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Artificial neural network identified 
the significant genes to distinguish 
Idiopathic pulmonary fibrosis
Zhongzheng Li , Shenghui Wang , Huabin Zhao , Peishuo Yan , Hongmei Yuan , Mengxia Zhao , 
Ruyan Wan , Guoying Yu * & Lan Wang *

Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease that causes irreversible 
damage to lung tissue characterized by excessive deposition of extracellular matrix (ECM) and 
remodeling of lung parenchyma. The current diagnosis of IPF is complex and usually completed by 
a multidisciplinary team including clinicians, radiologists and pathologists they work together and 
make decision for an effective treatment, it is imperative to introduce novel practical methods for 
IPF diagnosis. This study provided a new diagnostic model of idiopathic pulmonary fibrosis based on 
machine learning. Six genes including CDH3, DIO2, ADAMTS14, HS6ST2, IL13RA2, and IGFL2 were 
identified based on the differentially expressed genes in IPF patients compare to healthy subjects 
through a random forest classifier with the existing gene expression databases. An artificial neural 
network model was constructed for IPF diagnosis based these genes, and this model was validated by 
the distinctive public datasets with a satisfactory diagnostic accuracy. These six genes identified were 
significant correlated with lung function, and among them, CDH3 and DIO2 were further determined 
to be significantly associated with the survival. Putting together, artificial neural network model 
identified the significant genes to distinguish idiopathic pulmonary fibrosis from healthy people and it 
is potential for molecular diagnosis of IPF.

IPF is a chronic progressive interstitial lung disease characterized by developing lung scarring and deterioration 
of lung  function1. The abnormal extracellular matrix accumulates with the lung tissue and vascular system are 
repeatedly micro-damaged, and the alveolar structure is destroyed, resulting in a decrease in the lung tissue’s 
ability to exchange gas with the  outside2–4. The clinical manifestations are cough and dyspnea, severe cases can 
lead to respiratory failure. IPF mainly occurs in people at 50 years of age and older, and the incidence increases 
with  age5–7. IPF is widely believed to result from the interaction of genetics, environmental risk, and  ageing8. Most 
IPF patients also have multiple complications, such as heart failure, gastroesophageal reflux disease, obstructive 
apnea, etc.9,10

The challenge to clinicians is distinguishing IPF from other idiopathic interstitial pneumonias, high-resolution 
CT of the chest and lung biopsy are advised now, but the risk of surgical lung biopsy is greater for elder  pattens11. 
With the development of high-throughput sequencing technology, the molecular alteration can be observed and 
the changes at RNA level can be more accurately determined in  disease12–14.

In addition, with the development of artificial intelligence technology, machine learning and deep learning 
models have recently made significant contributions to the development of predictive medicine and modern 
pathological  practice15–17. These models enable people to better interpret high-throughput data, reduce the 
dependence of disease diagnosis on subjective consciousness, and provide more precise criteria for disease 
 diagnosis18–20. In this study, Gene Expression Ontology (GEO) databases were used to screen the key genes and 
construct an artificial neural network model for diagnosis of idiopathic pulmonary fibrosis.

Materials and methods
Statement. Our study is based on open-source databases(GEO), there are no ethical issues and other con-
flicts of interest. which belongs to public databases. The patients involved in the database have been obtained 
ethical approval. Users can download relevant data for free for research and publish relevant articles.
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Data download and processing. We used keywords “idiopathic pulmonary fibrosis”, “pulmonary fibro-
sis”, and “lung fibrosis” to search for relevant datasets in the GEO database. Specifically, we included datasets in 
our analysis if they met the following criteria: (1) Adequate sample size. (2) Included both normal and disease 
groups. (3) RNA was extracted from lung tissue. (4) Adequate evidence for a diagnosis of IPF, such as HRCT. 
(5) Clinical information was collected in a standardized manner. In GSE47460, these are 582 total subjects, 254 
have interstitial lung disease, 220 have COPD, and 108 are  controls21. GSE110147 lung samples were obtained 
from the recipients’ organs of 22 patients with IPF, 10 with NSIP (non-specific interstitial pneumonia) and 5 with 
mixed IPF-NSIP undergoing lung  transplantation22. In GSE53845 RNA was extracted directly from lung tissue 
samples from 40 IPF patients or 8 healthy  controls23. In GSE70866, BAL cells were harvested from a discovery 
cohort of 62 patients from Freiburg, Germany, and two independent validation cohorts, Siena, Italy (50 patients) 
and Leuven, Belgium (64 patients)24. The GEOquery package was used to obtain the expression profiles and clin-
ical phenotype data of the microarray datasets GSE47460, GSE53845, GSE110147, GSE32537, and GSE70866. 
Only IPF samples and normal samples for subsequent analysis were retained, excluding other lung samples. The 
annotation information of the chip probes of the corresponding platforms was obtained from the GEO database, 
respectively. During the conversion of the microarray probe ID and gene symbols, multiple probes correspond-
ing to one gene symbol were found. Considering the reliability of the data, ’many-to-one’ probe expression levels 
were used for gene expression levels. GSE47460 database had the largest sample size among the available data-
bases and therefore provided the most possibility to identify differentially expressed genes.

