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Segmentation of mine overburden 
dump particles from images using 
Mask R CNN
Shubham Shrivastava *, Sudipta Bhattacharjee  & Debasis Deb 

The stability of mine overburden dumps is crucial for the efficient operation of mining industries. The 
size distribution of particles affects the shear strength of dump slopes. Identification of dump particles 
from images is challenging as they vary in size, shape, color, granularity, and texture. In this paper, a 
unique way of identifying the particles from dump images using Artificial Intelligence is presented that 
can be used to determine the particle size distribution of dump. Mask R CNN with ResNet50 plus an 
FPN as a backbone network which is the current state of the art for instance segmentation has been 
implemented to segment the particles from dump images at detailed pixel level and to obtain their 
boundary. Experimental results showed promising results to delineate the particles and obtain masks 
over them. Our model has achieved a training accuracy of 97.2% for the dataset containing 31,505 
particles. The model predicted the areas of dump particles with a mean percentage error of 0.39% and 
a standard deviation of 0.25 when compared to the ground truth values. The calculation of coordinates 
of the detected boundaries using the model significantly reduces the time and effort that are generally 
put in rock mechanics laboratories.

During surface mining operations of coal and other ore deposits, a huge amount of earth material (soil-rock 
mixture) is removed and stacked on a limited land area acquired by the management. This earth material con-
stitutes particles ranging from clay to big boulders, and it is referred to as mine overburden dumps1–3. With the 
increase in production capacity of open pit mines, millions of cubic metres of overburden are removed every 
year4. Hence, maintaining the stability of such massive structures plays a vital role in the proper functioning of 
mining activities. Shear strength of dumps can be defined by cohesion (c) and angle of internal function ( φ)3,5. 
These two parameters c and φ are controlled mainly by the size distribution of dump particles6,7. The traditional 
method of determining the particle size distribution of the sample of dump material is through sieve analysis7,8. 
However, in recent years, many works have been carried out to estimate the particle size distribution from dump 
images.9–11.

Identification of dump particles from the images is a challenging task as the dump images are affected by 
various natural conditions like the intensity of daylight, presence of moisture in the dump particles, occlusion of 
dump particles12. Many industrialists have used blast fragmentation software such as Split, Fragscan, Wipfrag13,14 
etc. to obtain particle size distribution curves. Researchers have tried to detect the particles using edge detec-
tion techniques such as Sobel, Canny filters. Morphological operations have also made it possible to segment 
the particles12. But in most of the cases, images contain few particles that are distinct from each other, and these 
methods are based on color contrast. The in situ particle identification is still the area where a small light has 
been thrown. On the field, the particles vary a lot in terms of their texture, shape, color, granularity, which makes 
them even more difficult to detect. Segmentation of such multi-scale and multi-shape objects using traditional 
image processing techniques seems to be challenging.

Convolutional Neural Networks (CNN) are nowadays used heavily in the field of computer vision such as 
autonomous driving, medical imaging etc15,16. High accuracy has been found in the area of image classifica-
tion, object detection, and segmentation17–19. It is now possible to locate the objects of different classes in the 
images and predict the coordinates of bounding boxes. The structure of CNN consists of other convolution and 
max pooling layers along with some methods of regularization. The features are learnt during the forward and 
backward steps of training. Initial layers are responsible for learning lower level features such as sides, edges and 
these lower level features are used to learn higher-level features that describe target classes from the deep layers20. 
The learning of the model takes place by updating the weight and bias coefficients. Karimpouli and Tahmasebi 
(2019)21 applied CNN autoencoder network that was used to semantically segment the rock particles that were 
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similar in scale and size for the study of digital rock physics. For the granularity analysis of rock images, Cheng 
and Guo (2017)22 implemented CNN with 4 convolutional and 2 fully connected layers.

