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On Markovianity and classicality 
in multilevel spin–boson models
Dariusz Chruściński 1*, Samaneh Hesabi 1 & Davide Lonigro 2,3

We provide a detailed discussion about the unitary and reduced evolution induced by family of 
Hamiltonian models describing a multilevel system, with a ground state and a possibly multilevel 
excited sector, coupled to a multimode boson field via a rotating-wave interaction. We prove 
explicitly that the system, in the limit in which the coupling is flat with respect to the boson 
frequencies, is Markovian under sharp measurements in arbitrary bases; we also find necessary and 
sufficient conditions under which the process is classical, i.e. its family of multitime joint probability 
distributions satisfies the Kolmogorov consistency condition, and may thus be equivalently obtained 
by a classical stochastic process.

Long before the dawn of quantum mechanics, randomness has always occupied a central role in the description of 
natural phenomena. Since the publication of A. Kolmogorov’s pioneering  book1, the modern theory of stochastic 
processes has been developed in a measure-theoretical axiomatic framework which proves to be powerful and 
flexible enough for the description of diverse classical physical phenomena—Brownian motion being a paradig-
matic example—as well as having applications in other natural and social  sciences2.

In this framework, a (classical) stochastic process corresponds to a collection of functions {X(t)}t∈T , with 
T ⊂ R being the set of times, from a suitably chosen probability space to some set of values X  . Most importantly, 
it is associated with a family of joint probability distributions {Pn}n∈N defined as follows: given a family of values 
x1, . . . , xn ∈ X  and a set of times t1, . . . , tn , the quantity

represents the probability that the system, probed at each time tj , is measured in the state xj . Interestingly, the 
distributions associated with a stochastic process automatically satisfy a consistency condition which, for a discrete 
set of values, reads as follows:

that is, for all k < n all k-time joint distributions can be obtained via marginalization from the n-time one. Con-
versely, the celebrated Kolmogorov extension theorem guarantees that every consistent (i.e. satisfying Eq. 2) family 
of joint probability distributions can be obtained from a classical stochastic process. Importantly, as pointed out 
 in3,4, Eq. (2) essentially means that not performing a measurement at the time tj is operationally indistinguishable 
from performing the measurement at the time tj and then “forgetting” about the outcome, i.e. averaging over all 
possible outcomes—that is, measurements do not alter the state of the system.

Markovian processes are particularly important. A stochastic process is said to be Markovian whenever the 
following property holds for all x1, . . . , xn ∈ X  and t1 ≤ . . . ≤ tn ∈ T:

with P(·|·) being the conditional probability; in words, the process is Markovian if the information contained 
in the most recent measure fully determines the behavior of the system at all future times, regardless the out-
come of earlier measurements. While this definition is apparently asymmetric in time, equivalent definitions 
of Markovianity which restore the symmetry between “future” and “past” can be given; see e.g.5, Definition 7.1. 
Essentially, Markovianity means that the past and the future are conditionally mutually independent with respect 
to the present time. In this sense, a Markovian process is memoryless. Most importantly, as a straightforward 
consequence of Eq. (3), the whole family of joint probabilities can be entirely reconstructed from the single-time 
probability P1(x, t) and the transition probability P(x, t|y, s) via

(1)Pn(xn, tn; xn−1, tn−1; . . . ; x1, t1) = Prob{X(t1) = x1, . . . , X(tn) = xn}

(2)

(3)P(xn, tn|xn−1, tn−1; . . . ; x1, t1) = P(xn, tn|xn−1, tn−1),
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besides, by Eqs. (3)–(4), the whole family of consistency conditions (2) reduces to the Chapman–Kolmogorov 
 equations2:

Quantum mechanics is, in its essence, a probabilistic theory: the outcome of any quantum mechanical experi-
ment is famously non-deterministic. However, this is far from being the only novelty of quantum mechanics: 
the plethora of new phenomena unveiled by a close scrutiny to the quantum world, like entanglement and 
decoherence, makes the language of classical stochastic processes unsuited to quantum mechanics. To put it in 
mathematical terms, let us consider an open quantum system described by a Hamiltonian H on a Hilbert space 
H = HS ⊗HB , with HS being the space associated with the experimentally accessible system and HB with the 
external environment (or bath). Suppose that said system is initially prepared at a time t0 in a state associated 
with some density operator ̺0 ∈ B(H) , and repeatedly probed at times tn ≥ tn−1 ≥ . . . t1 ≥ t0 via some fam-
ily of sharp projective measurements in an orthonormal basis {|x�}x∈X of HS . The laws of quantum mechanics 
provide us a simple and elegant rule to construct the joint probability distribution associated with any such 
sequence of measurements:

with Ut = e−itH(·)eitH representing the free evolution of the system+environment induced by H on HS ⊗HB , IB 
the identity map on the environment space HB , and Px = Px(·)Px , with Px = |x��x| . Eq. (7) defines a legitimate 
family of joint probability distributions; however, in general they do not satisfy the consistency condition (2), 
and thus are not associated with any underlying classical stochastic process. This is ultimately related to the fact 
that, in general, measurement do disturb the state of a quantum system—not performing a measurement is not 
the same as performing said measurement and forgetting it, in contrast with Eq. (2).

Inspired by the theory of stochastic processes, and following the same point of view as  in3,4, we shall adopt 
hereafter the following definitions. Given an open quantum system associated with a total Hamiltonian H on 
H = HS ⊗HB , initially prepared in some collective state ̺ 0 , and a fixed orthonormal basis of HB , we shall denote 
as quantum process any sequence of sharp measurements in said basis on the system; defining the corresponding 
family of joint probability distributions as in Eq. (7), the process is said to be

• Markovian, if the Markov property (3) holds.
• classical, if the consistency condition (2) (or, in the Markov case, Eq. (6)) holds.

Importantly, both definitions are strictly dependent on the choice of the measurement basis.
In this regard, it is worth recalling that no universally accepted definition of quantum Markovianity exists. 

Diverse mathematical properties, each focusing on particular aspects of the problem under investigation, have 
been—more or less formally—put forward as definitions of quantum Markovianity. Some of them solely involve 
the properties of the reduced dynamics: for instance, the completely positive  divisibility6 (and, as a particular 
case, the semigroup property) and the monotonicity of the distinguishability between arbitrary  states7. Other 
approaches take into account the full unitary dynamics of the system and the environment in order to account 
for the unraveling of information backflow via external interventions or measurements on the system: among 
many others, the validity of the factorization (or Born) approximation—roughly speaking, the idea that the 
environment, not “feeling” the action of the system, evolves independently of the presence of the latter—or the 
quantum regression formula. An exhaustive discussion of all concepts of Markovianity in quantum mechanics 
and the hierarchical relations between them is reported  in8. One should always take into account this ambigu-
ity when dealing with concepts of (non–)Markovianity in open quantum systems (cf. the recent  reviews9–12). 
The approach  of3,4 adopted in this paper is closely related to the mathematical formulation of quantum Markov 
stochastic processes proposed  in13–15 (cf. also the recent  review16). Moreover, it is closely related to the recent 
approach to quantum Markovianity proposed  in17–19 in which the Markovianity of the corresponding process is 
characterized in terms of the so-called quantum process tensor of the system. The factorization of the process 
tensor is essentially equivalent to the validity of quantum  regression8. For a discussion of Markovianity based 
on the quantum regression formula see  also20,21.