Differential gene expression and enrichment analysis. Principal Component Analysis (PCA) was 
performed to identify spatial sample separation in the patient cohort using an R package  factoextra25. The R soft-
ware package  limma26 was used to achieved differential analysis on 91 control and 122 IPF samples of GSE47460, 
genes differentially expressed with P values < 0.05 and fold changes > 1.5 or < 2/3 were visualized using an R pack-
age heatmap. The metascape  tool27 was used to carry out enrichment analysis with DEGs on multiple databases 
including GO database, KEGG database, Reactome database, Wikipathway  database28,29.

Random forest screens the top signatures. 126 DEGs from GSE47460 (93 up-regulated and 33 down-
regulated) were used to construct the random forest model (Table 1). The construction of random forest model 
and the chosen of top signatures were used the methods of  Tian1. The R package pheatmap was used to perform 
k-means unsupervised clustering of the GSE47460 dataset and visualize.

Establishment of IPF classification model with artificial neural network. We used the top six sig-
natures expression in another dataset of GSE32537 to construct an artificial neural network model using the R 
software package neuralnet. Taking the four hidden layers as the model parameters, the IPF disease classification 
model is constructed through the obtained gene weight information. Five-fold cross-validation were performed 
by the Caret package, pROC package was used to estimate the value of AUC 30.

Additional data verification. On three independent datasets (GSE47460, GSE53845 and GSE110147), 
the validity of the constructed classification scoring model of IPF disease and normal samples was verified. The 
clinical data of GSE70866 were used to evaluate this potential of this model to indicate the patient prognosis and 
survival.

Clinical parameters. Clinical straits of IPF patients and healthy control such as the age, gender, pulmonary 
function tests (PFT) et al. were obtained in GES47460 dataset. The commonly PFT including forced vital capac-
ity (FVC) (% pred.), FVC (post.), forced expiratory volume in 1 s (FEV1) (%pred.), FEV1(post.), and diffusing 
capacity of the lung for carbon monoxide (DLCO) (%pred.)31 were combined into a single "meta" lung func-
tion indicator by R package factoextra. FVC(post) and FEV1(post) refer to the post-bronchodilator forced vital 
capacity (FVC) and forced expiratory volume in one second (FEV1). The design of this study including the main 
four-step process was represented by a flow chat (Fig. 1).

Statistical analysis. The R package limma is used for differential expression analysis. To fit the expression 
data to a linear model and perform empirical Bayes moderation to shrink the standard errors and increase the 
accuracy of the results. Visualize the results using limma’s built-in plotting functions or by exporting the data 
and using ggplot2 for visualization. To remove batch effects using the Combat package, the combat() function 
to adjust for batch effects by specifying the variables that contain the batch information and the variables to be 
adjusted. OS time and cause of death were obtained and matched to respective patients from the supplemental 
clinical data available from the GSE70866. Survival time was measured in days starting at diagnosis and ending 
on the patient’s death or end of the follow-up period. Kaplan–Meier method was used to estimate overall patient 
survival by genes expression. The high—and low-risk groups were differentiated according to the expression 
value, with each group containing at least one third of the total sample. The log–rank and Wilcoxon tests were 
used to compare survival distributions. Correlations were calculated using Spearman’s rank correlation (pre-
sented as Spearman rho). The resulting coefficient will range from − 1 to 1, where  − 1 indicates a perfect inverse 
relationship, 0 indicates no relationship, and 1 indicates a perfect direct relationship.
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logFC AveExpr t P value Adj. P.Val B Sig Gene_name