In this paper, Mask R CNN23 which is the current state of the art in instance segmentation has been imple-
mented. The developed model predicts masks along with the bounding boxes. The location and size of particles 
in the dump images can be tracked down, which can be used to generate particle size distribution curves (this 
will be the next step of study). This paper is organised in the following manner: (1) Materials and methods which 
describe image acquisition, dataset preparation, and architecture of Mask R CNN. (2) Results that describe the 
experimental details and result, and (3) Discussion and future scope of the work.

Materials and methods
Image acquisition.  For the purpose of developing a Mask R CNN based model, 500 images of different sec-
tions of an active overburden dump of JSPL Iron ore mine, Tensa, Sundargarh, Orissa, India, had been collected 
on the month of January 2020. The dump particles mainly consisted of red, yellow, and brown shale. Size of par-
ticles varied from clay to boulder size. Quantity of fine particles in some images are more than 70% and in most 
of the images are evenly distributed. In this context, we describe the fine particles as the regions of dump images 
which are smooth and where the particle boundaries are not clearly distinct. Images were captured to obtain 
mixed proportions of different colored shales. To convert the image pixels into real world dimension coordi-
nates, a white-colored labelled scale was put on the a face of dump at the corners when taking images (Fig. 1). 
This small trick can later be helpful at the time of determining particle size distribution curve. Images were taken 
from various distances perpendicular to the face of dump so that the number of particles in an image varies from 
200 to more than 400 in some cases. Images were captured properly to make sure it were distortionless. In the 
presence of moisture content, particles occluded, and their boundaries were not distinct in some cases. Images 
were taken at different times in a day. As a result, the shadows of dump particles affected a few neighboring 
particles. 31,505 particles were extracted from the images. The resolution of all images is 6000 × 4000 and were 
captured by Canon EOS 200D digital SLR camera. Dump image dataset was fed to the model without applying 
any morphological operations so that the model can identify dump particles from in situ condition.

Dataset annotation and labelling.  Dump images contain particles that vary widely in size. Annotat-
ing each particle in an image seems to be challenging. Therefore, the task of annotation and labelling has been 
confined to some ground rules which the authors prepared after considering the whole image dataset. Figure 1 
shows dumps images that mention do’s and don’ts in green and red boxes respectively.

Do’s: 

1.	 Only those particles are annotated which are lying in the image boundary whose surface edges are clearly 
defined.

2.	 Mask boundaries of two particles should be in contact, if they are touching each other.
3.	 Mask should be drawn to cover the depth of particle entirely, if clearly visible.
4.	 If two particles lie above one another, then bottom particle should also be annotated keeping in mind the 

two dimensional view of the dump particles.
5.	 The rock particles which are slightly blurred are also annotated.
6.	 Fine particles are annotated only if their boundary can be defined.

Don’ts: 

1.	 Annotate the particles at the boundary of image whose dimension cannot be estimated.
2.	 Annotate the fine particles (dust and sand) lying over coarse rock particles.
3.	 Annotate the particles whose dimensions can’t be speculated due to shadows.
4.	 Annotate the particles which are lying below many particles and their dimensions can’t be defined.
5.	 Intersect the mask boundaries.

Figure 1.   Qualitative guidelines for annotation and labelling of dump particles from images
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VGG Image Annotator (VIA)24 version 2.0.8 which is developed by Visual Geometry Group, Department of 
Engineering Science, University of Oxford has been used to annotate and label the dump particles. It is a manual 
standalone software that runs in a web browser and it allows to export the annotations in COCO25 format. In 
Fig. 2, some examples of annotated and labelled dataset are shown. A single class named “particle” was selected 
as an attribute for the purpose of labelling.

