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Deep‑learning‑based precise 
characterization of microwave 
transistors using fully‑automated 
regression surrogates
Nurullah Calik 1, Filiz Güneş 2, Slawomir Koziel 3,4, Anna Pietrenko‑Dabrowska 4, 
Mehmet A. Belen 5 & Peyman Mahouti 6*

Accurate models of scattering and noise parameters of transistors are instrumental in facilitating 
design procedures of microwave devices such as low-noise amplifiers. Yet, data-driven modeling of 
transistors is a challenging endeavor due to complex relationships between transistor characteristics 
and its designable parameters, biasing conditions, and frequency. Artificial neural network (ANN)-
based methods, including deep learning (DL), have been found suitable for this task by capitalizing on 
their flexibility and generality. Yet, rendering reliable transistor surrogates is hindered by a number of 
issues such as the need for finding good match between the input data and the network architecture 
and hyperparameters (number and sizes of layers, activation functions, data pre-processing methods), 
possible overtraining, etc. This work proposes a novel methodology, referred to as Fully Adaptive 
Regression Model (FARM), where all network components and processing functions are automatically 
determined through Tree Parzen Estimator. Our technique is comprehensively validated using three 
examples of microwave transistors and demonstrated to offer a competitive edge over the state-of-
the-art methods in terms of modeling accuracy and handling the aforementioned issues pertinent to 
standard ANN-based surrogates.

Low-cost and accurate models of microwave transistors are indispensable in simulation of active circuits. This, in 
turn, is essential for efficient circuit characterization and design. Design procedures generally require behavioral 
models of the transistors, which adequately represent their large- and small-signal characteristics over a range 
of biasing conditions. Standard transistor models for microwave and RF applications usually employ physics-
based equations1. However, such models come short in certain aspects, e.g., reliable capturing of the electrical 
characteristics. Furthermore, the development of modelling equations for new physical phenomena requires 
considerable expertise. Finally, parameter extraction for equation-based models is challenging and difficult 
to automate1. An alternative for equation-based models are lookup table (LUT)-based methods2,3. However, 
these techniques require long SPICE simulation time, as well as suffer from convergence issues for large-scale 
designs. In addition, LUT-based models lack the control parameters that can be used to manipulate the output 
characteristics of the model.

Over the recent years, the role of Artificial Intelligence (AI)-based techniques has been continuously grow-
ing in the development of efficient numerical procedures for RF and microwave engineering4, including data-
driven surrogate modeling methods. AI-based modeling has the potential to tackle the limitations conventional 
approaches mentioned in the previous paragraph5. Being data-driven, AI methods eliminate the need for labori-
ous equation development, and engaging the underlying device physics. This results in expediting the model 
development process and making it more versatile4.

One of the AI techniques commonly incorporated for RF device modelling are Artificial Neural Networks 
(ANNs). ANNs have a history of being used for constructing models of semiconductor devices, especially in RF 
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applications6–8. The fundamental advantage of ANN is that it can represent highly nonlinear relations between the 
system parameters and its outputs without relying on any explicit analytical formulas. ANN model extraction is 
generally based on the concept of empirical risk minimization; therefore, local minima may be identified instead 
of a global optimum in some cases5. This becomes a challenging problem in modelling of highly nonlinear RF 
characteristics within broad ranges of input parameters.

S-parameters are widely used for RF system characterization. They are easy to measure, and readily con-
vertible to other parameters, and suitable for analysis of both passive and active components9–11. Furthermore, 
S-parameters of an active device can also be used for calculation of input and output impedance, isolation, gain, 
and stability, which are all crucial in the design of small-signal or low-noise amplifiers11. At the same time, 
transistor S-parameters are highly dependent on the frequency, biasing conditions, and the temperature. Their 
accurate rendition is pivotal to reliable design of RF systems.

ANNs have shown a great potential in the design of a variety of RF and microwave components, such as 
antennas12, reflectarrays13,14, microstrip filters6,15, as well as modelling of S- and N-parameters of microwave 
transistors. Their advantage is to construct the model exclusively based on the sampled data from the system, 
without the necessity to extract an equivalent‐circuit model, or to engage an expert knowledge4. Notwithstanding, 
a rendition of globally accurate surrogates is challenging due to dimensionality issues, the need for representing 
transistor characteristics over a broad range of parameters and frequency, and sheer handling of highly nonlinear 
responses16. Some of these issues can be alleviated by method such as model order reduction17, principal com-
ponent analysis18, high-dimensional model representation19, or variable-resolution techniques20,21.

