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A fully automatic method 
for segmentation of soccer playing 
fields
Carlos Cuevas 1,2*, Daniel Berjón 1,2 & Narciso García 1,2

This paper proposes a strategy to segment the playing field in soccer images, suitable for integration 
in many soccer image analysis applications. The combination of a green chromaticity-based analysis 
and an analysis of the chromatic distortion using full-color information, both at the pixel-level, allows 
segmenting the green areas of the images. Then, a fully automatic post-processing block at the 
region-level discards the green areas that do not belong to the playing field. The strategy has been 
evaluated with hundreds of annotated images from matches in several stadiums with different grass 
shades and light conditions. The results obtained have been of great quality in all the images, even in 
those with the most complex lighting conditions (e.g., high contrast between sunlit and shadowed 
areas). In addition, these results have improved those obtained with leading state-of-the-art playing 
field segmentation strategies.

Association football, more commonly known as football or soccer, is the most popular sport  worldwide1,2. Since 
its foundation, in 1863, it has spread throughout the planet, reaching almost all  countries3. It is the sport with 
the largest television audience with nearly 4 billion  followers4, it has millions of  practitioners5, and it is also the 
most studied  sport6.

As a consequence of this great popularity and thanks to the technological advances produced in the last 
decade, the demand for artificial vision applications to automatically analyze soccer matches has grown enor-
mously in recent  years7. On the consumer end, spectators demand applications capable of enriching the content 
of live  broadcasts8. Meanwhile on the professional side, clubs and players request applications aimed at a better 
understanding of the game, studying team tactics, or creating training sessions to improve player  performance9–11. 
Additionally, the Video Assistant Referee (VAR), introduced in 2018 into the Laws of the Game of the Interna-
tional Football Association Board (IFAB) to help referees in reviewing decisions by means of video footage, has 
given rise to a notable increase in the technology used in the  stadiums12. Besides, during recent years there has 
been a surge of interest in applications focused on accurately predicting soccer  games4.

Motivation. Many soccer-related applications require detecting different kinds of elements that appear on 
the playing field: players, ball, line marks, and grass bands. The detection of the  players13 and/or the  ball14 is used 
in applications that try to identify relevant events that take place during the matches (e.g., goal scoring, shots 
on goal, or corner kicks), or in applications that perform high-level analyses about the matches (e.g., possession 
statistics, offside detection, or team tactics). Regarding the detection of the line marks and the grass  bands15, it 
is used in applications that require to register the images in a model of the playing field and/or estimate the pose 
of the cameras for high-level purposes, such as including augmented reality in images or obtaining some player 
statistics (e.g., distance traveled, speed, etc.).

The pipeline in Fig. 1 illustrates how the proposed segmentation strategy could be used to complement the 
analysis strategies described in the previous paragraph. The segmentation of the playing field allows discarding 
areas of the images that are irrelevant for such strategies (e.g., the stands, the billboards or the sky)7. Therefore, 
included as a first stage in any of them, it has the potential to prevent false detections outside the playing field, 
thus improving their results.

It is important to note that all of these applications are intended for use on video streams. Consequently, the 
segmentation strategies that are proposed to complement them must be fully automatic.

Typical segmentation strategies assume green as the dominant color in the playing field and try to isolate 
such color by analyzing the histogram of the hue component in the HSV (hue, saturation, value) color space or 
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by establishing simple rules in the RGB (red, green, blue) color space. Although these methods are capable of 
providing high-quality results on many images, they fail in images containing certain colors in the stands or in 
the billboards, and also in images featuring heavy contrast between sunlit and shadowed areas. Furthermore, all 
of these strategies include region-level post-processing steps that depend on thresholds which, in turn, depend 
on the characteristics of the images (e.g., the zoom and the spatial resolution). This scene-dependent thresholds 
make it difficult for strategies to be fully automatic.

Contribution. We propose a new playing field segmentation strategy that is capable of providing very high 
quality results in images taken from different points of view and in complex situations (e.g., lawn striping result-
ing from bending grass in different directions, or images with a high contrast between sunlit and shadowed 
areas). Two public databases that contain over 450 manually annotated images from 25 matches in several sta-
diums with different shades of grass and light conditions have been used to assess the quality of our strategy. 
This evaluation has shown that our results are significantly better than those of most outstanding playing field 
segmentation methods.

The specific contributions of this paper are: 

1. An analysis based on normalized green is combined with another analysis based on chromatic distortion in 
the RGB color space to segment, at the pixel level, the green areas of images. The combination of these two 
analyses allows obtaining high-quality results regardless of the shades of green of the grass bands and the 
lighting of the stadiums.