2.766981 10.02813 24.83617 1.59E−71 2.41E−67 152.2407 Up CDH3

3.51672 8.149571 24.37658 5.15E−70 3.91E−66 148.795 Up IL13RA2

4.22487 4.938856 22.84845 6.52E−65 3.30E−61 137.1561 Up IGFL2

3.364436 10.60868 22.74715 1.43E−64 5.44E−61 136.375 Up COMP

4.365315 7.774525 22.39132 2.30E−63 6.99E−60 133.6222 Up COL17A1

 − 2.23625 7.195647  − 21.9088 1.02E−61 2.58E−58 129.8669 Down CTNND2

2.991574 8.057767 21.5496 1.73E−60 3.76E−57 127.0559 Up HS6ST2

2.760018 8.75285 21.38315 6.48E−60 1.23E−56 125.7486 Up DIO2

2.487672 8.386943 20.96768 1.76E−58 2.97E−55 122.4737 Up ADAMTS14

2.657568 6.986265 20.47869 8.76E−57 1.33E−53 118.5982 Up SCG5

 − 2.17148 6.87585  − 20.4486 1.12E−56 1.54E−53 118.3591 Down FAM167A

2.976165 6.119909 19.82738 1.65E−54 1.79E−51 113.4033 Up TMEM229A

 − 2.06299 9.50816  − 19.8031 2.00E−54 2.03E−51 113.209 Down CRTAC1

 − 2.12757 10.86437  − 19.6535 6.71E−54 6.36E−51 112.0103 Down C11orf9

2.87141 8.609686 18.7457 1.06E−50 7.31E−48 104.7026 Up TUBB3

2.362009 4.947451 18.45088 1.17E−49 7.41E−47 102.3176 Up FRMD5

2.572854 7.592293 18.30919 3.72E−49 2.17E−46 101.1696 Up TDO2

2.127251 10.95033 17.93908 7.67E−48 3.33E−45 98.16623 Up COL3A1

2.157614 9.930151 17.88617 1.18E−47 4.86E−45 97.7363 Up CTHRC1

3.561535 5.093026 17.76968 3.07E−47 1.20E−44 96.78941 Up SPRR1A

3.745945 5.457904 17.76204 3.27E−47 1.21E−44 96.72732 Up GPR87

 − 3.12637 5.905882  − 16.8918 4.13E−44 1.05E−41 89.63863 Down SERTM1

3.032648 6.806622 16.80599 8.37E−44 1.95E−41 88.93822 Up CHRDL2

 − 2.07597 11.46303  − 16.7484 1.34E−43 3.00E−41 88.46867 Down FIGF

3.160266 12.05447 16.70106 1.98E−43 4.24E−41 88.08196 Up MMP7

4.805732 9.414086 16.56306 6.16E−43 1.26E−40 86.95575 Up MMP1

2.037572 6.383056 16.42577 1.91E−42 3.49E−40 85.83511 Up P4HA3

 − 2.19976 3.898955  − 16.41 2.17E−42 3.92E−40 85.70644 Down DAO

2.226205 4.358469 16.16479 1.63E−41 2.58E−39 83.70469 Up CPNE4

 − 3.76646 10.06016  − 16.1418 1.97E−41 3.08E−39 83.51712 Down ITLN2

 − 2.90756 5.198867  − 16.0732 3.46E−41 5.20E−39 82.95688 Down SLC5A9

 − 2.2071 6.223977  − 16.0238 5.20E−41 7.51E−39 82.55381 Down MATN3

2.47714 7.467569 15.99126 6.79E−41 9.63E−39 82.28814 Up MMP11

 − 2.47715 14.60113  − 15.9736 7.85E−41 1.10E−38 82.1439 Down AGER

2.564527 6.131047 15.88976 1.56E−40 2.12E−38 81.45978 Up GJB2

 − 2.24312 6.256766  − 15.7125 6.72E−40 8.43E−38 80.01307 Down DPP6

2.684995 7.423303 15.60143 1.67E−39 1.97E−37 79.10736 Up SCRG1

 − 2.3598 6.071668  − 15.547 2.62E−39 2.96E−37 78.66324 Down CCK

 − 2.01366 5.110895  − 15.4987 3.89E−39 4.25E−37 78.26978 Down RGS9BP

 − 2.53328 7.572299  − 15.3963 9.02E−39 9.31E−37 77.43515 Down BTNL9

 − 3.14081 9.246772  − 15.3426 1.40E−38 1.37E−36 76.99693 Down CA4

 − 2.01677 5.500521  − 15.1519 6.70E−38 6.28E−36 75.44365 Down GRIA1

2.63809 9.547163 14.99355 2.46E−37 2.17E−35 74.15484 Up SFRP2

2.177063 9.87252 14.99053 2.52E−37 2.21E−35 74.13025 Up CILP

 − 2.51131 6.897446  − 14.8662 6.97E−37 5.82E−35 73.11921 Down ARC 

2.977688 4.686335 14.70242 2.67E−36 2.05E−34 71.78832 Up GREM1

 − 2.22583 10.08823  − 14.5432 9.80E−36 6.79E−34 70.49599 Down CSRNP1

3.273104 5.371113 14.53062 1.09E−35 7.43E−34 70.39393 Up UGT1A6

2.048878 8.000404 14.40344 3.07E−35 1.99E−33 69.36293 Up PNOC

2.458664 6.380619 14.35154 4.69E−35 2.93E−33 68.94254 Up KIAA0125

2.314409 11.53685 14.24544 1.11E−34 6.58E−33 68.08363 Up POU2AF1

2.810528 11.71609 14.16438 2.16E−34 1.23E−32 67.42805 Up KRT15

2.473771 8.42905 14.02724 6.59E−34 3.53E−32 66.32004 Up FCRL5

2.27024 11.15122 13.96948 1.05E−33 5.57E−32 65.85389 Up MZB1

 − 2.57245 5.211454  − 13.8693 2.38E−33 1.22E−31 65.04635 Down GRM8

2.231172 9.119239 13.8484 2.82E−33 1.41E−31 64.8776 Up TNFRSF17

Continued
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logFC AveExpr t P value Adj. P.Val B Sig Gene_name