An important consideration in constructing highly accurate ANN models is allocation of the training and 
testing data sets. This includes a sufficient coverage of the input and output space of the model through appro-
priate sampling strategies, as well as the exclusion of samples from certain regions of the space4. For example, 
in modelling of microwave transistor for LNA designs, a designer might want to exclude training samples per-
tinent to higher DC currents, where the transistor would not act as an amplifier, or can only use a narrow range 
of frequency samples from the provided data, corresponding to the target application22–30. Such methods can 
significantly increase the performance of ANN models by reducing the complexity of the dataset, yet, might be 
detrimental for the versatility of the ANN-based modeling framework. On the other hand, expanding the range 
of inputs to improve generality would significantly reduce the predictive power of ANN models. The major chal-
lenges related to general-purpose surrogate modelling of transistors can be summarized as follows: (i) several 
responses must be represented (eight, including real and imaginary parts of all S-parameters), (ii) the model 
should be valid over broad ranges of input and output parameters, (iii) the model accuracy should be maintained 
despite highly-nonlinear relations between the input and the output space.

With the recent developments of high-performance hardware systems, application of Deep Learning (DL) 
methods31,32 has been constantly increasing. DL has been demonstrated to offer improved handling nonlinear 
system outputs as compared to more traditional regression models (e.g.,33,34). Nevertheless, DL techniques face 
certain problems on their own, especially related to complex model setup (adjustment of hyper-parameters and 
the network architecture, preventing overtraining, etc.31,35–37. Mitigation of these issues can be achieved by means 
of automated architecture determination through numerical optimization16,38,39. Recently, automated architecture 
determination using Tree Parzen Estimator (TPE) has been reported40. In31 and39, the ANN model components 
such as the number of layers and hidden neurons, as well as activation functions have been determined using 
TPE-aided strategy to yield a surrogate model featuring excellent generalization capability and predictive power 
superior over the state-of-the-art benchmark methods.

In pursuit of realizing further improvements of ANN surrogates, especially in the context of modeling micro-
wave transistors, this work proposes a novel Fully Adaptive Regression Model. Therein, the number of neurons 
in all layers, the choice of the activation function, the input data pre-processing techniques, as well as the loss 
functions, are all taken as optimizable parameters, adaptively adjusted using TPE in the course of the model 
identification. As demonstrated using three examples of microwave transistors, the performance of the FARM 
surrogates is superior over state-of-the-art modeling methodologies. Design utility of the presented framework 
is illustrated through application case studies.

The novelty and the technical contribution of this work include: (i) the development of a fully adaptive DL 
based surrogate for reliable modeling of microwave transistors, (ii) implementation of the framework with auto-
mated determination of model architecture and hyperparameters, (iii) demonstration of superior performance 
of the proposed surrogate in terms of accurate representation of scattering parameters, (iv) demonstration of 
utility of the model for design of microwave devices (here, Small Signal Amplifiers (SSA)).

Proposed modeling approach: fully adaptive regression model
Machine Learning (ML) methods, including ANNs, address regression problems by creating surrogate models 
that represent (data-driven) relationships between the input and output spaces pertinent to the system at hand39. 
Their ability to generalize the data is mainly governed by the model hyperparameters31. If the parameters are not 
selected properly, even advanced ML algorithms may exhibit poor performance, which has been demonstrated 
for, e.g., ANN architectures41,42. In particular, if a model suitable for a given input data is not adequately param-
eterized, either under-fitting or over-fitting may occur43.

In this study, in order to overcome these and other issues, only the Nh—the number of layers of the network 
architecture is determined by the user, whereas other attributes are automatically determined through TPE. 
Furthermore, the adjustment of the number of layer neurons is supplemented by considering five alternative 
activation functions, the type of the pre-processing technique to be applied to the input data, as well as the loss 
function to be used in the back propagation. All of these are decided upon in the course of model identification. 
The resulting model will be referred to as Fully Adaptive Regression Model (FARM).
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Basics of ANN modelling.  A general NN model maps the input parameter vector into the output space by 
using affine transformations that are controlled by the weighting factors within the layers, as well as nonlinear 
mappings implemented by the activation functions between the layers. The latter enhance the flexibility of the 
NN models. Formally, a general NN structure is defined as

where x ∈ ℝDi×1, f(x) ∈ ℝDo×1 are the input and output vectors, respectively, Wk, bk are the weight matrices and 
bias vector, respectively, whereas σ(⋅) is a non-linear activation function. Thus, NN models map the input vec-
tor through a composition of nonlinear mappings, each realized by an individual layer of the network. Using 
backpropagation44, or other training methods (e.g.,45–47), the learnable coefficients within the layers are adapted to 
the data and optimized to solve the regression task at hand, given a network architecture. However, determination 
of the optimum number of neurons and selection of the activation functions is a non-trivial problem. The main 
contribution of this work is the development of modelling framework in which all model parameters, including 
those pertinent to the architecture, are determined automatically, here, by means of TPE.