2. A post-processing stage at the region level that allows discarding areas of the image that do not belong to 
the playing field but that show a color similar to that of grass. Unlike the post-processing included in other 
methods, the one we propose does not depend on scene-dependent thresholds, which greatly simplifies its 
application regardless of the characteristics of the images (e.g., their resolution) and their content (e.g., the 
size of players).

Organization. The paper is organized as follows. First, “Related work” section   reviews the main image 
image segmentation strategies in the literature, paying special attention to those used in soccer. In “System 
overview” section an overview of the proposed strategy is provided, which includes three main parts: a pre-pro-
cessing stage (“Pre-processing” section), a pixel-level analysis (“Pixel-level analysis” section), and a region-level 
analysis (“Post-processing” section). Experiment results are reported in “Results” section and, finally, “Conclu-
sions” section presents the conclusions of the paper.

Related work
This section summarizes the main types of strategies that can be found in the literature to segment images. First, 
general purpose strategies are mentioned. Secondly, those used in the scope of soccer are described. Finally, we 
focus on the strategies that, like the proposed one, have the aim of segmenting the playing field in soccer images.

Image segmentation. The goal of image segmentation is to segment an image into consistent objects or 
regions of interest (ROI)16. It is a pre-processing stage in many image-based applications like biometric identifi-
cation, medical imaging, object detection and classification, and pattern  recognition17.

In the literature, a wide range of image segmentation algorithms have been developed, starting with the sim-
plest ones like  thresholding18, region-growing19, k-means  clustering20, or watershed  methods21, and progressing 
to more complex ones like active  contours22, graph  cuts23, conditional and Markov Random  Fields24, or deep 
learning  methods25.

In addition, there are many different applications of video analysis that require segmenting the moving objects 
in the scene (called foreground), separating them from the static data (called background)26, such as video 
 surveillance27, Human-Machine Interaction (HMI)28, or object  tracking29. To achieve this, a variety of moving 
object segmentation algorithms have been presented in the literature, ranging from unsupervised techniques 
(e.g., background subtraction) to semi-supervised (e.g., spatio-temporal graphs) or interactive (e.g., graph par-
titioning models)  techniques30.

Segmentation in soccer. In the case of image analysis of soccer matches, we can find in the literature 
algorithms designed to carry out the following three types of segmentation:
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Figure 1.  Possible system pipeline including the proposed method as a first step.
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• Playing field segmentation: They are focused on segmenting the playing field and are typically based on 
modeling the greenness of the grass (see “Soccer playing field segmentation” section).

• Line mark segmentation: They focus on the segmentation of the lines that delimit the playing field, since 
these lines are required to register the images in a model of the playing field and/or estimate the pose of the 
cameras, which in turn allows addressing different high-level tasks, such as including virtual elements in the 
 images31.

• Players and/or ball segmentation: They try to segment the moving objects on the playing field (i.e., players 
and ball). These objects are typically taken as input data by different types of high-level analysis applications 
(e.g., analysis of the ball possession or analysis of team tactics)7.

Soccer playing field segmentation. Although it is technically possible to segment the playing field using 
many of the segmentation algorithms mentioned above (e.g., watershed, region-growing, or deep learning), due 
to their simplicity and because the green color of the grass is the most significant feature of the playing field, the 
most outstanding strategies in the literature use thresholding algorithms that are applied to histograms of differ-
ent color components. These strategies can be classified into the following three types:

• Hue-based methods: Those based on the hue component of the HSV color space.
• RGB-based methods: Those based on the analysis of the RGB color space.
• g-based methods: Those that analyze the green chromaticity (g) of the image.

Hue-based methods analyze the histogram of the hue component in search of the dominant mode, which is 
presumed to correspond to the green color of the playing field. Then, they separate this mode from the rest of the 
histogram data. In some  works32,33, fixed thresholds around the dominant mode in the hue histogram are used. 
 In34, the thresholds are selected by considering a fixed width around the dominant mode of the hue histogram. 
 In35,36, training sets of images are used to determine the average position and width of the dominant peak in 
the hue histograms. Although hue-based methods are able of providing successful results in simple cases, auto-
matically selecting the appropriate thresholds can be very complex in some images, as hue histograms are often 
very multimodal. Moreover, these methods are very sensitive to the size of the histogram bins and fail in images 
where the dominant mode does not correspond to the color of the playing field, but to the sky or the  stands31.