2.756707 4.877502 13.78906 4.56E−33 2.23E−31 64.39965 Up PCSK1

 − 2.62411 9.695784  − 13.7279 7.49E−33 3.54E−31 63.90757 Down RTKN2

2.120844 5.910121 13.62829 1.68E−32 7.30E−31 63.10645 Up MEOX1

 − 2.4414 9.822001  − 13.5846 2.39E−32 1.02E−30 62.75567 Down VIPR1

2.240894 4.784055 13.50426 4.58E−32 1.90E−30 62.11065 Up OGDHL

3.053751 8.157115 13.50421 4.58E−32 1.90E−30 62.11025 Up PLA2G2A

2.129504 4.529648 13.49352 5.00E−32 2.04E−30 62.02447 Up HS6ST3

4.099913 8.125221 13.44575 7.35E−32 2.92E−30 61.6414 Up KRT5

2.02468 15.36297 13.43145 8.25E−32 3.26E−30 61.52684 Up IGLL1

2.957404 8.32699 13.37414 1.31E−31 5.08E−30 61.06769 Up SLN

2.025418 6.606265 13.32849 1.89E−31 7.24E−30 60.7023 Up JSRP1

2.955387 8.370847 13.14 8.65E−31 3.07E−29 59.19618 Up KRT17

2.469841 4.782865 13.13835 8.76E−31 3.11E−29 59.183 Up ADAMTS16

2.665355 4.140607 13.11133 1.09E−30 3.82E−29 58.96753 Up DSC3

2.047263 6.544204 12.95095 3.95E−30 1.29E−28 57.69017 Up SIX4

2.162986 7.005848 12.79213 1.41E−29 4.33E−28 56.42886 Up KRT13

 − 3.82993 6.855422  − 12.7626 1.78E−29 5.42E−28 56.19501 Down SLC6A4

2.050099 3.420621 12.71757 2.55E−29 7.62E−28 55.83794 Up GLB1L3

3.327225 10.25723 12.398 3.25E−28 8.42E−27 53.31524 Up SPP1

2.365788 5.364215 12.3891 3.49E−28 9.01E−27 53.24522 Up NELL1

2.233526 8.432288 12.25826 9.84E−28 2.44E−26 52.21743 Up B3GNT3

3.18778 4.471553 11.73307 6.11E−26 1.23E−24 48.12406 Up KRT6C

3.074268 6.14006 11.57827 2.04E−25 3.88E−24 46.92814 Up CXCL13

2.28213 8.169303 11.5444 2.66E−25 5.00E−24 46.6672 Up TNS4

2.552859 4.618913 11.52658 3.05E−25 5.69E−24 46.52998 Up CYP24A1

2.211397 9.229355 11.52258 3.15E−25 5.83E−24 46.49923 Up LGALS7

 − 2.62597 6.240672  − 11.4101 7.54E−25 1.34E−23 45.63487 Down HTR3C

 − 2.51063 7.189042  − 11.27 2.22E−24 3.74E−23 44.56281 Down IL1RL1

 − 2.18817 3.733392  − 11.1975 3.89E−24 6.42E−23 44.00948 Down HMGCS2

2.191917 9.204335 11.16278 5.08E−24 8.26E−23 43.74504 Up SIX1

 − 3.09117 10.64484  − 11.15 5.60E−24 9.07E−23 43.64818 Down FOSB

2.105424 5.55814 10.97058 2.21E−23 3.35E−22 42.2868 Up FCRLA

3.006776 5.260356 10.94717 2.65E−23 3.95E−22 42.1098 Up MMP10

2.358111 5.915948 10.92789 3.07E−23 4.56E−22 41.96412 Up VSIG1

 − 2.33134 4.765235  − 10.7303 1.38E−22 1.94E−21 40.47703 Down ANKRD1

2.142038 8.747571 10.61317 3.34E−22 4.54E−21 39.60094 Up LCN2

 − 3.46187 6.368909  − 10.5444 5.60E−22 7.46E−21 39.08815 Down CSF3

 − 2.07382 12.65793  − 10.5361 5.96E−22 7.93E−21 39.02614 Down FCN3

2.170145 4.032137 10.39294 1.74E−21 2.20E−20 37.96391 Up GJB5

2.367125 5.052865 10.32556 2.88E−21 3.58E−20 37.4659 Up CCL7

2.482971 5.13548 10.24086 5.42E−21 6.52E−20 36.84194 Up TTR 

2.042244 6.607493 10.10804 1.45E−20 1.67E−19 35.86794 Up LGSN

 − 2.00184 5.891826  − 10.0318 2.55E−20 2.86E−19 35.31159 Down ESM1