Adopting the above definition of  Markovianity3,4, a useful characterization of classicality was first provided 
 in3 for dynamical semigroups, and then extended  in4 to general quantum Markov processes. Classicality was 
shown to be crucially interrelated with the generation of coherence: fundamentally, a Markovian multitime 
statistics fails to be classical if and only if the dynamics generates coherences and subsequently turns them into 
populations—mathematically, classicality holds whenever the process can be represented by means of non-
coherence-generating-and-detecting (NCGD) maps. Furthermore,  in4 a similar characterization was obtained for 
(possibly) non-Markovian processes: while in this case the absence of coherence does not guarantee classicality, 
they managed to provide a direct connection between classicality and the vanishing of quantum discord between 
the evolving system and its environment.

(4)Pn(xn, tn; xn−1, tn−1; . . . ; x1, t1) = P(xn, tn|xn−1, tn−1) · · ·P(x2, t2|x1, t1)P1(x1, t1);

(5)P1(x, t) =
∑

z∈X
P(x, t|z, r)P1(z, r), t ≥ r

(6)P(x, t|y, s) =
∑

z∈X
P(x, t|z, r)P(z, r|y, s), t ≥ r ≥ s.

(7)Pn(xn, tn; . . . ; x1, t1) = Tr
[(
Pxn ⊗ IB

)
Utn−tn−1 · · ·

(
Px1 ⊗ IB

)
Ut1−t0(̺0)

]
,
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Inspired by such general results, the scope of the present paper is to provide an explicit discussion of Markovi-
anity and classicality in the context of a specific, paradigmatic class of open quantum systems: spin–boson models 
and their generalizations. The interest in such models is not recent. Since decades, spin–boson models and their 
generalizations have been claiming a primary role in the theory of open quantum  systems22–26, finding applica-
tions as toy models for the description of several quantum phenomena like noise and  decoherence27–32 as well as 
practical  applications22,25,27–29,33,34. The Markovianity of the evolution induced by spin–boson models, in many 
of the possible declensions listed above, has also been analyzed by several  authors9–11,22,25; spin–boson models 
also provide simple examples in which, via a suitable choice of the form factor, the onset of non-Markovianity 
can be delayed at arbitrarily large  times35,36.

In this regard, we shall consider a class of models describing a quantum system (e.g. atom) with a single 
ground energy level and d excited energy levels, interacting with a structured boson bath, first introduced in 
Ref.37, and further studied  in38. Such models belong to the class of generalized spin–boson  models39–43, their 
self-adjointness being ensured whenever all form factors modulating the system–bath interaction are normaliz-
able (square-integrable)39 but also for suitable classes of non-normalizable form  factors44. For such models, after 
recalling the main properties of the unitary evolution in the single-excitation sector, we shall provide an explicit, 
constructive discussion of Markovianity and classicality in the limit in which all form factors are flat—that is, 
all boson frequencies, positive and negative, are coupled to the atom with the same strength. Precisely, in such 
a limit the model will be proven to be Markovian—in the sense of Eq. (3)—with respect to measurements in an 
arbitrary orthogonal basis. Furthermore, necessary and sufficient conditions for its classicality in this limit will 
be found, and discussed at the light of the existing general results  in3,4 about classicality in quantum processes.

The paper is structured as follows. After recalling in Sect. "Preliminary: Markovianity and quantum regres-
sion" the link between quantum Markovianity and regression, in Sect. "Generalities on the multilevel spin–boson 
model" we introduce the class of multilevel spin–boson models under study, revise the exact computation of the 
dynamics of any single-excited state, derive the corresponding reduced dynamics on the system, and study its 
divisibility properties. In Sect. "The flat coupling limit" we take into account the limiting case of flat atom-field 
couplings, studying the corresponding properties of the reduced dynamics. Finally, Sect. "Markovianity and 
classicality" is devoted to the main results of the paper: proving that the model is indeed Markovian, in the sense 
discussed above, with respect to arbitrary sharp measurements, and proving simple conditions under which it 
is (non–)classical. Some concluding remarks are outlined in Sect. "Conclusions".

Preliminary: Markovianity and quantum regression
For our purposes, it will be useful to briefly discuss the link between Markovianity and the validity of the general 
quantum regression formula (GQRF)8,22,45. Consider a open quantum system corresponding to a self-adjoint 
Hamiltonian H on a bipartite space H = HS ⊗HB , with dimHS = d + 1 , giving rise to a unitary evolution Ut 
of the “system + bath”, and a fixed initial state ρB of the bath; suppose that the reduced evolution of the system, 
associated with the family of propagators �t,s(ρ) = TrB Ut−s(ρ ⊗ ρB) , is CP-divisible. We say that a pair (Ut , ρB) 
satisfies the GQRF if, for any collection of times tn > tn−1 > · · · > t1 > t0 and two sets of system operators 
{X0,X1, . . . ,Xn} and {Y0,Y1, . . . ,Yn} , one has the following relation between multitime correlation functions:

where Ek = Xk · Yk and Ẽk = Ek ⊗ IB . Equation (8) means that all correlation functions for the “system+bath” 
evolution can be computed in terms of the dynamical map of the system alone. In particular, in such a case, 
considering projective measurements w.r.t. an orthonormal basis {|x�}x=0,...,d in the Hilbert space HS , and setting

we get

where the last equality is an identity which simply follows from the explicit definition of the maps Px . This 
observation is at the core of the relation between Markovianity and regression, which, while well-known, shall 
be recalled explicitly for the sake of completeness:

Proposition 2.1 The following statements are equivalent: 

 (i) the regression equality (10) holds for all n;
 (ii) the process is Markovian, and Eq. (10) holds for n = 1, 2;
 (iii) the process is Markovian, and satisfies 

(8)Tr[ẼnUtn−tn−1
· · · Ẽ1 Ut1−t0(ρ ⊗ ρB)] = Tr[En�tn ,tn−1

· · · E1�t1,t0(ρ)],

(9)Px = |x��x|, Px = Px(·)Px ,

(10)

Pn(xn, tn; . . . ; x1, t1) =Tr
[(
Pxn ⊗ IB

)
Utn−tn−1 · · ·

(
Px1 ⊗ IB

)
Ut1−t0(ρ ⊗ ρB)

]

=Tr
[
Pxn�tn ,tn−1 · · ·Px1�t1−t0(ρ)

]

=�x1|�t1,t0(ρ)|x1�
n−1∏

j=1

�xj+1|�tj+1,tj

(
|xj��xj|

)
|xj+1�,

(11)P1(x1, t1) =�x1|�t1(ρ)|x1�;
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Proof The equivalence (ii)⇐⇒(iii) is an immediate consequence of Eq. (10). (i)=⇒(ii) is an immediate conse-
quence of the fact that, if (i) holds, then the full family of joint probabilities is given by Eq. (10) and thus

Vice versa, suppose that (ii) is true. Since the process is Markovian, the family of joint probabilities can be entirely 
reconstructed as such:

By Eq. (14) and the fact that Eq. (10) holds for n = 1, 2 , one easily concludes that the latter equality holds for all 
n.   �

This shows the link between the validity of the regression formula for a fixed orthonormal basis, and the 
Markovianity in the same basis: n-point regression implies Markovianity, and Markovianity plus 1-point and 
2-point regression implies n-point regression. We shall make use of this useful property later on.