RGB-based methods, assuming that the color of the playing field is primarily green, try to segment the 
playing field by determining what pixels satisfy certain relationships between the red (R), green (G), and blue 
(B) components of the RGB color space.  In37–39, it is assumed that the pixels of the playing field must comply 
with the rule G > R > B . Alternatively,  in40 it is assumed that the playing field pixels are those satisfying G > R 
and G > B .  In41, 2-dimensional histograms in a normalized RG color space are used to deal with grass color 
variations, where the peaks determine the playing field data.  In42,43, RGB 3-dimensional histogram techniques 
are proposed. The main advantage of these methods is their simplicity. However, they fail in images with areas 
saturated by sunlight or with strong shadows.

g-based methods have been proposed recently as an alternative to the two types of previous methods. They 
start from the fact that g is highly invariant to changes in illumination and, additionally, provides a very simple 
criterion for classifying colors in terms of their closeness to green (a purer green as g increases).  In44, the prob-
ability density function (pdf) of g is approximated using a Gaussian Mixture Model (GMM). Then, the playing 
field mask is obtained by selecting the modes of the pdf that denote data with mainly green information and 
applying a region based analysis.  In45, a similar analysis of the pdf of g is applied to perform a segmentation that 
is robust to both floodlighting and natural lighting. Although these methods yield good-quality results in play-
ing fields with different shades of grass and variations in lighting, they generally include areas of the billboards 
or stands with colors such as cyan or yellow, since the criterion they use to segment does not allow separating 
green from those colors.

It is important to point out that all these strategies are based on the analysis of the color characteristics of the 
images at the pixel level. Consequently, they require applying different kinds of region-based post-processing 
(e.g., morphological operations, convex hulling, etc.) to: i) discard areas of the image that do not belong to the 
playing field but that show a color similar to that of grass and; ii) deliver a single connected region. These post-
processing stages include several thresholds that are highly dependent on the size and shape of the non-green 
objects that appear on the playing field (the white lines and the players), which in turn are dependent on the 
size of the images, the location of the camera, and the zoom used. This ad-hoc tailoring significantly reduces the 
usability of all these strategies.

System overview
The proposed strategy comprises a pre-processing block, two pixel-level processing steps, and one region-level 
post-processing step, as shown in Fig. 2.

In the pre-processing block (“Pre-processing” section) an RGB image Iopen , in which the white line marks in 
the playing field are integrated in the grass, is derived from the original image, I.

Then, a pixel-level segmentation that is based on the analysis of the green chromaticity of Iopen is performed 
(“Pixel-level analysis” section), which yields an initial binary mask, M̂PF , indicating the pixels in which the green 
component is the dominant one. RGB-based chromaticity distortion analysis is then performed to remove pixels 
that, despite having a significant contribution from the green channel, are not part of the playing field (“Pixel-
level analysis” section). As a result of this second analysis, the binary mask M̃PF is obtained.
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The final mask of the playing field, MPF , is obtained by applying a region-level post-processing module that 
discards green regions that, despite having a color compatible with the grass of a soccer playing field, are not 
part of it (“Post-processing” section).

Pre-processing
In many images, the presence of white line marks results in the playing field being represented by multiple con-
nected regions after segmentation at the pixel level. Since the number and characteristics of these regions are 
unknown, complex threshold-based rules are typically required at the region-level post-processing stage. The 
purpose of this pre-processing is to prepare the original image in such a way that after pixel-level segmentation 
is applied, the playing field is represented by a single connected region, thus making much easier the post-
processing at the region level.

Let I be an original RGB image of a soccer match (see Fig. 3.a). To integrate the white line marks in the play-
ing field (i.e., so that the lines adopt a color similar to that of the grass that surrounds them), a morphological 
grayscale opening operation is applied to each channel to obtain a new RGB image, Iopen (Fig. 3.b). For this, a 
circular flat structuring element is used, whose diameter de must be slightly greater than the width of the line 
marks. If this diameter is too small, the lines will not blend well enough into the playing field. On the other hand, 
if it is too large, some elements of the playing field perimeter will be wrongly integrated into the grass, which will 
reduce the accuracy of the results. Since the thickness of the white line marks is proportional to the size of the 
images, we have decided to use a diameter proportional to the size of the diagonal of the image:

where H and W are, respectively, the height and width of the image in pixels. The choice of the appropriate value 
of αe and its influence on the quality of the proposed strategy are discussed in the “Results” section.

Pixel-level analysis
Green chromaticity analysis. This analysis makes it possible to identify, at the pixel level, the areas of 
the image with a greater contribution of green than other primary colors. In addition, it allows these areas to be 
separated based on the shade of green that characterizes them. To do this, the normalized green component of 
Iopen is analyzed, which is obtained as:

where Ropen , Gopen , and Bopen are, respectively, the red, green, and blue components of Iopen , and (r, c) are the 
coordinates of the pixels (row and column, respectively).