 − 2.45081 3.630636  − 9.81136 1.28E−19 1.35E−18 33.71326 Down CT45A1

2.731854 6.087442 9.800989 1.38E−19 1.45E−18 33.63845 Up C4orf7

2.314047 8.881864 9.489329 1.32E−18 1.24E−17 31.40884 Up SOX2

 − 2.14701 4.465319  − 9.47809 1.43E−18 1.34E−17 31.3291 Down FAM71A

2.393 6.242972 9.406946 2.38E−18 2.19E−17 30.82539 Up VTCN1

2.153101 7.83975 9.367191 3.16E−18 2.87E−17 30.54476 Up RHOV

2.167415 4.486344 9.272752 6.20E−18 5.49E−17 29.88051 Up CLCA2

2.043337 9.418979 9.156337 1.41E−17 1.21E−16 29.06646 Up MUC4

2.375417 5.44786 9.103523 2.05E−17 1.74E−16 28.69891 Up KLK12

3.702802 10.68933 9.001632 4.19E−17 3.42E−16 27.993 Up BPIFB1

2.28831 5.361617 8.85303 1.18E−16 9.28E−16 26.97114 Up CXCL6

2.101133 5.911965 8.786643 1.87E−16 1.44E−15 26.51762 Up ATP12A

2.155802 8.151967 8.776072 2.01E−16 1.55E−15 26.44557 Up CCNO

Continued
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Results
Significantly alteration of the genes and enriched signal pathway in IPF. The design of this 
study including the main four-step process was represented by a flow chat (Fig. 1). Totally 213 subjects in the 
GSE47460 dataset, including 91 healthy control and 122 IPF patients, the Bayesian test in the limma package 
were used to identify DEGs between normal and IPF samples. One hundred and twenty-six significantly dif-
ferentially expressed proteins (DEPs) (adj.P.Val < 0.05 and a differential expression ratio [IPF/N] > 2 or < 0.5), 
including 93 up-regulated genes and 33 down-regulated genes were identified and heatmap in Fig. 2A, B. Then 
the metascape tool was used for pathway enrichment analysis of 126 important DEGs, the thresholds set at 
a -Log10 (P value) of > 2.5. Of the DEGs upregulated in patients with IPF were enriched in pathways associ-
ated with collagen degradation, NABA CORE MATRISOME and lung fibrosis (Fig. 2C), whereas DEGs those 

logFC AveExpr t P value Adj. P.Val B Sig Gene_name

2.039754 9.860517 8.654708 4.63E−16 3.42E−15 25.62194 Up GSTA5

2.296708 7.418001 8.454847 1.81E−15 1.25E−14 24.27972 Up MUC5B

2.387684 7.938451 8.354771 3.55E−15 2.39E−14 23.61443 Up C10orf81

2.152617 6.603537 8.293087 5.37E−15 3.56E−14 23.20668 Up SRD5A2

2.254316 5.652982 8.087896 2.10E−14 1.31E−13 21.86327 Up MUC16

3.0035 6.116775 7.994348 3.89E−14 2.36E−13 21.25755 Up SERPINB3

2.920143 5.986109 7.948002 5.26E−14 3.14E−13 20.95907 Up SERPINB4

2.467293 8.119221 7.861204 9.26E−14 5.38E−13 20.40295 Up PIP

2.301349 7.277284 7.813318 1.26E−13 7.25E−13 20.09778 Up TSPAN19

2.126246 10.9766 7.618692 4.41E−13 2.38E−12 18.86961 Up TMEM190

2.063954 7.274754 7.426121 1.49E−12 7.59E−12 17.67409 Up ZBBX

3.187369 7.263725 7.35898 2.26E−12 1.14E−11 17.26199 Up MSMB

2.878548 9.958996 4.790707 2.75E−06 7.11E−06 3.614207 Up RPS4Y1

2.805762 9.788328 4.671305 4.74E−06 1.19E−05 3.092936 Up RPS4Y2

Table 1..  126 DEGs from GSE47460.