FARM: general structure.  Figure 1 shows a general structure of the proposed FARM. The arrows indicate 
the flow of neural information, as well as the allocation of the control parameters of the blocks. Herein, the basic 
blocks are the input layer, hidden layers, and the loss function. In conventional ANN structures, as the number 
of hidden layers increases, a problem of vanishing gradient emerges48. In order to overcome this issue, a batch 
normalization (BN) layer49 is used in this study. Consequently, each layer consists of BN, a fully-connected (FC) 
part50, and the activation function (ACT). The BN layer mitigates the internal covariate shift problem49, and 
facilitates the learning process even though the depth of the model increases.

ANN models offer important solutions to regression problems. However, finding the parameters such as the 
number of neurons in the layers, and the activation function by trial and error requires user expertise. The main 
motivation of this study is to find the number of neurons in the layers and other parameters of the ANN model 
in an automatic manner. For this purpose, TPE51,52 is employed in this work. TPE is a sequential model-based 
optimization (SMBO) approach. SMBO methods sequentially construct surrogate models to approximate the 
performance of the hyperparameter set S based on historical measurements.

TPE algorithm attempts to predict the optimum of the loss functions over the surrogate model domain, which 
is built on the information gathered from the sequential measurements of the input and output points49,52. Unlike 
grid and random search, TPE does not search through the specific points. A new trial point is selected using the 
previous measurement data to maximize the expectation; subsequently a new point is tried in the loss function. 
Optimization algorithms that create a surrogate model over sequential points are called SMBO and are widely 
used in hyperparameter optimization, especially in DNN models. The generated surrogate functions are capable 
of handling not only continuous variables, but also discrete, categorical and conditional variables53. The TPE is 
a Gaussian Process (GP)-based algorithm with a tree structure that uses two different functions for building a 
surrogate model over a threshold value51,54. In TPE, surrogate model is generated over the defined domain of the 
optimization problem, which, for this study, contain the hyperparameters of the FARM. Here, the output of the 
generated surrogate model is the value of the objective function. The aim of GP is to establish a surrogate model 
to reduce the output response variance at unobserved points within the defined optimization domain. With each 
iteration, the next hyperparameter point is tried to be estimated over the previously observed points, and as the 
number of observations increases, the average response of surrogate model starts to converge.

(1)f (x) = σ(WK · · · · · · σ(W2 × σ(W1 × x + b1)+ b2) · · · · · · + bK )

Figure 1.   General architecture of the FARM model. The user only defines the number of hidden layers (set to 
three in the considered example). Subsequently, the optimum setup of parameters, pre-processing type, and the 
loss function for model training, are all determined by TPE.
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Let yi = f (θ i) be a function that is to be minimized. TPE uses previous observation 
D1:t =

{(

θ1, y1
)

,
(

θ2, y2
)

, · · · · ··,
(

θ t , yt
)}

 to generate a surrogate model. Herein, input ( θ ) and output ( y ) are 
the observation pairs. TPE tries to fit a probabilistic model for P

(

θ∗|D1:t

)

 to estimate the next (better) point. 
After this calculation, a surrogate model is selected using

where ypt+1 and y are surrogate prediction and loss function evaluation for θ t+1 parameter set. TPE uses these 
hierarchical processes to find best estimation point that maximizes the expected improvement55. Herein, there 
are two density functions for the distribution of hyperparameters. One is �(·) , where the value of the loss func-
tion is less than the threshold, and the other is g(·) , where the value of the objective function is greater than the 
threshold. Because TPI suggests better candidate hyperparameters for evaluation, the value in the loss function 
recovers much faster than random or grid search, which leads to a lower overall evaluation of the loss function. 
Although the algorithm spends more time choosing the next hyperparameters to improve the model perfor-
mance, it stands as a more suitable solution in terms of the total time spent on grid search and random search. 
Hence minimizing the human factor in model design by out the person out of the loop51.