Generalities on the multilevel spin–boson model
We shall consider a (d + 1)-level quantum system living in the Hilbert space HS = He ⊕Hg , with dimHe = d 
and dimHg = 1 . He corresponds to a d-dimensional excited sector, whereas Hg is spanned by the ground state 
|0� . The system is coupled to a multimode boson bath, which (for simplicity) will be taken as a d-mode bath, with 
the total system-bath Hamiltonian given by ( � = 1)

where He is the free Hamiltonian of the excited sector of the system, and the interaction term reads

with |e1�, . . . , |ed� ∈ He being a collection of linearly independent vectors in He , and where h.c. stands for the 
Hermitian conjugated term; each function fj(ω) (form factor) modulates the coupling between the system and 
the jth mode of the bath. The boson creation and annihilation operators b†j (ω) and bj(ω) satisfy the standard 
canonical commutation relations: [bi(ω), bj(ω′)] = 0 and [bi(ω), b†j (ω′)] = δijδ(ω − ω′) , to be interpreted in 
the distributional sense.

In the following, without loss of generality we will set the initial time of the evolution induced by H as t0 = 0 
unless otherwise stated.

Unitary and reduced dynamics. As discussed  in38 (see  also35,46 for the spin–boson case), the dynamics of 
an arbitrary state in the form

induced by the Hamiltonian H in Eqs. (15)–(16), can be computed exactly. One finds that the time evolved state 
|�t� := e−itH|�0� has the following form:

with |ψe(t)� ∈ He and the wavefunctions ξj(t,ω) satisfying the following system of equations, equivalent to the 
Schrödinger equation generated by H:

Solving Eq. (20):

and inserting the solution into Eq. (19), one obtains

(12)P(x2, t2|x1, t1) =�x2|�t2,t1(|x1��x1|)|x2�.

(13)P(xn, tn|xn−1, tn−1; . . . ; x1, t1) = �xn|�tn ,tn−1 (|xn−1��xn−1|)|xn� = P(xn, tn|xn−1, tn−1).

(14)Pn(xn, tn; . . . ; x1, t1) = P(xn, tn|xn−1, tn−1) · · ·P(x2, t2|x1, t1)P1(x1, t1).

(15)H = He ⊗ IB + IS ⊗
d∑

j=1

∫
dω ω b†j (ω)bj(ω)+Hint,

(16)Hint =
d∑

j=1

∫
dω fj(ω)|0��ej| ⊗ b†j (ω)+ h.c.,

(17)|�0� = |ψ0� ⊗ |vac�, with |ψ0� = α|0� + |ψe�, α ∈ C, |ψe� ∈ He

(18)|�t� =
[
α|0� + |ψe(t)�

]
⊗ |vac� + |0� ⊗

d∑

j=1

∫
dω ξj(t,ω)b

†
j (ω)|vac�,

(19)i|ψ̇e(t)� =He|ψe(t)� +
d∑

j=1

∫
dω f ∗j (ω)ξj(t,ω)|ej�,

(20)i ξ̇j(t,ω) =ω ξj(t,ω)+ fj(ω)�ej|ψe(t)�, j = 1, . . . , d.

(21)ξj(t,ω) = −i

∫ t

0
ds e−iω(t−s)fj(ω)�ej|ψe(s)�,
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where the time-dependent operator A(t) ∈ B(He) satisfies the following non-local equation:

and the corresponding memory kernel G(t) ∈ B(He) has the following form:

By using these properties, one easily finds the corresponding reduced evolution of the state of the system:

By construction, the map �t is completely positive and trace preserving (CPTP) for all t ≥ 0 , and satisfies 
�t=0 = IS.

From Eq. (25) we can readily reconstruct the evolution of a generic density operator ρ by linearity. To this 
purpose, it will be convenient to adopt the following block representation:

where ρ̂e ∈ B(He) , |w� ∈ He , and ρg ∈ R . With this representation, one finds the following expression for the 
reduced evolution:

with ρg(t) = Tr ρ − Tr(A(t)ρ̂eA
†(t)) . It is therefore clear that the entire dynamical map �t is uniquely char-

acterized by the operator A(t) , which we shall denote as the survival amplitude operator, since the quantity 
�A(t)|ψe��2 defines the probability that the initial state |ψe� ⊗ |vac� does not decay to the ground state at the 
time t. By construction, the following normalization condition holds:

which accounts for the property Tr�t(ρ) = Tr ρ ensuring the preservation of the trace.
The operator A(t) : He → He reduces to a single function a(t) in the qubit case and Eq. (27) reduces to the 

well-known amplitude-damping qubit channel,

as such, we shall refer to �t as a multilevel amplitude-damping channel. We point out that other generalizations 
of the amplitude-damping channel were analyzed in Refs.47–50; besides, a family of quantum channels further 
generalizing the structure (27), labeled as excitation-damping channels, was recently introduced and studied  in51.

The following simple characterization of positivity and complete positivity for channels in the form (27) was 
proven  in38:

Proposition 3.1 (38) The dynamical map (27) is completely positive if and only if A(t) is a contraction w.r.t. the 
operator norm, i.e. �A(t)�op ≤ 1 for all t ≥ 0 . Besides, it is completely positive if and only if it is positive.

As such, channels as in Eq. (27) represent an interesting example of channels for which complete positivity and 
positivity coincide, another important instance being multilevel dephasing channels (or Hadamard channels)52,55.

Markovianity and divisibility of the model. Recall that a dynamical map �t is divisible whenever for 
any t ≥ s one has �t = �t,s�s for some corresponding propagator �t,s : B(H) → B(H) ; it is CP-divisible when 
�t,s is CPTP and P-divisible when �t,s is positive and trace-preserving. CP-divisibility is a common core of the 
various (and generally inequivalent) definitions of Markovianity in open quantum systems. Clearly, every invert-
ible map is also divisible with

and is thus CP-divisible (resp. P-divisible) if and only if the map in Eq. (30) is completely positive (resp. positive) 
for all t ≥ s . In particular, invertible and differentiable channels satisfy the master equation �̇t(ρ) = Lt(�t(ρ)) , 

(22)|ψe(t)� = A(t)|ψe�,

(23)iȦ(t) = HeA(t)+
∫ t

0

ds G(t − s)A(s), A(0) = Ie,

(24)G(t) = −i

d∑

j=1

∫
dω e−iωt |fj(ω)|2|ej��ej|.

