi1, xi2, ..., xid) and vi = (vi1, vi2, ..., vid) respectively. The best location of each particle is dependent on 
the user defined fitness function i.e. pi =

(

pi1, pi2, ..., pid
)

 , denoted as pbest and the fittest particle found in the 
complete set of swarm is pg =

(

pg1, pg2, ..., pgd
)

 , denoted as gbest. The both values are corresponding to its best 
fitness values at time (t). Equation 4 and 5 are used for calculating the new positions and new velocity vectors 
for next fitness evaluation at time (t + 1).

where rand1 and rand2  are the random values which fall between (0, 1), w is the factor inertia weight, and used 
to give the direction of previous velocities on the present particle velocity, c1 is cognitive learning factor that 
shows the movement of particle toward its own success and c2 defines the social learning factor which shows 
that a particle moves toward near its neighbour’s value. Some researcher has suggested the ranges of c1  as (1.5 
to 4) and c2 as (2 to 2.5). Figure 14 represents the flow chart of PSO technique.

Coding of particles. The binary code is used to generate the particle in PSO. The binary format particle is 
decoded by using Eq. 6. The accuracy is given by Eq. 7.

(4)xid(t + 1) = xid(t)+ vid(t)

(5)vid(t + 1) = wid(t)+ c1rand1
(

pid(t)− xid(t)
)

+ c2rand2
(

pgd(t)− xid(t)
)

Figure 11.  Effects of RUM parameters on Ra (a) tool rotational speed, (b) feed rate, (c) ultrasonic power, (d) 
abrasive grit size.
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where Xi : the decoded value of RUM parameters. XL : is the lower limit of RUM parameters. XU : the upper limit 
of RUM parameters. n: is the substring length (= 4). Si is the decoded value of the ith particle

(6)Xi = Xl
i +

XU
i − XL

i

2n − 1
Si

Figure 12.  3D- interaction plot effect  Ra (a) tool rotation and ultrasonic power, (b) feed rate and ultrasonic 
power, and (c) feed rate and diamond abrasive size.
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Figure 13.  Micrograph of (a) Inconel 718 (prior to machining), (b) and (c) higher surface roughness specimen 
(d) minimum surface roughness specimen, (e) hole edge quality.
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Crowding distance. The crowding distance is a key concept for sorting the options into upward objective val-
ues. It is the mean of two adjacent solution values. Infinite crowding distance values are given to the boundary 
solutions that have the lowest and highest objective function values, so they are often chosen. For each objective 
function, this step is completed. A solution’s final crowding distance value is determined by applying all the dif-
ferent crowding distance values to each objective function. The algorithm for crowding distance is listed below.

ALGORITHM TO FIND CROWDING DISTANCE

1. Call the number of solutions in Fas l- |F |. For each i in the set, first assign di =0. 
2. For each objective function m = 1, 2,..........., M, sort the set in worse order of fm or, 

End the sorted indices vector: Im = sort(fm ,>). 
3. For m = 1, 2, . . . , M, assign a large distance to the boundary solutions, or  = 

 and for all other solutions j = 2 to ( l - 1), assign: 

(7)Accuracy =
XU

− XL

Xn − 1
.

Figure 14.  Flow chart of particle swarm optimization.
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Figure 15 represents the multi-objective PSO (MOPSO) flow chart. The algorithm for MPSO is listed below.

ALGORITHM FOR MULTIOBJECTIVE PSO

Step 1: Let  represent parent population and  represent offspring 
population at time t

Initially, 0 and a population  of size N is created randomly 

Step 2: Add parent and offspring population and create 

Classify the complete population ( ) into different non-
dominated levels according to ascending levels of dominance. Identify 
the different fronts  , i=1,2,3, ……., 4 etc.  

Step 3: Set new population . Set a counter 1

Until | 1 | | | , Perform ∪  and 

1

Step 4: Conduct the crowding distance method using the value of the sorted to 

 to most  commonly dispersed ( | |) solutions

Step 5: Build a population of offsprings  from  by. 

1. Randomly choose an individual  from the top 10% of the 
solutions. 

2. Also find  best for each solution. Modify each by using 

 1

 1

Where rand1 and rand2 are random numbers between 0 and 1. If the current position beyond the limits takes 
the upper or lower limits and its velocity is generated randomly. Finally perform the steps 2–5 until stopping 
criteria are met.

In the current research work, MR and Ra both responses are opposing in design. It means higher value of 
machining rates resulted in higher value of surface roughness. In order to achieve a higher machining rate with 
better surface finishing, optimal parameter’s values must be obtained. For finding the better value of the machin-
ing rate and surface roughness, single and multi-objective PSO is used. The lower and upper bound values of the 
parameters are used in algorithm so that the value should not go over bound. The values are given in Table 7.

Maximization of MR. The developed empirical model [Eq. (2)] is utilized for implementing the PSO technique. 
Figure 16 depicts the values of MR with each iteration after employing the PSO technique on empirical models. 
After successive iterations, PSO gives the maximum value of MR (0.8931  mm3/sec) at parameters combination 
of Tool Rotation-5400 rpm; Feed Rate-0.0175 mm/sec; Ultrasonic Power-70%; Diamond Abrasive Grit Size- 140 
mesh depicted in Table 8.