The model is subsequently used to choose a new set of hyperparameters. TPE models P(Lavg|S) and P(S), 
where S represents the hyperparameters, whereas Lavg is the associated average loss value. In this work Hyperopt52 
Python package was used for this procedure.

FARM: data pre‑processing type selection.  In the realm of regression models, the distribution of the 
input data is an important consideration as it affects the quality of fitting the model to the output values. Depend-
ing on the setup, the input data can be fed to the model either in a raw form, or with a zero mean upon suitable 
pre-processing. If the ranges of the input parameters differ considerably, ensuring satisfactory model generaliza-
tion may be problematic. Hence, the data is usually normalized by using z-score56, or mapping it to the [– 1, 1] 
range. Either of these procedures directly affects the data distribution. The ultimate goal of these manipulations 
is to put the data into a format that the model can handle. In this work, the following commonly used four types 
of input data formats are employed: raw, zero-mean, z-score, and min–max normalization. The data-type flag 
is defined denoted as fd, and can assume a value from the set {0, 1, 2, 3}, according to the list above. This value 
is to be determined in the course of model training using TPE. Below, a brief characterization of the four data 
formats has been provided. The purpose is that for any given dataset, it is not known which preprocessing would 
be appropriate for that data. TPE undertakes the task of overcoming this problem.

We assume that the input data is stored in Ns × Nd matrix Xrw, where Nd is the input space dimensionality, 
and Ns is the number of training samples. The raw format means that the matrix Xrw is submitted to the model 
without any processing. In zero-mean format, the data is transformed as Xzc = Xrw – μx, where μx is the column-
wise mean of Xrw. Xzc matrix has the same size as Xrw, and contains data whose average is zero on a columnwise 
basis. The z-score format is defined as

where μx and σx are column-wise mean and standard deviation vectors of Xrw. The operators in (3) are understood 
component-wise. It should be noted that Eq. (3) corresponds to the so-called whitening 57,58, where the data is 
transformed to exhibit zero mean and unity standard deviation. The last format is min–max normalization, 
defined as

Herein, max(|Xzc|) defines selection of column-vise maximum element. The min max normalization aims 
at bringing all values in the zero-centered matrix between [− 1, 1]. For this reason, after taking the absolute 
value of Xzc in (4), the column-vise is divided by whatever the maximum element is. All of the mentioned data 
normalization techniques can be used in the proposed FARM model. The normalization method is determined 
through TPE, depending on the composition of the available training data. On the other hand, other techniques 
can be incorporated into FARM as well; however, this would increase the number of training iterations required, 
without much of additional benefits in terms of the model performance. Consequently, in this study, only raw, 
zero-mean, z-score, min–max data formats have been taken into consideration as data pre-processing methods. 
All three preprocessing techniques are applied to the data and each resulting matrix is kept separately. Thus, there 
are a total of four matrices containing the raw data. TPE tries these matrices and decides which normalization 
method is more suitable.

FARM: architecture‑related parameters.  The proposed FARM surrogate employs the following archi-
tectural and ANN-mapping-related parameters, jointly referred to as hyperparameters:

•	 The number θ of neurons in the fully-connected parts of the respective layers. This is one of the most impor-
tant parameters determining the behaviour of the model. In this work, θ can assume values from a discrete 
set {32, 64, 96, …, 1024}. The vector ns ∈ RNh×1 gathers the θ-values for all Nh hidden layers.

(2)P(θ t+1|D1:t) =

{

�(θ t+1) y < y
p
t+1

g(θ t+1) y > y
p
t+1

(3)Xzs = [Xrw − µx]/σ x

(4)Zmm =
Xzc

max(|Xzc|)
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•	 Activation function, which determines input–output behaviour of the neurons. In this work, a discrete set 
of five functions is considered, as indicated in Table 1. Most of these are static, whereas the Parameterized 
ReLU function contains a learnable parameter α. Selection of activation function is controlled via fa.

•	 Weight initialization function, which is an important parameter for DNN models. To ensure efficient network 
learning, randomly assigned values must remain in the operable region of the activation functions, which is 
controlled by fi. In this work, three different weight initialization function, Xiavier Normal59, Orthogonal60, 
and Kaiming Normal61, are considered as possible choices for fi.

Altogether, the ensemble of parameters (ns, fa, fi) is to be determined during the model training process, 
which—as mentioned before—is handled by TPE.