(25)
|ψ0��ψ0| → �t(|ψ0��ψ0|) = TrB |�t���t | =A(t)|ψe��ψe|A†(t)+ A(t)|ψe��0| + |0��ψe|A†(t)

+|0��0|
(
|α|2 + �ψe|

(
Ie − A†(t)A(t)

)
|ψe�

)
.

(26)ρ =
(

ρ̂e |w�
�w| ρg

)
,

(27)�t(ρ) =
(
A(t)ρ̂eA

†(t) A(t)|w�
�w|A†(t) ρg(t)

)
,

(28)Tr
[
A(t)|ψe��ψe|A†(t)

]
+

d∑

j=1

�ξj(t)�2 = Tr |ψe��ψe|,

(29)�t(ρ) =
(
|a(t)|2ρ11 a(t)ρ10
a∗(t)ρ01 ρ00 + (1− |a(t)|2)ρ11

)
;

(30)�t,s = �t�
−1
s ,



6

Vol:.(1234567890)

Scientific Reports |         (2023) 13:1518  | https://doi.org/10.1038/s41598-023-28606-z

www.nature.com/scientificreports/

with the time-local generator Lt = �̇t�
−1
t  , and it is known that �t is CP-divisible if and only if Lt is a time-

dependent Gorini–Kossakowski–Lindblad–Sudarshan (GKLS)  map53,54.
In our case, a simple computation shows that the multilevel amplitude-damping channel �t as defined in Eq. 

(27) is invertible if and only if the corresponding survival amplitude operator A(t) is invertible. In such a case, 
the channel is divisible with

where A(t, s) = A(t)A−1(s) and ρg(t, s) = Trρ − Tr[A(t, s)ρ̂eA†(t, s)] . This readily implies the following char-
acterization of CP-divisibility and P-divisibility.

Proposition 3.2 (38) Let the amplitude operator A(t) be invertible for all t ≥ 0 . Then �t is CP-divisible if and only if

for all t ≥ s , and it is P-divisible if and only if it is CP-divisible.

Interestingly, CP-divisibility and P-divisibility are equivalent properties for the multilevel amplitude-damping 
channel. We also notice that the property (32) is equivalent, provided that t  → A(t) is differentiable, to the fol-
lowing one:

for any |ψe� ∈ He . In other words:

Corollary 3.1 Let �t being invertible and differentiable. Then �t is a monotonic contraction w.r.t. trace norm in 
B(H) if and only if A(t) is a monotonic contraction in He (w.r.t. the natural norm induced by the inner product 
in He).

The time-dependent generator associated with the channel reads

where

i.e. A(t) satisfies the following time-local dynamical equation

and hence the corresponding propagator in He formally reads

with T  signaling time ordering. Finally, by defining the time-dependent Hermitian operators

the corresponding time-local generator can be written as

which is manifestly a GKLS generator provided that Ŵ(t) ≥ 0 , that is, the operator Ŵ(t) is positive semidefinite 
at all times. Consequently,

Proposition 3.3 The reduced evolution induced by a multilevel spin–boson model is CP-divisible if and only if 
Ŵ(t) ≥ 0 for all t ≥ 0.

The flat coupling limit
We shall focus hereafter on a particular choice of the form factors fj(ω) modulating the coupling between the 
system and the jth mode of the field. Namely, we shall consider the case of flat couplings on all (positive and 
negative) values of ω:

(31)�t,s(ρ) =
(
A(t, s)ρ̂eA

†(t, s) A(t, s)|w�
�w|A†(t, s) ρg(t, s)

)

(32)�A(t, s)�op ≤ 1,

(33)
d

dt
Tr

[
A(t)|ψe��ψe|A†(t)

]
≤ 0,

(34)Lt(ρ) =
(
L(t)ρ̂e + ρ̂eL

†(t) L(t)|w�
�w|L†(t) − Tr(ρ̂e[L(t)+ L†(t)])

)
,

(35)L(t) = Ȧ(t)A−1(t),

(36)Ȧ(t) = L(t)A(t) , A(0) = Ie,

(37)A(t, s) = T exp
(∫ t

s
L(τ ) dτ

)
,

(38)He(t) :=
i

2
[L(t)− L†(t)], Ŵ(t) := −[L(t)+ L†(t)],

(39)Lt(ρ) = −i[He(t), ρ] −
1

2
{Ŵ(t), ρ} + Tr(Ŵ(t)ρ) |0��0|,
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with γj ≥ 0 being a coupling constant. This choice of coupling corresponds, in the position representation, to the 
case in which the coupling between the system and each mode of the field is described by a Dirac delta interac-
tion; as such, it provides an idealized description of short-range system-field interactions. Clearly, such form 
factors are not normalizable, whence the self-adjointness of the corresponding multilevel spin–boson model is 
not guaranteed a priori; these mathematically issues are thoroughly discussed in greater generality  in44,46. For 
our purposes, here it will suffice to observe that the equations of motion (19)–(20) induced by the model are 
indeed well-posed in this limit. Indeed, substituting Eq. (40) into the expression (24), the memory kernel G(t) 
collapses into a Dirac delta:

that is, Eq. (23), and thus both Eqs. (19)–(20), are memoryless: they do not involve any dependence on past times.

Dynamics and reduced dynamics. Specifically, Eq. (23) for the survival amplitude operator simplifies 
as follows:

where

and its solution simply reads

Consequently, the solution of the system (19)–(20) reads as follows:

Two important remarks follow.

Wavefunction in the position representation.  Interestingly, Eq. (46) corresponds, in the position repre-
sentation, to a compactly supported wavefunction. Indeed, defining the Fourier antitransform of ξj(t,ω) via 
ξ̂j(t, x) =

∫
dω eiωxξj(t,ω) , one easily finds

where χI (x) is the characteristic function of the interval I. Hence, ξ̂j(t, x) is entirely supported on [0, t], for posi-
tive times t > 0 . This result is analogous to the one obtained (in the single-atom case)  in36 and has the following 
intuitive explanation: preparing the system in the state |ψ� ⊗ |vac� (multilevel atom in a generic state of the 
excited sector + all modes of the boson field in the vacuum state), the system will be in a superposition of a state 
in which no bosons are emitted, plus all possible states in which the system decays and a boson is emitted at the 
position x = 0 in only one of all possible modes: for each mode, the emitted boson moves from left to right at 
unit speed (since we keep c = 1 ), whence the wavefunction at time t will be supported at [0, t]. This property of 
ξj(t,ω) will be crucial to prove Prop. 4.1, which, in turn, will play important role in the analysis of Markovianity 
of the quantum measurement process in the next section.