The pdf of g is expected to exhibit one (or several) modes corresponding to the different shades of green at 
high values, and several spurious modes corresponding to other colors at lower  values44. To identify the dif-
ferent groups of pixels with different shades of green, first, the pdf of g is approximated using the Expectation-
Maximization (E-M) algorithm from a different number of Gaussian distributions (from 1 to NG ) initialized 
with equal weights and with means uniformly distributed over the data range. Then, the Akaike information 
criterion (AIC)49 is used to select the set of Gaussians that provide the best fitting. The experiments carried out 
have shown that NG = 6 is enough to obtain good fits in all the images and that, in addition, the quality obtained 
hardly changes if other values close to the selected one are used. The results section analyzes in detail the influ-
ence of this parameter on the strategy.

Assuming that green is the dominant color of the playing field (i.e., Gopen(r, c) > Ropen(r, c) and 
Gopen(r, c) > Bopen(r, c) ), the pixels that constitute it must meet g > 1/3 . Taking this into account, an initial mask 
of the playing field, M̂PF , can be easily obtained by selecting the pixels with values of g greater than the threshold

where m0 is the first local minimum of the pdf that is below the first of the peaks above g = 1/3 . In this way, only 
the data represented by modes of the pdf whose peaks are located above g = 1/3 are selected.

Figure 3 shows, for some representative images, their green chromaticity components (Fig. 3c), the pdf 
resulting from the adjustment with the E-M algorithm (Fig. 3d) and the images segmented using the mask 
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Figure 2.  Block diagram of the proposed strategy.
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M̂PF (Fig. 3e). In the case of the first two examples (images in the left and central columns), it can be seen that 
the result of the segmentation is of high quality, having correctly identified the green areas of the playing field. 
However, in these results it can be seen that some small regions in the stands have also been segmented. These 
regions will be removed by applying the post-processing described in “Post-processing” section. Regarding the 
third of the examples in the figure (images in the right column), the playing field has also been segmented cor-
rectly. However, much of the billboards also appear incorrectly segmented as part of the grass. This is because 
the green chromaticity of some colors like yellow or cyan is also greater than 1/3. Therefore, green chromaticity 
analysis cannot discriminate between green and these other colors. To deal with this problem, the chromatic 
distortion analysis described below is applied.

Chromatic distortion analysis. In the pdf obtained in the previous analysis, each of the modes above the 
selected threshold Tg represents data with a similar level of green. However, as just discussed, there are some 

Figure 3.  Results obtained on three images after applying the pre-processing and the analysis at the pixel level. 
Original images  from46,47,  and48.
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pixels that do not have the color of grass and yet are also represented by these modes (e.g., those with cyan or 
yellow colors). By analyzing the chromatic distortion between the RGB value of the data of each mode and the 
average RGB value of said data it is possible to identify and discard pixels that, having values of g greater than 
1/3, are nevertheless of a color very different from the green of the grass.

This analysis is carried out as follows: 

1. Within the envelope of the set of Gaussian distributions used to estimate the pdf of g , the set of NL local 
minima above Tg are selected, L =

{

mg

}NL

i=1
.

2. Nv = NL + 2 sets of RGB data are obtained by selecting the RGB values of the pixels of Iopen with values of 
g being between:

• Tg and the first element in L.
• Consecutive pairs of local minima in L.
• The last local minimum in L and 1.

3. For each of these sets, each containing RGB data with a similar green chromaticity, the chromatic distortion 
is analyzed to discard colors that, although similar in their green chromaticity, can be readily told apart using 
the full color information. Let v ∈ R

3 be the vector with components R, G and B, representing the reference 
color resulting from averaging all RGB colors in the data set. All the vectors of the form αv represent the 
same color with varying luminance proportional to their magnitude, while different colors are represented 
by vectors running in different directions: the greater the angle between two such vectors, the more dissimi-
lar they are. Let u ∈ R

3 be the vector corresponding to the RGB color of a pixel we want to compare to the 
reference color v . We can uniquely write u as the sum of two orthogonal components: uv = (u · v)v/�v�2 , 
parallel to v , and uv⊥ = u − uv , perpendicular to v . Thus, we can define the tangent of the angle between u 
and v as 

 The greater cd, the more dissimilar u and v , discounting the effect of lightness due to illumination changes.
4. A new mask of the playing field is obtained as: 

 where Tc is a threshold that effectively restricts acceptable colors to those inside a cone whose axis is the 
reference color, as illustrated in Fig. 4. The range of adequate values for this threshold is analyzed in the 
“Results” section.