Here, it is worth mentioning that some of the parameters such as fa  and fd are categorical, these definitions 
are pertinent to names but for handing of TPE these names are represented in integer forms (for example: data 
type flag fd ∈ {0, 1, 2, 3} and activation function flag fa ∈ {0, 1, 2, 3, 4} ), each name associated with a given integer 
value. The TPE algorithm works with these values and attempts to predict the next set of parameters based on 
these integers for the mentioned categorical variables.

FARM: loss function selection.  While selecting the architecture of the model, only the parameters related 
to the hidden layers are sufficient. However, the loss functions used during the training, together with the pre-
processing of the data, also significantly affect the training process. Let ok, tk and ek be output, target and error 
vectors of kth sample of data set. The model error is then defined as ek = ok − tk. Possible loss functions utilized 
in this work have been listed in Table 2. The choice of the loss function can significantly affect the training and 
the performance of a deep neural network62. One of the conceptual differences between the proposed work and 
other studies is that the type of the loss function to be employed within the model is decided upon by TPE with 
respect to the composition of the data.

FARM: model training and validation.  The training process consists of the two main stages: Generation 
Step and Evaluation Step. After the user has determined the number Nh of hidden layers, the procedure illus-
trated in Fig. 2 is executed.

The first operation in the Generation Step is shuffling the training data randomly according to a uniform 
distribution. This is necessary as if the data collected sequentially via a certain physical value is used in the 
training process without mixing, a suitable statistical model of the data space cannot be established during 
cross validation. In the second step, the matrices Xrw, Xzc, Xzs,, Xmm, related to the fd flag are created. The model 
architecture is determined using the TPE framework, which identifies the parameter set S consisting of (fd, ns, 
fa, fi, fl) discussed earlier, along with the neuron weights, which, altogether, results in the lowest possible average 
MAE as computed using cross-validation.

In the Evaluation Step, the model error (here, MAE) is estimated using threefold cross-validation63,64. The 
estimation is utilized by TPE to generate a potentially more suitable set of model parameters. The model training 

Table 1.   Activation functions used by FARM surrogate.

fa Activation function Definition

0 Tanh (x) 2×

(

1

1+e−x

)

− 1

1 ReLU (x) Max (x,0)

2 Parameterized ReLU (x) Max (x,0) + α × min (x,0)

3 Leaky ReLU (x) (0.1) Max (x,0) + 0.1 × min (x,0)

4 Leaky ReLU (x) (0.01) Max (x,0) + 0.01 × min (x,0)

Table 2.   Loss functions employed by FARM surrogate.

flFlag Loss function Definition

0 Mean square error (MSE) 1

Ns

Ns
∑

k=1

|ek |
2

1 Mean absolute error (MAE) 1

Ns

Ns
∑

k=1

|ek |

2 Huber loss (β)























1

Ns

Ns
�

k=1

|ek |
2 |ek | < β

β ×

�

|ek | −
1

2
β

�

otherwise
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does not involve the testing data, separated before for the purpose of model validation. The final parameter values 
Sbest are assigned to be the best set found during Ni iterations of the TPE process.

The overall flow of the surrogate model construction and validation has been shown in Fig. 3. As mentioned 
earlier, the available data is shuffled to ensure that both the training and testing sets—established in the next 
step—provide sufficiently uniform coverage of the parameter space (which may not be the case without the 
shuffling: normally, the measurement data is arranged with respect to a specific transistor parameter, e.g., bias 
voltage). Subsequently, the FARM Searching Process is executed on the training data (cf. Fig. 2). The final model 
is generated using the parameter set Sbest identified using TPE using the entire available dataset. The performance 
metrics are finally evaluated to verify the model quality.

Verification case studies.  In this work, to verify the proposed model, two different approaches based on 
experimental data are taken into consideration: (I) investigation of the accuracy of representing the measured 
scattering parameters of the considered test transistors using the FARM surrogate, (II) an application case study 
involving design and realization of a small signal amplifier based on the proposed FARM surrogate model. 
With respect to the first verification approach, the measured scattering parameters of three different transistors, 
BFP193W (0.01–6 GHz) a NPN silicon, BFP720ESD (0.1–10 GHz) is a silicon germanium carbon (SiGe:C) NPN 
hetero junction wideband bipolar RF, and VMMK-1218 (0.5–18 GHz) Low Noise E-PHEMT. The measured 
scattering parameter characteristics of the transistors were acquired from the touchstone files provided by the 
manufacturer65–67, and split into the training and testing set of as it shown in Fig. 4. The frequency ranges of each 
transistor are defined by the manufacturers, in which the transistors are considered stable and can be used for 
the design purposes. Going out of these boundaries would be in conflict with the manufacturer’s suggestions and 
the nature of the transistors with respect to their aimed applications as defined in the datasheets. Furthermore, 