Case.  [He,Ŵ] = 0 . In this case the vectors {|ej�}j are eigenvectors of Ŵ and thus He =
∑

j ωj|ej��ej| , whence Eqs. 
(45)–(46) read explicitly

(40)|fj(ω)|2 =
γj

2π
, −∞ ≤ ω ≤ ∞,

(41)G(t − s) = −iδ(t − s)

d∑

j=1

γj|ej��ej|,

(42)iȦ(t) =
(
He −

i

2
Ŵ

)
A(t),

(43)Ŵ = 2

d∑

j=1

γj|ej��ej| ≥ 0

(44)A(t) = e
−t

(
iHe+ 1

2Ŵ
)

.

(45)|ψe(t)� =e
−t

(
iHe+ 1

2Ŵ
)

|ψe�,

(46)ξj(t,ω) =− i

√
γj

2π

∫ t

0

ds e−iω(t−s)

〈
ej

∣∣∣∣ e
−s

(
iHe+ 1

2
Ŵ
)∣∣∣∣ψe

〉
.

(47)ξ̂j(t, x) = −i
√
2πγj

∫ t

0

ds

〈
ej

∣∣∣∣ e
−(t−x)

(
iHe+ 1

2
Ŵ
)∣∣∣∣ψe

〉
χ[0,t](x),

(48)|ψe(t)� =
∑

ℓ

�eℓ|ψe�e
−t

(
iωℓ+ 1

2 γℓ

)

|eℓ�,

(49)ξj(t,ω) =− i

√
γj

2π
�ej|ψe�

∫ t

0
ds e−iω(t−s)e

−s
(
iωj+ 1

2 γj

)

,
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that is, the survival operator is simply given by

furthermore, in the position representation,

In particular, if |ψe� = |eα� for some fixed α = 1, . . . , d , then

that is, the evolution of the system only involves |eα� and the α th mode of the boson field, effectively behaving 
as a spin–boson model. The multilevel, multimode nature of the model only emerges when taking into account 
different initial states.

As a final observation, notice that the equality [He,Ŵ] = 0 holds if and only if A(t) is a normal matrix, i.e. 
[A(t), A†(t)] = 0 . Indeed, by the properties of matrix exponentials,

Finally, as for the reduced dynamics, the corresponding channel �t is a semigroup, i.e. �t = �t−s�s , as can be 
either seen by directly substituting Eq. (44) into the expression (27) of the channel or, equivalently, by simply 
observing that the expression (34) of its time-local generator reduces to

which is clearly a time-independent GKLS generator. A fortiori, the channel is CP-divisible at all times.

Other properties. In general, as discussed, the dynamics induced by H on states with a number of excita-
tions larger than one is not solvable. For instance, the evolution of states with two excitations, like

where we used the compact notation

cannot be computed explicitly. This, in particular, would generally prevent us from computing the joint prob-
ability distributions associated with the quantum process obtained by repeatedly probing the system via any 
orthonormal basis: a measurement in a basis which is not compatible with the He ⊕Hg splitting, as we will see, 
will necessarily involve taking into account higher-excitation sectors.

However, specifically in the flat coupling case, a fundamental property holds:

Proposition 4.1 For ξj(t,ω) defined in Eq. (46), one has

for any τ ≥ 0 , where we define

The proof of Prop. 4.1 is reported in the Supplementary Information. This property will be used in the follow-
ing section to compute the multitime statistics associated with the process both with respect to measurements 
in bases compatible with the He ⊕Hg splitting (cf. Sect. 5.1) and arbitrary bases (cf. Sect. 5.2).

(50)A(t) =
∑

ℓ

e
−t

(
iωℓ+ 1

2 γℓ

)

|eℓ��eℓ|;

(51)ξ̂j(t, x) = −i
√

2πγj�ej|ψe�
∫ t

0
ds e

−(t−x)
(
iωj+ 1

2 γj

)

χ[0,t](x).

(52)|ψe(t)� =e
−t

(
iωα+ 1

2 γα

)

|eα�,

(53)ξj(t,ω) =− i

√
γj

2π
δjα

∫ t

0
ds e

−(t−x)
(
iωj+ 1

2 γj

)

χ[0,t](x),

(54)[A(t), A†(t)] = 0 ∀t ∈ R ⇐⇒ 0 =
[
iHe +

1

2
Ŵ,−iHe +

1

2
Ŵ

]
= i[He,Ŵ].

(55)

Lt(ρ) ≡ L(ρ) =− i[He, ρ] −
1

2
{Ŵ, ρ} + Tr(Ŵρ) |0��0|

= − i[He, ρ] +
d∑

j=1

γj

(
|0��ej|ρ|ej��0| −

1

2
{|ej��ej|, ρ}

)
,

(56)e−itH|ψe� ⊗ b†j (η)|vac� or e−itH|0� ⊗ b†j (η)b
†
j′(η

′)|vac�,

(57)b†j (η) =
∫

dω η(ω)b†j (ω),

(58)Uτ IS ⊗ b†j (ξj(t))U
†
τ = IS ⊗ b†j (ξj(τ , t)),

(59)ξj(τ , t,ω) := e−iωτ ξj(t,ω).
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Markovianity and classicality
The limiting choice of flat couplings in the interaction Hamiltonian (16) is the only possible choice ensuring 
that the reduced dynamics, associated with the map �t , is a GKLS semigroup—historically, such semigroups 
have long been denoted as Markovian semigroups. However, the semigroup property by itself does not suffices, in 
general, to ensure Markovianity of the corresponding process, in the sense of Eq. (3), with respect to an arbitrary 
sharp measurement.

In this regard, we shall consider projective measurements w.r.t. an orthonormal basis {|xα�}x=0,...,d in the 
Hilbert space HS . We shall assume the initial state of the system+bath to be |ψ0� ⊗ |vac� . With this choice, the 
multitime statistic generated by this process, cf. Eq. (7), is

where Px(X) = PxXPx , Px = |x��x|.
In this section we will provide an explicit proof of the fact that, indeed, this quantum process is Markovian in 

the limit of flat coupling. Furthermore, necessary and sufficient conditions for the classicality of the model—that 
is, for the Chapman–Kolmogorov Eq. (6) to be satisfied—will be found. For the sake of simplicity, we shall start 
by examining the situation in which the measurements are performed with respect to an orthonormal basis 
compatible with the splitting HS = He ⊕Hg , and then examine the general situation.