GEO Databases

Enrichment 
analysis

6 significant DEGs

OOB Control IPF

Random forest

Clinical analysis

Model valida�on

NeuralPF weight score 
model (GSE32537)

GSE47460 DEGs

GSE47460
GSE53845
GSE110147
GSE32537
GSE70867

Figure 1.  Flow chat.
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involved in cellular response to lipid, regulation of cytokine, positive regulation of cell death (Fig. 2D). These 
pathways were combined with GO database, KEGG database, Reactome database and Wikipathway database.

Random forest classifies the DEGs between IPF and healthy control. The 126 DEGs were further 
classified by random forest classifier. In order to further obtain a model with stable error, appropriate parameters 
are selected by changing the number of decision trees, and finally 500 trees are set as the optimal parameters of 
the model (Fig. 3A). Nine was determined as the parameter of variable number, the importance of features by 
calculating the purity of nodes through Gini coefficient method were computed, the top 20 potential indicators 
were showed in Fig. 3B. Next, DEGs with importance greater than 4 or equal to 4 were screened for further 
analysis. which are CDH3, ADAMTS14, IL13RA2, HS6ST2, DIO2 and IGFL2 sequentially (Fig. 3B). The asso-
ciation between the top six genes’ expression with the age, gender, smoking history and disease stage, and status 
were heatmap in Fig. 3C by k-means unsupervised cluster, which indicated that the genes panel can be used to 
distinguish IPF patients from the control samples. Although older age and male increased susceptibility to  IPF32, 
there was no significant correlation between the expression of the six genes and age or sex (Fig. S1). This suggests 
that the six genes are not affected by these factors in distinguishing between normal and IPF.

Construction of the artificial neural network model. The convolutional neural network model was 
constructed using another dataset GSE32537 by the neuralnet package. Before training the neural network 
model, we need to set important parameters, especially the number of hidden layers and the number of neurons. 
There were no fixed rules for the setting of these two values, which relied more on experience and constant 
attempt. After many tests on the number of hidden layers, we found that when the number of hidden layers was 
5, the training effect of the model was the best. Six neurons were finally set as model parameters based on the 
size of the input layer, commonly two-thirds of the input size was recommended. In order to further strengthen 
the stability of the neural network model, the GSE32537 dataset was randomly divided into the training set 
and the validation set, the fivefold cross-validation method was used for 5 iterations of optimization. The more 
important DEGs and their corresponding weight coefficients were learned from the training set. The classifica-
tion effect of the scoring model was proved by the validation on other datasets, and the classification accuracy of 
the neural network model on the verification set was recorded each time. The receiver operating characteristic 
(ROC) curve is used to evaluate the classification performance of the model. The fivefold cross-validation results 
show that the AUC value of the area under the ROC curve is close to 1 (average AUC ≈ 0.99) (Fig. 4A), which 
indicating that the classification accuracy of this convolutional neural network model was high.

The training of the whole neural network model was performed in 28,730 steps, In the connection weights 
between neurons of the network, the positive weights were connected by black lines, the negative weights were 
connected by gray lines, and the thickness of the lines reflected the value of the weight. The termination condi-
tion of neural network training was the absolute partial derivative of the error function was less than 0.01(almost 
reached threshold), and the output result of the entire training process shown in Fig. 4B.

Model accuracy verification. The trained neural network model was put into three independent data-
sets of GSE47460, GSE110147 and GSE53845 for verification. The data in the three datasets were standardized 
before verification. In GSE47460 dataset, the sensitivity was 90%, the specificity was 85%, and the AUC was 
0.856 (Fig. 5A). In GSE110147 dataset, the sensitivity was 100%, the specificity was 100%, and the AUC was 1 
(Fig. 5C). In GSE53845, the sensitivity was 75%, the specificity was 90%, and the AUC was 0.880 (Fig. 5E). The 
confusion matrix results of GSE47460, GSE110147 and GSE53845 are shown in Fig. 5B,D and F respectively. 
These data demonstrated that the accuracy of this model is reliable.