Figure 2.   Training of TPE-based FARM model. First, according to the St set data type, model architecture 
and loss function are determined in the Generation Step. Afterwards, TPE is executed using threefold cross 
validation MAE average in the Evaluation Step. Based on the evaluation, the new parameter set St+1 is calculated. 
The best configuration obtained after Ni iterations is selected to be the final parameter setup Sbest. In this study, 
Ni = 50. The overall procedure illustrated in the figure is referred to as the FARM Searching Process.

Figure 3.   General flow of FARM surrogate construction and validation. Randomly shuffled data is split into 
training and testing sets. FARM Searching Process (cf. Fig. 2) is executed using the training data. The optimum 
model parameters are determined, and a new model is generated over the best found parameter set Sbest. 
Subsequently, the model performance metrics are evaluated using the testing data.
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to facilitate further research by potential readers, the data sets used in this work have been shared in the IEEE 
data port68. Here, the assignment of the training data is chosen to achieve a globally accurate model while using 
a possibly small number of samples. Furthermore, we also intend to verify the extrapolation capability of the 
surrogate, therefore, the training points do not cover the entire range of bias voltages.

It should be noted that not only the ranges of DC voltage and current are different for both considered tran-
sistors, but the devices also differ in terms of the scattering parameter characteristics. Although S11 and S22 have 
similar ranges for both real and imaginary parts, which is approximately [− 1, 1], the variability range of S12 is 
[− 0.15, 0.15], and it is typically is around zero, whereas the range of S21 is much broader, i.e., [− 70, 70]. Each 
transistor has three inputs, bias voltage V, bias current I, and frequency fr. For transistor BFP193W, we have 
210 frequency points in the range 0.01 GHz to 6 GHz, whereas for BFP720ESD, we have 233 samples between 
0.1 GHz and 10 GHz, and VMMK-1218 have 65 samples between 2 and 18 GHz. In he shared data sets68, the 1st, 
2nd, and 3rd column contain the input parameters, i.e., DC bias conditions and frequency in GHz, respectively, 
whereas the scattering parameters of the transistor (S11, S21 S12, S22) are presented in a rectangular form (real and 
imaginary part), from the 4th to 11th column, respectively.

At the end of the FARM searching process, the model performance is evaluated using the testing set. The 
performance of the proposed model has been compared to the state-of-the-art methods. To ensure fair com-
parison, a Bayesian based hyper-parameter optimization process is applied to each of the benchmark models in 
order to conduct a comparison based on their optimum performance. The software and hardware setup of the 
simulation stations are as follows. The platforms used for coding of surrogate modelling algorithms are Pytorch69, 
Hyperopt52, and MATLAB. The hardware setup of the used system is AMD Ryzen 7 3700X 8-core 3.59 GHz 
processor with 32 GB RAM, along with GTX 2080TI on a 64-bit operating system.

FARM surrogate performance and benchmarking.  Table  3 provides a comparison of predictive 
power of the proposed FARM surrogate and the benchmark models. The presented error values (Mean Absolute 
Error, MEA70) are obtained as a mean of five different model setup runs initialized with different Random Num-
ber Generator seeds. The benchmark set includes Support Vector Regression Machine SVRM71, and Gaussian 
Process Regression GPR72). Their hyper parameters are optimized using a Bayesian Optimization tool a built-in 
Matlab algorithm73. The user defined parameters of the optimization process were selected as follows: K-fold 
validation with K = 3, maximum iteration number of 30, all eligible hyper-parameters of the models are included 
into the search domain74,75. Although both SVRM and GPR surrogates have been demonstrated successful in 

Figure 4.   The assignment of training (while boxes) and testing samples (grey boxes) in terms of the bias 
conditions (V/I). The yellow boxes represent those combinations of bias conditions for which measurement data 
was not available.
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S-parameter modelling4,6–8,26, the results obtained in this work suggest the opposite work. The main reason is 
that applications of SVRM, as presented in the literature, handled problems which are usually limited in terms of 
the narrow-range input space. For example, the DC current range is typically taken as 5–15 mA or 1–10 mA26, 
where the variability of the scattering parameters is quite limited. In addition to narrow input parameter ranges, 
the SVRM are typically trained using considerably larger datasets, whereas, in this work, not only a very small 
portion of the entire data set was taken as the training data, but also a small portion thereof is used in shuffled 
K-fold validation. These factors make it much more difficult for the algorithm to create an accurate mapping 
between the inputs and outputs of the model, which is an essential matter for sparse data set regression prob-
lems. In order to clearly present this phenomena, the authors added an additional simulation results where the 
performance of SVRM for narrow-range data sets is studied.