Minimization of Ra. To predict lower value of Ra, the empirical model (Eq. 3) is used in PSO. The predicted 
values of Ra for each iteration during PSO technique is depicted in Fig.  17. After successive iterations, PSO 
gives the minimum value of Ra (0.554 µm) at parameters combination of Tool Rotation- 5400 rpm; Feed Rate-
0.0125 mm/sec; Ultrasonic Power-60%; Diamond Abrasive Grit Size- 140 mesh depicted in Table 9.
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For the validating these results confirmation tests are conducted on RUM with two replication and the 
predicted values and average values of confirmatory experimental results (for MR and Ra) are also tabulated in 
Table 9. The confirmatory results for MR and Ra have been found to differ from predicted values by 3.42% and 
3.14% respectively which are found within the 95% confidence interval (CI).

Multi-response optimization using MOPSO. Multi objective evolutionary algorithm produces a Pareto front for 
the multi-objective minimization problem, which can find out a trade-off solution between conflicting objec-
tives. The Pareto front is defined as the set of non-dominated solutions, where each objective is considered as 
equally good. A problem can be expressed in terms of a Pareto front multi-objective optimisation problem. From 
this standpoint, given two solutions s and s′, s′ dominates s if and only if relevance (s′) > relevance(s) and |s′| <|s|. 
However, if relevance (s′) > relevance(s) but |s′| >|s|, neither solution can dominate the other. The collection of all 
non- dominating solutions constitutes a surface called Pareto front. The Pareto front consists of those solution 
for which there exists no better solution in both criteria . Using Pareto front optimisation for a selection problem, 
there is no need for any a priori assumptions about the importance of  objectives33 .

The crowding distance based MOPSO algorithm (In "Optimization through particle swarm optimization" 
section) is also employed for obtaining the optimized values of process parameters for MR and Ra. The empiri-
cal models based on Eq. (2) and (3) both are used for getting the optimized values of process parameters using 
MOPSO. The pareto front for objective functions MR and  Ra is shown in Fig. 18. The Pareto front is the set of all 

Figure 15.  Flow chart of MOPSO.

Table 7.  Lower and upper bound of RUM parameters.

Tool rotation (rpm) Feed rate (mm/sec) Abrasive grit size (mesh) Ultrasonic power rating (%)

Lower bound 4600 0.01 80 55

Upper bound 5800 0.02 140 75
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Pareto efficient solutions. In muti objective optimization, a large number of solutions are generated as tabulated 
in Table 10. The solutions are used for getting the best values of process parameters for obtaining maximum 
values of MR and minimum values of Ra at optimized process parameters. For the confirmation of the results 
obtained by MOPSO and finding the effectiveness of the optimization technique (MOPSO) some confirmation 
tests (Sr no. 1 and 2) are carried out on the workpiece and the Table 11. shows that the confirmatory results for 
MR and Ra have been found to differ from predicted values by 3.46% and 4.5% respectively which are found 
within the 95% confidence interval (CI).

Conclusion
In the present study, RUM is employed for machining (drilling) of super alloys (Inconel 718) at different process 
parameters in order to obtain the optimized process parameters using PSO and MOPSO. The following conclu-
sion are drawn from the present study:

• It is observed that empirical models are quadratic in nature for both MR and Ra. In addition, two interactions 
are found significant for MR and three interactions are found significant for Ra.

• The values of MR are increased with increase in the feed rate whereas surface roughness is decreased with 
increase in feed rate. It is owing to enhancement of tool indentation rate. Conversely, the MR is decreased 
with decrease in mesh size whereas the surface finishing is increased with decrease in mesh size.

• It is concluded that tool rotational speed and ultrasonic power do not significantly affect the MR as compared 
to Ra.

• It is witnessed by SEM analysis that the material is withdrawn from the workpiece in the form of big chunks 
and intercrystallite cracks.

• The maximum value of MR of 0.8625  mm3/sec is obtained for a tool speed of 5400 rpm, a feed rate of 
0.0175 mm/s, an ultrasonic power of 70%, and a diamond abrasive grit size of 140 mesh. The minimum Ra 
of 0.572 µm is observed for a tool speed of 5400 rpm, a feed rate of 0.0125 mm/s, an ultrasonic power of 60%, 
and a diamond abrasive grit size of 140 mesh.

• In the case of MOPSO, numbers of solutions are generated at the optimal setting of process parameters in 
order to get the maximum value of MR and minimum values of Ra.

Figure 16.  Iteration plot for MR.

Table 8.  Optimum values of RUM conditions for MR. 

RUM Parameters
Predicted value from 
PSO

Confirmation through 
experiments

Tool rotation Feed rate Ultrasonic power
Diamond abrasive grit 
size MR MR

5400 rpm 0.0175 mm/sec 70% 140 mesh 0.8931  mm3/sec 0.8625  mm3/sec
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Figure 17.  Iterations plot for Ra.

Table 9.  Optimum values of RUM conditions for Ra. 

RUM Parameters
Predicted value from 
PSO

Confirmation through 
experiments

Tool rotation Feed rate Ultrasonic power
Diamond abrasive grit 
size Ra Ra

5400 rpm 0.0125 mm/sec 60% 140 mesh 0.554 µm 0.572 µm

Figure 18.  Pareto front for objective functions MR and Ra. 
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