Survival analysis. To further estimate the prognostic effect of the identified candidate genes in IPF, the 
complete dataset (GSE70866) of RNA-seq samples (bronchoalveolar lavage fluid) with follow-up comprised 194 
specimens from IPF patients (n = 176) and normal controls (n = 18). Cox proportional hazards regression model 
and Kaplan–Meier method (product-limit method) were used to calculate the correlation between gene expres-
sion and survival status. Univariate COX results showed that CDH3 was a potential prognostic marker (HR = 1.3, 
pvalue = 0.0013, Fig. S2). Of the six signatures, CDH3, ADAMTS14 and DIO2 showed a different significant 
association with overall survival in IPF (Fig. 6A–F). Patients with high expression of CDH3 and ADAMTS14 
had a poor prognosis (Fig. 6A, B), while those with high expression of DIO2 had a good prognosis (Fig. 6E).

Six signatures correlation analysis with clinical features. The dataset (GSE47460) including the 
RNA-seq counts and clinical data from IPF patients was used to yielded the global correlation network heatmap 
shown in Fig. 7A. Quantification of multiple combinations of clinical lung function parameters into a single 
"meta" lung function measure by principal component analysis. Next, we performed linear multivariate regres-
sion analysis the mRNA expression levels associated with the meta lung function variable. CDH3, ADAMTS14, 
IL13RA2, HS6ST2, DIO2 and IGFL2 are positive correlated to lung function with R value at about 0.6 (Fig. 7B).

Discussion
In this study, we calculated differentially expressed genes (DEGs) related to idiopathic pulmonary fibrosis (IPF), 
and obtained six important candidate DEGs using a random forest classifier. we used a neural network model 
to determine the predicted weights of related genes and construct a classification model score for IPF. We then 
evaluated the classification efficiency of the model score in three independent sample  datasets17. We found that 
the AUC efficiency of our model, called neura IPF, was excellent. However, the lack of gene data for IPF in the 
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GEO database meant that the genetic characteristics of IPF were not included in the construction of the diag-
nostic model, potentially compromising its diagnostic effectiveness for IPF.
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Figure 6.  Survival predictive analysis. (A) CDH3 as a prognostic factor to evaluate the prognosis and survival 
status of IPF patients. (B) ADAMTS14 as a prognostic factor to evaluate the prognosis and survival status of 
IPF patients. (C) IL13RA2 as a prognostic factor to evaluate the prognosis and survival status of IPF patients. 
(D) HS6ST2 as a prognostic factor to evaluate the prognosis and survival status of IPF patients. (E) DIO2 as a 
prognostic factor to evaluate the prognosis and survival status of IPF patients. (F) IGFL2 as a prognostic factor 
to evaluate the prognosis and survival status of IPF patients. The x-axis represents time and the y-axis represents 
survival probability. The yellow line represents the high gene expression group, and the blue line represents the 
gene low expression group. Each point on the curve represents the patient’s survival rate at that time point.
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Figure 7.  Six signature genes were significantly associated with clinical features. (A) The heatmap illustrates 
the computationally derived meta lung function variable combing multiple lung function parameters. In the 
upper part of the heatmap, the color in the meta lung function module gradually changes from white to green, 
representing an increase in the sample meta lung function; the blue bars in the gender module represent 
male samples, and the red bars represent female samples; the age module The color gradually changes from 
white to purple, representing the increasing age of the sample. On the right side of the heat map, there are 
clinical indicators DLCO, FVC (pred), FVC (post), FEV1(pred), and FEV1(post). Pred, predict; Post, post-
bronchodilator. (B) The scatter plots show the positive correlation of the indicated genes with meta lung 
function. The x-axis represents gene expression, and the y-axis represents meta lung function.
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Of these six genes, a major function of DIO2 is to convert T4 to active T3 so that TH (Thyroid hormone) can 
be activated. IPF, diabetic nephropathy, and myocardial infarction have all been associated with a poor prognosis 
with  hypothyroidism21,33–36. The expression and activity of DIO2 are increased in the lungs of patients with IPF 
and are correlated with disease severity. DIO2 mainly localizes to AECs, which are thought to play a central role 
in the cycle of injury and repair that is characteristic of  IPF21. DIO2 is significantly upregulated in the fibrotic 
state, but this upregulation is thought to be protective. This was further confirmed in our prognostic  analysis21.

Insulin-like growth factors (IGFs) and their binding proteins (IGFBPs) play a critical role in pulmonary 
fibrosis development and  progression37. It has previously been shown that IGFBP2 and IGF-like family member 2 
(IGFL2) are upregulated in SSc-PF and  IPF38. IGFL2 is secreted form in the ECM, its expression is also increased 
in IPF. IGFL2 expression levels were significantly reduced in human skin fibroblasts aged with mitochondrial 
function, suggesting that mitochondrial physiological processes are associated with  IGFL238. IGFL2 play critical 
roles in cellular energy metabolism and in growth and development, especially prenatal growth. However, there 
has been no relevant research exploring its role in the pathogenesis of IPF.