In the example of Fig. 5, which corresponds to the third case illustrated in Fig. 3 (image in which the chromaticity 
analysis of green is not sufficient to correctly segment the playing field), the pdf of g (Fig. 5a) has been obtained 
by mixing 4 Gaussian distributions, two of them representing modes above Tg . The local minima separating 
these two modes has been depicted with a green dot and the dotted red line indicate the position of Tg . The 
images in Fig. 5b,c correspond, respectively, to the RGB data and their ratios in each mode. It can be seen that 
billboards have given rise to the highest cd values. Consequently, as can be seen in Fig. 5d, where the result of 
the segmentation is compared before and after the chromatic distortion analysis, billboards have been removed 
by applying Eq. (5).

In images where the predominant color in the stands is yellow or cyan, some of the Nv sets of data analyzed 
could be composed entirely of non-pitch pixels. An example of this can be seen in Fig. 6, where the people in the 
stands wear predominantly yellow, and the first set of data analyzed is representing mainly pixels in the stands. To 
deal with this issue, before applying Eq. (5), the histogram of cd values is analyzed. While the histograms of the 
data sets that are part of the playing field have a very narrow main mode that is close to zero (i.e., the RGB color of 

(4)cd =

∥

∥uv⊥
∥

∥

�uv�
.

(5)M̃PF(r, c) =

{
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0, otherwise
,
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Figure 4.  Three-dimensional representation of an example of the cone that restricts the acceptable colors given 
the vectors v and u.



7

Vol.:(0123456789)

Scientific Reports |         (2023) 13:1464  | https://doi.org/10.1038/s41598-023-28658-1

www.nature.com/scientificreports/

the vast majority of this data is very uniform), histograms of data sets that do not represent the playing field have 
a much wider main mode that, sometimes, is placed significantly away from zero (i.e. the RGB colors of the set 
differ considerably). Therefore, these unwanted data sets can be easily identified and discarded by setting as valid 
only data sets that have a histogram of cd with a main mode below Tc . In the example in Fig. 6 the first two data 
sets analyzed have histograms that do not meet this condition. Therefore, these two data sets will be discarded.

Post-processing
By means of the analyses described in “Pixel-level analysis” section it is possible to correctly segment the grass 
of the playing field. However, as these analyses are at the pixel level, the results obtained include some false 
detections due to elements that do not belong to the playing field but have a very similar color. Furthermore, 

Figure 5.  Example of the quality improvement obtained with the chromatic distortion analysis. Results 
corresponding to the original image  from48.
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players were also not included in the segmentation result, appearing as holes in the playing field mask. To solve 
these problems, the proposed strategy includes a final analysis at the region level. This analysis, unlike other 
segmentation strategies, is completely automatic and avoids the use of morphological operations, which largely 
depend on the size of the images, the location of the camera, and the zoom used.

The final binary mask, MPF , resulting from this region-level post-processing is obtained as follows: 

1. To include the pixels occupied by the players in the final segmentation, a flood-fill  operation50 is applied to 
the mask M̃PF.

2. Finally, to eliminate false detections, the largest region from the resulting ones is selected.

Figure 6.  Analysis of the histograms of the chromatic distortion values. Original image  from46.
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It is important to note that this simple mechanism to get rid of false detections is made possible by the pre-
processing stage included in our strategy. If this pre-processing is not included, the mask M̃PF could contain 
multiple regions associated with the playing field and, therefore, it would be necessary to analyze how many 
regions to select.

Results
This section summarizes the results provided by the proposed playing field segmentation strategy. First, “Analysis 
of the results obtained” section analyzes the quality of the results obtained, as well as the influence on this quality 
of each of the stages that make up the strategy. Then, “Parameter analysis” section discusses parameter selection 
for optimal results. “Limitations” section discusses the limitations of the strategy. Finally, “Comparison with other 
strategies” section compares our results with those obtained using other segmentation strategies.

To analyze the quality of our strategy, images from the following two public databases have been used, which, 
to our knowledge, are the only ones that provide ground truth files that include binary masks indicating what 
areas of the images correspond to the playing field:

• LaSoDa: The Labeled Soccer Database (LaSoDa) consists of 60 annotated Full HD images ( 1920× 1080 pixels) 
corresponding to five matches played in stadiums with different characteristics (different camera positions 
and different shades of grass). These images show different zoom levels (from images that show only the goal 
area to images that show more than half of the pitch) and have been acquired with four different types of 
cameras (master camera, side camera, end camera, and aerial camera). Additionally, it includes challenging 
lighting conditions (day and night matches and strong contrast between sunlit and shaded areas). This dataset 
is available at https:// www. gti. ssr. upm. es/ data/ lasoda.

• Homayounfar’s database: The database proposed  in51 is composed by 395 HD images ( 1280× 720 pixels) 
from twenty matches in stadiums with different grass textures and lighting conditions. Unlike LaSoDa, all of 
its images have been acquired with the master camera (the one used most of the time in soccer broadcasting, 
placed approximately on the extension of the halfway line) and show similar zoom levels. However, they are 
more varied than the LaSoDa images in terms of shades of grass and presence of shadows.