1.	 For BPF720ESD, the voltage values of [1, 2.5, 4] and [2, 3] volts are taken as training and test sample points 
respectively for [5, 10, 15] mA sample points.

2.	 For BFP193W, the voltage values of [0.5, 1.5] and [1] volts are taken as training and test sample points 
respectively for [5, 10, 15] mA sample points.

It should be emphasized that although these selected cases correspond to narrower range in terms of the 
current domain, still the training and test/hold-out ratio is 66–33%. Under the same training and optimization 
process (K-fold validation with K = 3, Bayesian optimization with maximum iteration count of 30), the perfor-
mance of the SVRM is significantly improved in this new case study, where the MAE values are reduced almost 
10 times, while the performance of the proposed FARM model did not change. For BFP193W-SVRM [old Avg. 
MAE 1.77 → new Avg. MAE 0.18]. For BFP720EDS-SVRM [old Avg. MAE 2.1 → new Avg. MAE 0.25]. For 
BFP193W-FARM-Two-Layers [old Avg. MAE 0.05 → new Avg. MAE 0.05]. For BFP720EDS-FARM-Two-Layers 
[old Avg. MAE 0.08 → new Avg. MAE 0.07]. This demonstrates that SVRM or other benchmark methods are 
simply unsuitable to handle the complexity of the considered modeling task defined over a large input space and 
small training/testing datasets.

Visual comparison of the FARM and SVRM model and their alignment with the measurement data has been 
shown in Figs. 5, 6 and 7 for selected bias conditions. It can be observed that the visual agreement between the 
measurement and FARM-predicted characteristics is excellent, as opposed to the SVRM model. Note that some 
of the presented plots correspond to data extrapolation.

As for the training time of the proposed method, for BFP193W, TPE spends 40–45 min for 50 iterations to 
estimate the parameters of a single-layer model. The values for BFP720EDS and VMMK-1218, are in the range 
30–32 and 14–18 min, respectively. The reason for these variation is that TPE in some cases chooses models 
with a high number of neurons. Therefore, the computational complexity increases. In some cases, models with 
smaller number of neurons are established. For two-layer models, the training time ranges from 90 to 96 min 
for BFP193W, 61 to 65 min for BFP720EDS, and 27–31 min for VMMK-1218. As the number of layers in the 
model increases, the training time also increases. It should be noted that the user only decides upon the number 
of layers of the models. All other design parameters are estimated by the TPE algorithm over 50 iterations. This 
can be reduced with high-end hardware setups (Graphical Processing Unit, GPU) enabling parallel processing. 
The mentioned results are obtained using the following setup: AMD Ryzen 7 3700X 8-Core Processor 3.59 GHz, 
with 32.0 GB of installed RAM, and Nvidia 2080 GPU 8 GB.

Application case study: FARM surrogate for SSA design.  As for a secondary verification of reli-
ability of the proposed method, design and realization of a small signal amplifier is presented in this section. 
To demonstrate design utility of the proposed FARM surrogate, the obtained small signal model of BFP720EDS 
is employed to design a Small Signal Amplifier (SSA). The SSA schematic is presented in Fig. 8a. Therein, the 

Table 3.   Modeling results and benchmarking.

Transistor Models S11 S21 S12 S22 Average [MAE]