Model structure of Mask R CNN.  Mask R CNN is an instance segmentation which locates each pixel of 
every instances in an image. It is an extension of Faster R CNN26 which is used extensively for the object detec-
tion. Along with the localisation of the objects in the images an extra branch is added at the end of the model 
to parallelly predict the masks over the proposed bounding boxes. Mask R CNN uses Region Proposal Network 
(RPN) which was first introduced in Faster R CNN paper for proposing regions of interest and then classifying 
the proposals along with generating bounding boxes and masks. For the purpose of feature extraction, Feature 
Pyramid Network (FPN)27 is used with back bone network as ResNet5028 which extracts multi-scale feature 
maps. To warp the image features with the proposed ROIs, ROI Align is used instead of ROI Pooling which was 
used in Faster R CNN23. The output is fed to the Fully Connected (FC) and Fully Conventional Network (FCN)29 
to generate the masks. The schematic diagram of CNN architecture is given in Fig. 3.

Feature extraction.  Dump images contain many details of the particles like their texture, granularity, color, 
fines. The developed model needs to learn the features which will have the detailed information of each instance 
pixels. The choice of CNN for feature extraction is vital as the architecture, type and the depth of layers, number 
of parameters affects the accuracy, training time, detection speed and the overall performance of the Mask R 
CNN . The combination of ResNet and FPN is popularly used for extraction of features, as ResNet overcomes 
the degradation problem where accuracy gets saturated and often degrades with increase in depth of layers28. 
The FPN is a top down pyramid architecture which makes it possible to obtain multi scale features for better 
representing the target of different scales. FPN inputs dump images of 1024 × 1024 dimension and it consists of 
5 stages for each different scale of feature maps. High level features extracted from the first pyramid are passed 
to second pyramid by lateral connections. Thus, each layer has access to both higher and lower level of features 
independently. In this study, Mask R CNN has been implemented using ResNet50 with FPN.

Generation of ROI.  Extracted feature maps from different layers of backbone FPN is input to the RPN which 
was first introduced in Faster R CNN for the generation of regions of interests. RPN is a fully convolutional net-
work which is responsible for proposing possible areas containing objects with bounding boxes and objectness 
score. 6 anchors of sizes: 16, 32, 64, 128, 256 and 512 with aspect ratios of 0.5, 1 and 2 has been defined for each 
size and distributed over entire dump image area. The output of RPN consists of category of anchors whether the 
anchor represents foreground (dump particle) or background. If the anchor contains the target, the coordinates 

Figure 2.   Some examples of annotated and labelled images for training dataset
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of the selected anchor has to be adjusted to bound the target in a box. Therefore, the second output from the RPN 
contains the correction factor which defines the position and the size of proposed bounding boxes. Maximum 
of 2000 proposed bounding boxes with high objectness scores are selected. Non Max Suppression (NMS) with 
IOU threshold of 0.5 is applied to suppress highly overlapping RPN proposals based on their class score. Final 
proposals, which contain dump particles are sent to next stage.

ROI align and mask generation.  The outputs from RPN and the backbone network are sent to Fully Connected 
(FC) and Fully Convolutional Network (FCN) for the target identification, localisation and mask generation. 
Before feeding the outputs to the next stage, the size of proposed anchor boxes needs to be adjusted as per the 
requirements of the FC network. The ROIs from RPN and the multi scale visual features from the backbone 
network are warped up by ROI Align operation which aligns the corresponding features of ROIs using bilinear 
interpolation23. Mask R CNN replaced ROI Pooling layer which was implemented in Faster R CNN with ROI 
Align layer which doesn’t uses quantization of features and it aligns each pixel of input to output and helps to 
produce better segmentation of pixels. The features from ROI Align layer is input to FC network for classification 
and box regression while the extra branch of FCN generates the masks of dump particles.

Loss function and training of Mask R CNN.  Loss function represents the differences in predicted values 
and ground truth values. The same multi task loss function as defined in original Mask R CNN paper23 has been 
implemented. It sums up the losses of classification, bounding box regression and segmentation masks as shown 
in Eq. (1).