Measurements in bases compatible with the Hg ⊕He splitting. Consider a projective meas-
urements w.r.t. an orthonormal basis compatible with the splitting of the Hilbert space HS of the system into 
its excited and ground sector, that is, a basis {|x�}x=0,...,d such that |0� is the ground state of the atom and 
{|x�}x=1,...,d ⊂ He is any orthonormal basis of the excited sector. Let us compute the corresponding n-point joint 
probability. Assuming the following initial state |�0� = |ψ� ⊗ |vac� , with |ψ� = α|0� ⊕ |ψe� , and using hereafter 
the compact notation (57) for an arbitrary wavefunction η , one finds, as discussed in Sect. 4,

with A(t) as in Eq. (44) and ξj(t) as in Eq. (46); hence,

Therefore, we have

Now we must apply the second unitary evolution U�t2 . We have

where �tk = tk − tk−1 , with the function η(α)j (τ ) being defined as follows:

and we used again the explicit form of the evolution in the single-excitation sector. Besides, using Prop. 4.1,

where ξj(τ , t,ω) = e−iωτ ξj(t,ω) . Notice that, differently from all previous steps, this is the only step that holds 
specifically for the flat coupling case.

The second projective measurement gives rise to

(60)
Pn(xn, tn; . . . ; x1, t1) = Tr[Pxn ⊗ IB ◦ Utn−tn−1

. . . ◦ Ut2−t1 ◦ Px1 ⊗ IB ◦ Ut1(|ψ0��ψ0| ⊗ |vac��vac|)],

(61)Ut1 |�0� =
[
α|0� ⊗ |vac� + A(t1)|ψe�

]
⊗ |vac� + |0� ⊗

d∑

j=1

b†j (ξj(t1))|vac�,

(62)Px1 ⊗ IB Ut1 |�0� =�x1|A(t1)|ψe� |x1� ⊗ |vac�,

(63)P0 ⊗ IB Ut1 |�0� =|0� ⊗
(
α|vac� +

d∑

j=1

b†j (ξj(t1))|vac�
)
.

(64)P1(x1, t) = |�x1|A(t)|ψe�|2 , P1(0, t) = |α|2 +
d∑

j=1

�ξj(t)�2.

(65)

U�t2Px1 ⊗ IB Ut1 |�0� =�x1|A(t1)|x1�U�t2 (|x1� ⊗ |vac�)

=�x1|A(t)|ψe�
(
A(�t2)|x1� ⊗ |vac� + |0� ⊗

d∑

j=1

b†j (η
(1)
j (�t2))|vac�

)
,

(66)η
(α)
j (τ ,ω) = −i

∫ τ

0
ds e−iω(τ−s)fj(ω)�ej|A(s)|xα�,

(67)

U�t2P0 ⊗ IB Ut1 |�0� =U�t2


|0� ⊗

�
α|vac� +

d�

j=1

b†j (ξj(t1))|vac�
�



=|0� ⊗
�
α|vac� +

d�

j=1

b†j (ξj(�t2, t1))|vac�
�
,

(68)Px2 ⊗ IB U�t2Px1 ⊗ IB Ut1 |�0� =�x2|A(�t2)|x1��x1|A(t1)|ψe� |x2� ⊗ |vac�,
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One finds

It is straightforward to generalize the above procedure for n-point joint probabilities:

and all remaining probabilities vanish. Importantly, all joint probabilities associated to phenomena in which 
the system is first measured in its ground state ( xj = 0 ) and later in an excited state ( xj+1 �= 0 ) vanish: physi-
cally, because of our particular choice of form factors, emitted photons cannot be reabsorbed—the decay of the 
system is irreversible.

Markovianity. Having computed the full family of joint probabilities associated with the system, we can now 
investigate its Markovianity. A direct scrutiny of Eqs. (76)–(78) shows that the process is indeed Markovian:

Proposition 5.1 Let H be a multilevel spin–boson model in the limit of flat coupling, |ψ0� = |ψe� + α|0� ∈ HS , 
and {|x�}x=1,...,d ⊂ HS any orthonormal basis of the excited sector He . Then the process defined by Eq. (60) is a 
Markovian process with 1-time probability P1(x, t) and transition probabilities P(x, t|y, s) given as follows: for any 
x = 1, . . . , d and t ≥ s ≥ 0,

and

Finally, the process satisfies the regression equality (10).

Proof Eqs. (79)–(80) simply coincide with Eq. (64) taking into account the unitarity of the evolution induced 
by H ; similarly, Eqs. (81)–(84) follow from Eq. (76)–(78) and, again, the unitarity of the evolution. Moreover, 
recalling the definition of the reduced dynamics �t and the corresponding propagator, we indeed have, for all 
x, y = 0, 1, . . . , d,

(69)P0 ⊗ IB U�t2Px1 ⊗ IB Ut1 |�0� =�x1|A(t1)|ψe� |0� ⊗
d∑

j=1

b†j (η
(1)(�t2))|vac�,

(70)Px2 ⊗ IB U�t2P0 ⊗ IB Ut1 |�0� =0,

(71)P0 ⊗ IB U�t2P0 ⊗ IB Ut1 |�0� =|0� ⊗
(
α|vac� +

d∑

k=1

b†j (ξj(�t2, t1))|vac�
)
.

(72)P2(x2, t2; x1, t1) =|�x2|A(�t2)|x1�|2 P1(x1, t1)

(73)P2(0, t2; x1, t1) =�η(1)x1
(�t2)�2 P1(x1, t1)

(74)P2(x2, t2; 0, t1) =0,

(75)P2(0, t2; 0, t1) =P1(0, t1).

(76)Pn(xn, tn; xn−1, tn−1; . . . ; x1, t1) =|�xn|A(�tn)|xn−1�|2 . . . |�x2|A(�t2)|x1�|2 P1(x1, t1),

(77)Pn(0, tn; . . . ; 0, tk+1; xk , tk; . . . ; x1, t1) =�η(k)xk
(�tk+1)�2 Pk(xk , tk; xk−1, tk−1; . . . ; x1, t1),

(78)Pn(0, tn; 0, tn−1; . . . ; 0, t1) =P1(0, t1),

(79)P1(x, t) =|�x|A(t)|ψe�|2,

(80)P1(0, t) =1−
d∑

x=1

|�x|A(t)|ψe�|2

(81)P(x, t|y, s) =|�x|A(t − s)|y�|2,

(82)P(0, t|y, s) =1−
d∑

x=1

|�x|A(t − s)|y�|2,

(83)P(x, t|0, s) =0,

(84)P(0, t|0, s) =1.
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whence the final claim immediately follows from Prop. 2.1.   �

It is important to notice that these properties hold regardless of whether the orthonormal basis 
{|x�}x=1,...,d ⊂ He of the excited sector coincides with the “natural” basis {|ex�}x=1,...,d in which the operator 
Ŵ is diagonal—what is really important is the fact that, choosing an orthonormal basis of the excited sector as 
our measurement basis, we are forced to ”complete” it with the ground state |0� of the system, thus obtaining 
an orthonormal basis of HS which is compatible with the excited-ground splitting. The interpretation of Eqs. 
(81)–(84) is also immediate: if the system is found in its ground state |0� after some measurement, then it will 
be found in such a state in all future measurements. This is ultimately a consequence of the fact that, with our 
choice of measurement basis, the global state of the system+bath is never going to leave the excited sector. Also 
notice that, by Eq. (81), the transition probability P(x, t|y, s) for x, y = 1, . . . , d (that is, the probability associated 
with a transition |y� → |x� between two states of the excited sector) simply coincides with the squared modulus 
of the matrix element of A(t − s) between such states.