BFP193W

GPR 0.56 6.7 0.037 0.310 1.9

SVM 0.32 6.5 0.020 0.195 1.77

This work
FARM single layer 0.08 0.10 0.003 0.028 0.06

FARM two layers 0.06 0.11 0.010 0.02 0.05

BFP720EDS

GPR 0.46 10.3 0.010 0.41 2.8

SVM 0.43 8.0 0.018 0.26 2.1

This work
FARM single layer 0.026 0.456 0.007 0.022 0.13

FARM two layers 0.025 0.270 0.005 0.021 0.08

VMMK-1218

GPR 0.46 8.2 0.02 0.05 2.18

SVM 0.64 3.1 0.04 0.45 1.06

This work
FARM single layer 0.09 0.25 0.03 0.09 0.12

FARM two layers 0.08 0.23 0.01 0.07 0.10
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Figure 5.   Transistor BFP 720ESD: Smith chart (for reflection coefficient) and polar graphs (for transmission 
coefficient) of (a–d) S11, S12 S21, S22 at bias voltage V = 2.5 V and bias current I = 10 mA, (e–h) S11, S12 S21, S22 at 
V = 4 V and I = 25 mA.
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Figure 6.   Transistor BFP 193W: Smith chart (for reflection coefficient) and polar graphs (for transmission 
coefficient) of (a–d) S11, S12 S21, S22 at bias voltage V = 2.5 V and bias current I = 12 mA, (e–h) S11, S12 S21, S22 at 
V = 10 V and I = 50 mA.
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Figure 7.   Transistor VMMK-1218: Smith chart (for reflection coefficient) and polar graphs (for transmission 
coefficient) of (a–d) S11, S12 S21, S22 at bias voltage V = 2 V and bias current I = 10 mA, (e–h) S11, S12 S21, S22 at 
V = 10 V and I = 50 mA.
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matching network architecture and the component values are established using the manufacturer touchstone 
data.

The circuit has been implemented on FR4 substrate. The operating frequency is 2.4 GHz, whereas the biasing 
voltage and current are 2.5 V and 10 mA, respectively. Figure 8b shows the photograph of the SSA prototype. Here 
in order to clearly present the effect of miss-prediction of scattering parameters on the actual performance of a 
SSA design, instead of touchstone values, scattering parameters obtained from SVRM and FARM are applied to 
the circuit design with touchstone files. The simulated SVRM, FARM, touchstone, and the measured S-parameters 
of the circuit can be found in Fig. 8c–e and Pout in Fig. 8f. However, it should be mentioned that the predictions 
of surrogate models are inferior beyond – 15 dBm input power due to the lack of small-signal model capabili-
ties to predict the 1 dB compression point. In order to be able to calculate parameters such as OIP3, Pout, etc., 
instead of the small-signal model (models that corresponds to one bias condition), which is used in this work, 
a large-signal model which is capable of predicting nonlinearity of the output power should be used instead. 
Table 4 provides the optimal values of FARM models while Table 5 presents the design parameters of SSA. Note 
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Figure 8.   Low-noise amplifier designed using the proposed FARM surrogate: (a) schematic diagram of the 
SSA, (b) photograph of the circuit prototype (the SSA designed using the FARM model with two internal 
layers), comparison of simulated results from Touchstone, FARM and SVRM model with measured (c) S11, (d) 
S21, (e) S12, (f) Pout @ 2.4 GHz, characteristics of SSA.
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a good agreement between FARM-based predictions, touchstone and the measurements. At the same time, the 
predictions based on the SVRM are significantly worse.

Conclusion
This paper introduced a novel approach to data-driven modelling of microwave transistors. The presented meth-
odology, referred to as FARM combines DL techniques with automated determination of the model architecture 
using Bayesian optimization. It allows for reliable modelling of transistor S-parameters over broad ranges of bias 
conditions and operating frequencies.

Its most important advantage is competitive predictive power as well as extrapolation capability achieved 
using small numbers of training samples. The latter is practically important due to high cost and technological 
intricacies related to the acquisition of the measurement data. The aforementioned benefits have been demon-
strated using two transistors modelled over wide ranges of bias voltages and currents, as well as comparisons with 
state-of-the-art surrogates, specifically SVRM and GPR. The obtained MEA errors are as low as 0.05 and 0.08 for 
the first and the second transistor, respectively. These numbers correspond to excellent visual agreement between 
the FARM surrogate outputs and measurement data. At the same time, the benchmark techniques exhibit poor 
performance: despite their proven efficacy, both SVRM and GPR fail under challenging scenarios considered 
in this work. The design utility of the FARM model has been corroborated through the design of the low-noise 
amplifier, with satisfactory agreement between the SSA characteristics predicted using our surrogate and the 
measurements of the circuit prototype. Based on the presented results, the proposed model can be perceived a 
viable alternative to existing approaches in terms of design-ready behavioural modelling of microwave transistors, 
especially for applications that require reliable prediction of device characteristics over broad ranges of operat-
ing conditions. The future work will include the extension of the proposed work with physical parameter-based 
data-driven modeling of small signal parameters of a metal–semiconductor field-effect transistor.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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