For implementing the Mask R CNN, the dump image dataset was split into three parts. The images with 80% of 
the total extracted particles were selected for training while the images with 10% each were selected for validation 
and test datasets. The ground truth data constituted 31,505 dump particles which were annotated under a single 
class named ”particle”. Before feeding the images in the model, dimensions of all images were fixed to 1024 × 1024 
and the input batch size was 512 to train RPN so that the target foreground anchors would be more compared to 
a default value of 256. Learning rate of 2.5× 10−4 was used with the decay of 10−3 in the normalization layers. 
Stochastic Gradient Descent (SGD) was used with a momentum of 0.9.

Results
Implementation details.  The experiments were performed in Google Colab, a virtual computing platform 
that provides 25GB RAM of Tesla K80 GPU with storage of 68 GB. In this study, we have developed our own 
version of Mask R CNN based on Detectron230, an open-source object detection system which is written in 
PyTorch31 framework for deep learning. The prepared dataset, consisting of the VIA generated ground truth seg-
mentation masks of dump particles, was trained. The model weights were initialised with the weights obtained 
from a model that was trained on MSCOCO Dataset25, and training was done only for the network heads in all 
of our experiments by tuning its parameters to map the dump particles to ”particle” as a label. The model was 
trained to 10,000 iterations ,and it took 5.5 hours approximately. To prevent the overfitting of model, the dataset 
was augmented in several ways using random crops, random scaling, random translations, random rotations, 

(1)L = Lcls + Lbbox + Lmask

Figure 3.   Framework of Mask R CNN with ResNet and FPN as backbone network
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adding Gaussian noise and random horizontal and vertical flips. The development of Mask R CNN based model 
is presented in two progressive steps. In the first experiment, 16,448 particles were used in the dataset with the 
backbone network of ResNet50 with FPN. In the second experiment, the number of particles in the dataset was 
increased to 31,505 particles. The performance of the model was analysed with an increasing number of particles 
in the dataset.

For evaluating the performance of our Mask R CNN based model, a mean percentage error for all the images 
of validation dataset is calculated between the areas of particles predicted from the model and from the annotated 
image that was given as an input to the model.

Performance of Mask R CNN with ResNet50 as backbone network.  In this study, performance of 
the model has been evaluated with the size of dataset.

On dataset containing 16,448 particles.  To accurately evaluate the quality of localization and segmentation of 
the dump particles, the Mask R CNN with backbone as ResNet50 plus an FPN was initially trained on the dump 
dataset containing 16,448 particles. Figure 4a shows the total loss and Mask R CNN training accuracy with the 
number of iterations in figure. Training started with a rapid downfall of total loss, and after 2000 steps of itera-
tion the decrease of value for every 1000 iteration became 0.1. Training accuracy followed a reverse trend, and at 
the end of 7000 steps of iteration, the value was 94.3%. The training of the Mask R CNN model was evaluated by 
training accuracy and the total loss. The general strategy for calculating the training accuracy is to compare the 
predicted masks over the objects with the ground truth data at each iteration during training. In this case, the 
annotated masks of dump particles were compared with the predicted masks of the dump particles. If ŷi is the 
predicted value of the ith sample and y i  is the corresponding true value, then the fraction of correct predictions 
over nparticles is defined as in Eq. (3)

The rate of false positives was decreasing very slowly with the number of iterations. The final value of Mask R 
CNN false positives at the end of 5000 steps of iteration was 0.1. The Mask R CNN model based on ResNet50 
plus an FPN as a backbone network was able to identify multi scale dump particles. This experiment indicates 
that CNN, which has already obtained excellent results in other fields of computer vision, can also be helpful in 
the case of objects that are large in number, highly variable in shape, size, color, granularity and texture.