Classicality. Let us now examine whether the process is classical, i.e., whether it satisfies the consistency condi-
tions (2); since the process is Markovian, this happens if and only if the Chapman–Kolmogorov Eqs. (5)–(6) for 
the transition probability is satisfies by the conditional probabilities (81)–(84). For the multilevel spin–boson 
model it means that for all x, y = 1, . . . , d and t ≥ r ≥ s ≥ 0,

By Eqs. (81)–(84), (88)–(89) reduce to the identities 0 = 0 and 1 = 1 , but Eqs. (86)–(87) are not trivial and are 
not generally satisfied.

As it turns out, classicality does depend on the choice of measurement basis.

Proposition 5.2 Consider the same process as before with the additional condition [He,Ŵ] = 0 . Then:

• if |x� = |ex� for all x = 1, . . . , d , then the process is classical;
• suppose that the spectrum of Ŵ is nondegenerate, i.e. γj  = γℓ for j  = ℓ . Then the process is classical if and 

only if the chosen measurement basis is such that, for all x = 1, . . . , d , |x� = |ex� possibly up to a phase shift.

The proof of this statement is reported in the Supplementary Information; we shall discuss here the mean-
ing of this statement. When [He,Ŵ] = 0 , the basis {|ej�}j=1,...,d of eigenvectors of the decay operator Ŵ is also an 
eigenbasis for He . Consequently, as discussed in the previous section, the evolution of the system does not “mix” 
the various eigenstates nor the modes of the boson field, whence the system effectively behaves as a two-level 
system interacting with a single bosonic mode. In this situation, a simple computation shows that both Chap-
man–Kolmogorov equations are satisfied. The less trivial part of the proof of the statement above is to show that, 
indeed, this is the only scenario in which classicality holds: any other measurement basis will cause nonclassical 
effects to emerge.

It is instructive to investigate this phenomenon at the light of the results  of3,4 about the classicality of quantum 
Markov processes, which we briefly summarized in the Introduction. To this purpose, let us recall their results 
in a more precise way. A family of propagators is said to be non-coherence-generating-and-detecting (NCGD) 
with respect to a basis {|x�}x=0,...,d of the system Hilbert space if it satisfies the following equality:

where

(85)P(x, t|y, s) = �x|�t,s(|y��y|)|x�,

(86)P(x, t|y, s) =
d∑

z=0

P(x, t|z, r)P(z, r|y, s);

(87)P(0, t|y, s) =
d∑

z=0

P(0, t|z, r)P(z, r|y, s);

(88)P(x, t|0, s) =
d∑

z=0

P(x, t|z, r)P(z, r|0, s);

(89)P(0, t|0, s) =
d∑

z=0

P(0, t|z, r)P(z, r|0, s).

(90)� ◦�tk+1,tk ◦� ◦�tk ,tk−1
◦� = � ◦�tk+1,tk−1

◦�,

(91)� =
d∑

x=0

Px , Px = |x��x| · |x��x|,
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is a quantum channel representing perfect decoherence w.r.t. {|0�, |x�dx=1} . Eq. (90) essentially means that, at any 
intermediate time tk between any couple of measurements at two times tk+1 and tk−1 , not doing any measure—that 
is, applying the identity map—is indistinguishable from performing a measurement and then averaging on all 
results—that is, applying � . In its essence, this condition may be regarded as the transposition of the require-
ment (2) from the level of multitime statistics to the underlying quantum channels which realize the statistics; 
this is essentially the content of the following characterization:

Theorem 5.1 (4, Theorem 1) Consider a family of joint probabilities {Pn}n satisfying the Markov property. Then 
the family is classical if and only if there exist, on a suitable Hilbert space H,

• a basis {|x�}x=0,...,d;
• a state ρ̃0 ∈ B(H) which is diagonal in said basis;
• a family of quantum channels �̃tj+1,tj which are NCGD with respect to said basis,

such that

Apparently, the theorem above may seem in contrast with the content of Prop. 5.2, since the initial state 
assumed in our model, ρ0 = |ψe��ψe| , is generally not diagonal in the measurement basis. In fact, this is not 
the case. As thoroughly discussed  in4, the maps �̃t,s and the initial state ρ0 define an artificial dynamics of the 
system which, for a multitime statistics obtained by a preexisting underlying quantum system, does not gener-
ally coincide with the actual reduced dynamics nor the actual initial state, while reproducing the same statistics.

This can be better understood by looking at the explicit construction of �̃tj+1,tj and ρ̃0 for a given multitime 
statistics provided  in4. Setting t1 = 0 , they define the channels �̃tj+1,tj and the initial state ρ̃0 via

and clearly, in our case, neither �̃tj+1,tj nor ρ̃0 coincide with the actual reduced dynamics of the model nor the 
initial state. However, it is worth noticing that the actual propagators �tj ,tj+1 are indeed NCDG in our case.

Summing up: the multilevel spin–boson model H , repeatedly probed via sharp measurements associated 
via an orthonormal basis compatible with the He ⊕Hg splitting, is Markovian—in the sense adopted in this 
paper—in the limit of flat couplings. Besides, while generally non-classical, the process becomes classical if 
[He,Ŵ] = 0 and the chosen measurement basis coincides with the common basis of eigenvectors of He and Ŵ . 
Roughly speaking, this happens because, when adopting this particular basis, no probability exchange between 
states competing with different eigenvectors |ej� happens—no fundamentally quantum feature is unveiled in the 
measurement. Choosing any other basis will reveal the nonclassicality of the process.

Measurements in arbitrary bases. Consider now a projective measurements w.r.t. to an arbitrary ortho-
normal basis {|xα�}α=0,...,d in H . With this choice, it is no longer true that the entire process is constrained in the 
single-excitation sector: in fact, after the nth measurement, the following vector

belongs to the (n+ 1)-excitation sector. This fact makes the analysis quite technical and we present all the 
necessary details in the Supplementary Information. Evidently, the process is not classical; however, it is still 
Markovian.

Theorem 5.2 The process defined by

satisfies the regression equality (10) for an arbitrary orthonormal basis {|xα�}α=0,...,d ⊂ He ⊕Hg.

The proof, reported in the Supplementary Information, is based on the following observation: any basis vector 
|xα� may be uniquely decomposed as |xα� = µα|0� ⊕ |x̃α� with |x̃α� ∈ He . One has

(92)Pn(xn, tn; . . . ; x1, t1) = Tr
[
Pxn�̃tn ,tn−1 · · ·Px1�̃t1(ρ̃0)

]
.