Quality has been measured at the pixel level by the recall ( rec ), precision ( pre ), and F-score ( f  ) as follows:

where tp , fn , and fp are, respectively, the amounts of true positives, false negatives and false positives. Note that 
the F-score is also known as F1-score or Dice Similarity Coefficient (DSC).

Regarding the computational cost of the strategy, the most costly step, by far, is the well-known E-M algorithm 
that is used to approximate the pdf of g . However, the literature reports that it is feasible to run E-M on a problem 
of our scale (histograms made of just a few hundred data points) within very few  milliseconds52. Consequently, 
we consider it feasible to make our system work in real time on video sequences.

Analysis of the results obtained. Table 1 summarizes the results obtained for each of the 25 matches in 
which the 455 analyzed test images are distributed (the images corresponding to all these results are available at 
https:// www. gti. ssr. upm. es/ data/ playi ng- field- segme ntati on). These results correspond to the following cases:

• Case 1: Results from the mask M̂PF (after performing the green chromaticity analysis).
• Case 2: Results from the mask M̃PF (after performing the chromatic distortion analysis).
• Case 3: Results from the mask MPF (final results).

In addition, Fig. 7 shows some representative results obtained in images with different lighting conditions, shades 
of grass, zoom levels and colors on billboards and stands.

The high recall values obtained after applying the green chromaticity analysis (Case 1) shows that this first 
stage of analysis correctly identifies the vast majority of the pixels that make up the playing field. However, false 
detections due to the presence of cyan or yellow regions have resulted in significantly lower precision values, 
especially in the case of the images of some matches (e.g., Match 3) in Homayounfar’s database in which the 
predominant color in the stands is yellow or cyan.

Most of these false detections disappear after applying the chromatic distortion analysis (Case 2), which 
results in a significant increase in precision.

The final results (Case 3) show that, after applying the analysis at the region level, an improvement in both 
recall and precision is achieved. This is because the gaps due to the presence of players on the playing field have 
been filled in and, in addition, the false detections caused by small regions in the stands with colors similar to 
those of the grass have been eliminated.

Parameter analysis. We had previously stated that the strategy depends on three parameters that must be 
configured manually (one in the pre-processing stage and two in the pixel-level analysis stage). In this subsec-
tion, the influence of these parameters on the quality of the results is analyzed.

The results in Table 1 have been obtained with the combination of parameters that has resulted in the highest 
overall F-score. These parameters are summarized in Table 2, whereas the graphs in Fig. 8 report the variations 

(6)rec =
tp

tp+ fn
, pre =

tp

tp+ fp
, f =

2tp

2tp+ fp+ fn
,

https://www.gti.ssr.upm.es/data/lasoda
https://www.gti.ssr.upm.es/data/playing-field-segmentation
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in quality of the results when any one of them is modified. The following conclusions can be obtained from 
these graphs:

• Proportionality factor that determines the diameter of the structuring element used in the pre-processing, 
αe : Although the best results are obtained with αe = 0.5 , for higher values of this parameter the quality is 
only very slightly reduced. On the other hand, if αe is too low (e.g., αe = 0.25 ) or the pre-processing is not 
applied (i.e., αe = 0 ), the quality reduction is very noticeable, since the white lines are not well integrated 
into the grass.

• Maximum number of Gaussian distributions in the estimation of the pdf of the green chromaticity, NG : For 
values above 2 the quality is very similar, being slightly better in the case of NG = 6.

• Maximum allowed chromatic distortion, Tc : The quality of the results is very high with values of Tc in a 
relatively wide band ( Tc ∈ [0.15, 0.4] ). Outside this range the quality is noticeably reduced.

This analysis shows that none of the parameters is especially critical for the strategy, since all of them have 
significantly wide ranges of values in which the quality of the results is very similar.

Limitations. It should be noted that the proposed segmentation strategy is based on the assumption that the 
playing field is the largest green element in the image.

Consequently, it can fail in scenarios where the playing field is surrounded by large regions that are also green.
Although these situations are not common in professional stadiums (there is usually a wide variety of colors 

in the stands due to the amount of spectators that occupies them), they can occur in stadiums with green stands 

Figure 7.  Some representative results obtained with the proposed strategy. Original images  from46  and53.
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and with little or no fans, or in non-professional playing fields that, instead of being surrounded by stands, are 
surrounded by vegetation.

An example of this limitation is illustrated in Fig. 9, where the top row of images show the results obtained 
in a stadium with empty green stands and the bottom row of images shows the results in the same stadium but 
with a large number of spectators in the stands.