On dataset containing 31,505 particles.  The next experiment was carried out on the dataset containing 31,505 
particles with ResNet50 plus an FPN as the backbone network for the Mask R CNN model. All the other hyper-
parameters were kept as it was in the model with ResNet50 backbone network with dataset containing 16,448 
dump particles. The output from the model had given a better segmentation of dump particles from the images. 
From the plot of training loss and Mask R CNN training accuracy as given in Fig. 4b, it was observed that there 
was an increase in the total loss with the same steps of iteration as compared to the model with dataset contain-
ing 16,448 particles. The training accuracy curve (calculated from Eq. 3) was observed to get flat in the initial 
phase of training. At the end of the training, the total loss was 0.86, and training accuracy was 97.2%. The trend 
of false positives was almost similar to the previous experimental result. The value of false positives was 0.11. 
The classification accuracy of this experiment was better than the previous one. The reason behind this behav-

(2)zi =

{

1 if (ŷi − yi) = 0
0 if (ŷi − yi) �= 0

(3)accuracy =
1

nparticles

nparticles−1
∑

i=0

(zi)

Figure 4.   Plot of Mask R CNN training accuracy and Total Loss during training with steps of iterations for the 
model with ResNet50 plus FPN as backbone network
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iour is the increase in the size of training dataset which provided more number of images during the training 
of network. Some predicted dump images are shown in Fig. 5. Figure 5b shows a predicted dump image with 
lots of fine particles. Segmentation masks, bounding boxes, and prediction accuracy of individual particles are 
illustrated in Fig. 5c. The different colors of the masks show that these are different instances of a single object 
named “particle”.

Calculation of percentage error between predicted and ground truth values.  From the output 
of the model with the backbone of ResNet50 plus an FPN on dump dataset containing 31,505 particles, the 
bounding box areas of dump particles were predicted, which will later be helpful in determining the particle 
size distribution curve and the other parameters that affect the stability of overburden dump. Figure 6 shows 
three sets of images containing original images from the validation dataset, labelled and annotated image fed 
to the model as input and predicted image respectively. For evaluating the predictions made by the model, we 
compared the bounding box areas of annotated particles with that of the predicted bounding box areas of the 
validation dataset. The annotations were recorded as polygons to calculate the bounding box from the polygon 
we first determined the coordinates of a minimum bounding rectangle over the polygon as per Eq. (4).

Figure 5.   Inferences from the Mask R CNN with backbone network on ResNet50 plus an FPN

Figure 6.   Original, ground truth and predicted results of image ids: IMG_9012, IMG_9078 and IMG_9301 in 
first, second and last rows respectively
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The area of the bounding box over a dump particle was then calculated as the area of the minimum bounding 
rectangle. The percentage error between the predicted and ground truth values was calculated as per Eq. (5).

Here nparticles is the number of particles common to the ground truth and predicted values of validation data-
set. ar_bboxgt and ar_bboxpred are the area of bounding box of particle from ground truth and predicted mask 
respectively.

It was observed that the areas of those particles which were segmented from the predicted images were 
in a close range with the areas of the same particles from ground truth data. A percentage error between the 
bounding box areas of particles that were common to both the ground truth data and the predicted values of the 
validation dataset was calculated. The bounding box areas of particles (in (pixel)2 ) from ground truth data were 
calculated as per Eq. (4), and the bounding box area of particles (in (pixel)2 ) were predicted from the model as 
shown in Fig. 5c. A mean percentage error was calculated as per Eq. (5) for all the common particles predicted 
in a dump image. Table 1 shows the bounding box areas of ground truth and predicted masks for 10 randomly 
selected particles of image: IMG_9281. Figure 7 shows the percentage error with standard deviation between the 
bounding box areas of dump particles from ground truth data and the predicted data for 5 randomly selected 
images from the validation dataset. The results obtained from the model are able to identify 73.58% particles 
on an average. A mean percentage error of 0.39% and standard deviation of 0.25 was found when the common 
particles from all the dump images of validation dataset were considered. Lower values of percentage error 
indicate that the classification and segmentation accuracy of the model was high, and it was able to delineate 
the dump particles accurately from the images. Therefore, the model is able to precisely locate the bounding 
boxes over dump particles.