(93)�̃tj+1,tj

(
|xj��yj|

)
=δxj ,yj

d∑

xj+1=0

P
(
xj+1, tj+1|xj , tj

)
|xj��xj|;

(94)ρ̃0 =
d∑

x1=0

P1(x1, t1)|x1��x1|,

(95)|�xn ,...,x1
tn ,...,t1 � = Pxn ⊗ IB U�tn . . .U�t2Px1 ⊗ IB Ut1 |�0�,

(96)Pn(xn, tn; . . . ; x1, t1) = � |�xn ,...,x1
tn ,...,t1 � �2

(97)Ut |x̃α� ⊗ |vac� = A(t)|x̃α� ⊗ |vac� + |0� ⊗
d∑

j=1

b†j (η̃
(α)
j (t))|vac�,
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where the function η(α)j (τ ) is defined via

Similarly, let us define

With these definitions, the proof is based on two technical properties that hold specifically in the flat coupling 
limit, the first being Prop. 4.1, and the second one, again shown in the Supplementary Information, being the 
following one:

Proposition 5.3 The following property holds:

for any n ≥ 1.

The above property allows to prove the regression equality (10) (cf. Supplementary Information) and thus 
Markovianity.

Remark 5.1 Actually, the proof of Theorem 5.2 shows that the regression equality (10) holds for a much more 
general measurement strategy, that is, without using the same fixed orthonormal basis to measure the system at 
{t1, t2, . . .} , but rather using at each moment tk any arbitrary orthonormal basis Bk . Then Pn(xn, tn; . . . ; x1, t1) 
defines the joint probability of obtaining {xn, . . . , x1} probing the system at times {tn, . . . , t1} w.r.t. with (arbitrary) 
orthonormal bases {Bn, . . . ,B1}.

Past-future independence. We shall conclude the work with the following observation. Recently, Budini 
and  collaborators56–58 introduced an interesting non-Markovianity witness based on the so-called conditional 
past-future (CPF) correlations. Essentially, the vanishing of CPF correlations is equivalent to the validity of 
the regression equality  (10) for projective measurements w.r.t. arbitrary orthonormal basis {Bn, . . . ,B1} (cf. 
Remark 5.1).

In this regard, consider a normalized state vector

with |ϕxn ,...,x1
tn ,...,t1 � corresponding to the boson state vector which depends on the history of all n measurements up 

to time tn . Now, the reduced dynamics starting at t = tn

provides a dynamical map which depends on the boson state vector |ϕxn ,...,x1
tn ,...,t1 � , and hence it depends upon the 

entire measurement history up to time tn . The process is Markovian whenever the above dynamical map does 
not depend upon the history of measurements records. For the multilevel spin–boson model we are consider-
ing, one has

that is, one may erase the memory about measurement records replacing |ϕxn ,...,x1
tn ,...,t1 � by the vacuum state |vac�.

Conclusions
We have provided a detailed analysis of Markovianity and classicality for the multitime statistics associated with a 
paradigmatic model describing a multilevel system coupled with a multimode boson field, for which calculations 
can carried out explicitly, probed in an arbitrary fixed basis at different times. In the limit in which the coupling 
between the system and the environment is described by flat functions—that is, all field frequencies are coupled 
with the same strength—this system was proven to be Markovian for any measurement basis and any choice of 
the initial (pure) system–bath state. Furthermore, in the same limit, the model was proven to be classical if and 
only if the selected measurement basis coincides with the one (if any) that diagonalizes the reduced evolution 
of the excited sector; any other choice of basis will involve probability exchange between states competing with 
different eigenvectors, hence reveling the underlying quantum nature of the system. This result was compared 

(98)η̃
(α)
j (t,ω) = −i

∫ τ

0
dω e−iω(t−s)fj(ω)�ej|A(s)|x̃α�, j = 1, . . . , d.

(99)η̃
(α)
j (τ , t,ω) = e−iωτ η̃

(α)
j (t,ω).

(100)

∥∥∥∥∥∥
b†j1(ξj1(tn+1 − t1,�t1))

n∏

k=2

d∑

jk=1

b†jk (η̃
(k−1)
jk

(tn+1 − tk ,�tk))|vac�

∥∥∥∥∥∥

2

=
∥∥∥b†j1(ξj1(�t1))

∥∥∥
2

n∏

k=2

∥∥∥∥∥∥

d∑

jk=1

b†jk (η̃
(k−1)
jk

(tn+1 − tk ,�tk))

∥∥∥∥∥∥

2

,

(101)|�̃xn ,...,x1
tn ,...,t1 � :=

|�xn ,...,x1
tn ,...,t1 �√

Pn(xn, tn; . . . ; x1, t1)
= |xn� ⊗ |ϕxn ,...,x1

tn ,...,t1 �,

(102)|xn��xn| → TrB

(
Uτ |xn��xn| ⊗ |ϕxn ,...,x1

tn ,...,t1 ��ϕxn ,...,x1
tn ,...,t1 |U†

τ

)

(103)TrB

(
Uτ |xn��xn| ⊗ |ϕxn ,...,x1

tn ,...,t1 ��ϕxn ,...,x1
tn ,...,t1 |U†

τ

)
= TrB

(
Uτ |xn��xn| ⊗ |vac��vac|U†

τ

)
= �τ (|xn��xn|),
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with the characterization of classicality for quantum Markov processes in terms of the generation of coherence 
in the process, provided  in3,4.

Our work provides a detailed exposition of fundamental concepts of growing interest in recent years—Marko-
vianity and classicality—applied to particular instances of quantum systems having a relatively simple structure, 
while nevertheless retaining a sufficiently rich phenomenology of possible cases. In the context of our proposed 
model, the slightly counterintuitive fact that quantum systems can behave classically, when probed in a proper 
way, is easily interpreted in terms of the presence or absence of mixing between eigenvectors.

Among many possible future developments of our work, it would be useful to provide a similar discussion of 
the classicality of our model beyond the flat-coupling limit—that is, outside the Markovian scenario. In this case, 
classicality can be characterized in terms of the generation of quantum discord rather than  coherence4. Intuitively, 
it would be tempting to conjecture that the model under investigation in the present work will behave classi-
cally when probed via the same measurement basis under which it is classical in the Markov regime: indeed, the 
reduced dynamics in the excited sector will be again diagonal in such a basis. We will leave a detailed answer of 
this question to future works. Finally, as a natural continuation of this line of research, quantifying nonclassical-
ity in spin–boson models and their generalizations, thus going forward the mere characterization of processes 
that happen to be classical, would be of paramount importance. In particular, the classicality of both Markovian 
and non-Markovian dephasing processes deserves the thorough analysis (the classicality of particular models 
of such processes were recently analyzed  in59–63).

Data availability
All data generated or analysed during this study are included in this published article and its supplementary 
information file.
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