Classical cadherins are the principle adhesive proteins at cohesive intercellular junctions and are essential 
proteins for morphogenesis and tissue  homeostasis39. P-cadherin is a calcium dependent cell–cell adhesion 
glycoprotein, which has a crucial role in the conservation of the structural integrity of epithelial tissues. Like 
other members of the cadherin family, P-cadherin (CDH3) regulates several cellular homeostatic processes 
that participate in embryonic development and maintain adult tissue architecture, being important for cell dif-
ferentiation, cell shape, cell polarity, growth, and  migration40. It is worth noting that DIO2 and IGFL2 also play 
an important role in growth and development. These three genes play a major role in development, regenera-
tion, morphogenesis and so on. This highlights the prominent role of tissue formation and development in the 
pathogenesis of fibrosis.

Interleukin (IL)-13 has been shown to play a role in several inflammatory and fibrotic  diseases41. IL-13 
modulates its effector functions via a complex receptor system that includes the IL-4 receptor (R) α, IL-13Rα1, 
and the IL-13Rα2. IL-13Rα1 binds IL-13 with low affinity, yet, when it forms a complex with IL-4α, it binds with 
much higher affinity, inducing the effector functions of IL-13. IL-13Rα2 binds IL-13 with high affinity but has a 
short cytoplasmic tail and has been shown to act as a nonsignaling decoy receptor. Transfection of fibroblasts and 
epithelial cells with IL-13Rα2 inhibited the IL-13 induction of soluble collagen, TGF-β, and CCL17. Adenoviral 
overexpression of IL-13Rα2 in the lung reduced bleomycin-induced  fibrosis41.

Heparan sulfate (HS) proteoglycan is a glycosaminoglycan widely distributed on the surface of animal cells 
and extracellular matrix, and regulates cell growth, differentiation, adhesion, and migration by interacting with 
various ligands complement. Compared with normal lung, IPF lung showed significantly increased HS6-O-sul-
furation and HS6-O-sulftransferase 1 and 2 (HS6ST1/2) mRNA overexpression. Immunohistochemistry showed 
that HS6ST2 was specifically expressed in bronchial epithelial cells, including IPF lung honeycomb cyst lining 
 cells42. Both IL13RA2 and HS6ST2 highlight the importance of ligand receptor interactions, highlighting that 
cell–cell interactions in the microenvironment may be a major cause of fibrosis progression.

ADAMTS14 gene encodes a member of the ADAMTS (a disintegrin and metalloproteinase with thrombos-
pondin motif) protein family. As reported by previously studies, the ADAMTS14 gene was discovered to play 
critical roles in the progress of inflammation and the immune system, through a crosstalk of the TGF-β pathways 
and mesenchymal  cells43. ADAMTS14 gene polymorphism was associated with knee  osteoarthritis44 or the 
osteoarthritis of the temporomandibular joint in Chinese Han  women45. But so far, no studies have been able to 
clarify ADAMTS14’s role in pulmonary fibrosis. Like HS6ST2, ADAMTS14 is also mainly present in extracel-
lular matrix, which may suggest that the composition or structure of extracellular matrix is also an important 
pathological factor that should not be ignored in pulmonary fibrosis.

This model has made significant progress compared to other models in previous  studies37. This progress is 
primarily reflected in the use of fewer feature variables, the validation of the model using a large-scale dataset, and 
its strong predictive performance. There still are some limitations in this study, the sample sizes of the cohorts are 
still relatively big enoughwhich may not be sufficient to represent the overall population precisely and could affect 
the generalizability of diagnostic model. Additionally, this diagnostic model is based on preliminary findings 
and short of the sound experimental verification to support its reliability. As such, given these limitations, this 
diagnostic model requires further investigation to determine whether it can be used in clinical decision-making.

In conclusion, we constructed an artificial neural network model that demonstrated robust performance 
across multiple cohorts. We assessed the relationship between each gene of the model and demographic vari-
ables. The majority of the genes showed no association with age or gender, but all presented close correlation 
with clinical features. CDH3, ADAMTS14 and DIO2 were found to be related to prognosis. These results are 
useful to prioritize targeting these indicators for diagnosis and drug development in future.

Data availability
The datasets generated and analysed during the current study are available in the GEO repository, [https:// www. 
ncbi. nlm. nih. gov/ geo/].
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