Comparison with other strategies. The proposed strategy has been compared to four playing field seg-
mentation methods that are representative of the three types of strategies described in “Related work” section:

Table 1.  Summary of results obtained with the proposed strategy.

Match Frames

Case 1 Case 2 Case 3

rec pre f rec pre f rec pre f

LaSoDa

 1 12 0.984 0.865 0.920 0.970 0.937 0.953 0.988 0.990 0.989

 2 12 0.993 0.974 0.984 0.978 0.985 0.982 0.992 0.997 0.994

 3 12 0.986 0.964 0.975 0.983 0.973 0.978 0.994 0.988 0.991

 4 12 0.991 0.923 0.956 0.975 0.978 0.976 0.989 0.995 0.992

 5 12 0.980 0.935 0.957 0.963 0.981 0.972 0.982 0.987 0.984

Homayounfar

 1 22 0.996 0.661 0.795 0.959 0.971 0.965 0.983 0.996 0.989

 2 14 0.988 0.893 0.938 0.959 0.976 0.967 0.977 0.993 0.985

 3 15 0.986 0.852 0.914 0.969 0.987 0.978 0.986 0.998 0.992

 4 17 0.998 0.756 0.860 0.963 0.987 0.975 0.981 0.997 0.989

 5 16 0.980 0.942 0.960 0.970 0.985 0.977 0.987 0.988 0.987

 6 17 0.961 0.929 0.944 0.951 0.980 0.966 0.976 0.999 0.987

 7 11 0.978 0.960 0.969 0.973 0.994 0.984 0.983 1.000 0.991

 8 29 0.997 0.722 0.837 0.964 0.988 0.976 0.981 0.996 0.988

 9 33 0.996 0.760 0.862 0.955 0.987 0.971 0.971 0.999 0.985

 10 12 0.976 0.966 0.971 0.966 0.992 0.979 0.986 0.998 0.992

 11 15 0.986 0.905 0.944 0.973 0.993 0.983 0.989 0.998 0.994

 12 23 0.990 0.875 0.929 0.970 0.993 0.982 0.985 0.999 0.992

 13 15 0.990 0.923 0.955 0.971 0.991 0.981 0.983 0.994 0.988

 14 15 0.983 0.941 0.962 0.973 0.990 0.981 0.988 0.998 0.993

 15 20 0.995 0.848 0.916 0.971 0.986 0.978 0.988 0.995 0.992

 16 42 0.987 0.833 0.903 0.958 0.978 0.968 0.978 0.998 0.988

 17 22 0.983 0.956 0.969 0.971 0.991 0.981 0.988 0.999 0.993

 18 18 0.975 0.938 0.956 0.962 0.990 0.976 0.986 0.997 0.991

 19 22 0.997 0.735 0.846 0.954 0.985 0.969 0.975 0.999 0.987

 20 17 0.989 0.866 0.923 0.969 0.982 0.975 0.989 0.993 0.991

Overall 455 0.988 0.860 0.919 0.967 0.982 0.974 0.984 0.995 0.990

Table 2.  Set of parameters used in the reported results.

αe NG Tc

0.5 6 0.2

0.85

0.90

0.95

1.00

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
rec 0.898 0.974 0.984 0.986 0.986 0.986 0.986 0.986 0.984
pre 0.995 0.996 0.995 0.993 0.992 0.991 0.985 0.983 0.982
f 0.944 0.985 0.990 0.989 0.989 0.988 0.986 0.984 0.983

αe

0.85

0.90

0.95

1.00

2 3 4 5 6 7 8 9 10
rec 0.974 0.983 0.985 0.984 0.984 0.984 0.984 0.984 0.984
pre 0.996 0.996 0.995 0.995 0.995 0.995 0.995 0.995 0.995
f 0.985 0.989 0.990 0.989 0.990 0.990 0.990 0.990 0.989

NG

0.85

0.90

0.95

1.00

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
rec 0.860 0.974 0.984 0.985 0.986 0.988 0.989 0.990 0.991 0.992
pre 0.998 0.997 0.995 0.993 0.990 0.980 0.974 0.964 0.946 0.935
f 0.924 0.985 0.990 0.989 0.988 0.984 0.981 0.977 0.968 0.963

Tc

Figure 8.  Quality of the results based on the values of the parameters on which the proposed strategy depends.
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• M1: RGB-based method used  in37–39, which is based in the rule G > R > B.
• M2: RGB-based method recently proposed  in40, which uses the rules G > R and G > R.
• M3: Hue-based method used in the strategies  in32–36, which is based on separating the dominant mode from 

the rest of the data in the histogram of the hue component.
• M4: g-based method used  in31,44, which is based on the analysis of the pdf of the green chromaticity.