(4)bbox = [min(x),max(x),min(y),max(y)]

(5)Percenterror(%) = [
1

nparticles

nparticles−1
∑

i=0

(ar_bboxgt)i − (ar_bboxpred)i

(ar_bboxgt)i
] × 100

Figure 7.   Percentage error with standard deviation between the bounding box areas from ground truth and 
predicted masks for 5 randomly selected images of validation dataset

Table 1.   A table showing bounding box areas of 10 randomly selected dump particles of IMG_9281 from 
ground truth data and predicted masks of validation dataset

S. no. ar_bboxgt in (pixel)2 ar_bboxpred in (pixel)2 Percent error (%)

1 330,099 330,427 0.1

2 3,173,703 3,175,804 0.07

3 1,695,358 1,702,061 0.4

4 983,766 982,579 0.12

5 16,548,080 16,557,954 0.06

6 4,357,080 4,364,645 0.17

7 10,980,008 11,131,568 1.38

8 1,908,522 1,897,543 0.58

9 769,775 769,080 0.09

10 2,409,304 2,424,045 0.61
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Discussion
This study shows that it is possible to use deep learning techniques even to detect dump particles which vary 
widely in shape, size, color, texture, and granularity. The images were collected from an active overburden dump, 
and the dump particles were annotated and labelled. Mask R CNN was implemented with ResNet50 plus an FPN 
as a backbone network. Two experiments were designed, the first one with 16,448 dump particles in the dataset, 
and in the second experiment, 15,057 more particles were added in the dataset. The model was trained to achieve 
an accuracy of 97.2% for the dataset containing 31,505 particles. Bounding box areas were predicted from the 
model with a mean percentage error of 0.39% with a standard deviation of 0.25. From the AI experimental results 
as shown in Fig. 6, it was found that the Mask R CNN model was able to predict similar size range of dump par-
ticles as annotated and labelled. We attempted to annotate as smaller particles as possible. The number of coarse 
particles was more than the fine particles in the prepared dump dataset. As a result, the trained model predicted a 
greater number of coarse particles. Therefore, it can be concluded that the trained Mask R CNN model is working 
better for coarse particles than fine particles. To address the fine particles problem, it is recommended to click 
the images by keeping camera closer to the dump slopes. As the white-colored scale is being used to transform 
the pixels into real-world coordinates, the fine particles would be captured and trained effectively. The images 
of a dumpsite can be captured at various positions perpendicular to the dump slope, and the predicted results 
can be merged to get the coarse and fine dump particles predicted by the model. The results will be better if 
high resolution dump images are used in the training dataset. However, it will be better to have more number of 
segmented particles to generate an accurate particle size distribution curve with less percentage of error.

Conclusion
This study is the first step towards developing an AI-based tool to predict in situ particle size distribution of a 
section of a mine overburden dump using images. Particle size distribution plays an important role in controlling 
the shear strength of a dump. Once the behaviour of shear strength is established, the Factor of safety (FoS) can 
easily be anticipated. This work will help develop a tool that mine management can use to estimate the stability 
of dump instantaneously. The key point of relevance in this research work was to inquire about the size of dataset 
that would be sufficient for training the model to reach high training accuracy. If the dataset size is more than the 
images containing 31,505 particles, the training accuracy of the model may not improve significantly, as it has 
already reached 97.2% while if the size of dataset is smaller, then the desired results may not be obtained. A high 
training accuracy signifies the complexity involved in predicting objects varying widely in terms of shape, size, 
color, granularity, texture, etc. For undertaking this study, we prepared a small dataset of dump images containing 
31,505 particles which have collections from a single mine. This kind of dataset is not available in the literature 
at present, so we will contribute the dump dataset to the research community in the future after adding more 
images from other mines of different ores. This dataset can also be used to study different concepts of overburden 
dumps like the gradation of particles, porosity of dump samples, distribution of particles based on their shape. 
Our primary focus will be on increasing the number of images in the dataset for future work. A large dataset will 
allow an increase in the depth of layers so that the model can be implemented with ResNet101 as the backbone 
network. Later, the particle size distribution curve can be determined for an unseen dump image from this model.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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