The comparisons have been made both in the case of not applying any post-processing at the region level (called 
Case 2 in “Analysis of the results obtained” section) and applying post-processing (Case 3). As stated in “Related 
work” section, the strategies in which these methods are used apply different region-based post-processing 
stages. To make a fair comparison between methods and given that the post-processing in the proposed strategy 
is the only one that does not depend on pre-established thresholds, our post-processing has been applied to all 
methods in the evaluation of the Case 3.

Since the area of the playing field visible in any image is always a single convex region, many of the strategies 
we compare against apply a convex hull as the last stage of their region-level post-processing. For this reason, 
we have decided to include in the comparisons a fourth case (Case 4) in which convex hulling is applied as the 
last stage of the post-processing.

The graphs in Fig. 10 compare the global quality obtained with our strategy and with the 4 previously 
described methods in the three cases mentioned. In these graphs, in addition to the values of rec , pre , and f  , the 
range of values of each of these variables has also been included, as well as the standard deviation of the values 
of f  ( fstd).

The results before applying the post-processing (Case 2) show that our strategy is the one that obtains the 
best results overall. The methods M1 and M3 result in many false negatives in images with areas of the playing 
field with strong shadows (see Fig. 11). In images where the stands include areas with poor color information 
(i.e. the red, green, and blue channels are very similar) the methods M1 and M2 result in several false positives 
(see Fig. 12). Regarding, the method M4, it fails in images with areas with colors that cannot be correctly filtered 
in the green chromaticity color space (e.g., the sky in Fig. 12 or the billboards in Fig. 13).

The graphs in Fig. 10 also show that after including post-processing (Case 3) the quality of the results of the 
five compared strategies is improved (with our strategy still obtaining the best results).

Regarding the Case 4, as expected, by including the convex hulling in the post-processing the recall of all 
methods is improved. However, this improvement does not compensate for the worsening of the precision val-
ues (i.e., the F-score values get worse). The method least affected by this quality reduction is the one proposed.

Case 1 Case 2 Case 3Original

Figure 9.  Results obtained in a stadium with green stands: without an audience (top row of images) and with 
some audience (bottom row of images). Original images  from54  and55.

0.00
0.20
0.40
0.60
0.80
1.00

M1 M2 M3 M4 Ours
rec 0.949 0.984 0.946 0.982 0.967
pre 0.952 0.928 0.972 0.915 0.982
f 0.950 0.955 0.959 0.947 0.974
f_std 0.113 0.039 0.067 0.046 0.015

Case 2

0.00
0.20
0.40
0.60
0.80
1.00

M1 M2 M3 M4 Ours
rec 0.960 0.996 0.962 0.992 0.984
pre 0.985 0.963 0.994 0.948 0.995
f 0.972 0.979 0.978 0.969 0.990
f_std 0.127 0.042 0.072 0.050 0.008

Case 3

0.00
0.20
0.40
0.60
0.80
1.00

M1 M2 M3 M4 Ours
rec 0.972 1.000 0.978 0.999 0.998
pre 0.954 0.919 0.972 0.907 0.979
f 0.963 0.958 0.975 0.951 0.988
f_std 0.115 0.055 0.057 0.061 0.014

Case 4

Figure 10.  Summary of the quality obtained with our strategy and 4 other segmentation methods. The error 
bars report the best and worst result for each metric across the whole dataset, showing the robustness of our 
proposal.
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Finally, we must take into account that our strategy is not only the one that provides the best overall results 
(the highest F-score), but it is also the one that provides the lowest value of fstd , which shows that our results 
are the most consistent.

Conclusions
A novel strategy to efficiently segment the playing field in soccer images has been presented. By approximating 
the pdf of the green chromaticity using the E-M algorithm, the pixels of the image that mainly include green 
data are segmented. Then, to remove the pixels that are not part of the grass but have colors with an important 
contribution of green (e.g., yellow), a chromatic distortion analysis is performed. Finally, a region-level stage 

Original

M1

M2

M3

M4

Ours

Case 2 Case 3 Case 4

Figure 11.  Results obtained in an image with strong shadows. Original image  from46.
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that does not depend on any user-defined parameter allows removing regions that do not belong to the playing 
field but that show a color similar to that of grass.

This strategy has been validated on two databases that feature a wide variety of stadiums with different shades 
of grass and illumination conditions, yielding excellent results with a single set of parameters across both data-
bases and clearly outperforming existing state-of-the-art approaches.

Original

M1

M2

M3

M4

Ours

Case 2 Case 3 Case 4

Figure 12.  Results obtained in an image with poor color information in the stands. Original image  from46.
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Data availibility
All the original images and their corresponding results are available at https:// www. gti. ssr. upm. es/ data/ playi 
ng- field- segme ntati on.
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