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Dynamical behaviors, circuit 
design, and synchronization 
of a novel symmetric chaotic 
system with coexisting attractors
Haitao Qiu 1, Xuemei Xu 1*, Zhaohui Jiang 2, Kehui Sun 1 & Can Cao 1

In this paper, we introduce a novel three-dimension chaotic system with strange characteristic by 
applying construction of a 3D chaotic circuit method. Multiple equilibria and abundant coexisting 
attractors exist in this system. A mathematical model is developed and detailed stability analyses for 
equilibrium points are executed with obtaining significant results of the period-doubling bifurcation 
patterns confirmed by phase plane plots and Lyapunov exponent spectra. By varying the initial 
value and unique controlled parameter, the double-scroll chaotic attractor is broken up into a pair of 
symmetric singular attractors. Then, the local basins of attraction are investigated concerning the 
initial condition. Next, the circuit synthesis results generated by Multisim simulation tool validate 
the self-excitation characteristics of this system. Finally, the feedback control technique is used to 
study difference synchronization of this system. Main conclusions prove the validity and reliability of 
difference synchronization.

In 1963, “chaos” was first discovered in numerical experiments on weather dynamics1. It is a seemingly random 
movement, meaning that random-like behaviors occur without addition of any random factors, in determin-
istic nonlinear systems. As a branch of nonlinear science, chaos theory is widely applied in medical diagnosis2, 
economy3, image encryption4–6, neural network7, weak signal detection8,9, secure communication10, etc. Chaotic 
characteristics, depending greatly on initial conditions and system parameters, illuminate many interesting 
complicated nonlinear phenomena. Since the existence of coexistence attractors provides a variety of optional 
steady states for systems, it gradually become a research hotspot in recent years. Coexistence attractors indicate 
that two or more attractors are generated in different parameters and initial conditions11. A classic example is 
that the butterfly attractor of the Lorenz system is broken into a pair of symmetric singular attractors in a previ-
ously unexplored parameter space region12. Kengne et al. proposed a three-dimensional Jerk system with cubic 
nonlinear terms and found that the coexistence of attractors is closely related to parameter variations13. Bao 
et al. constructed a memristor chaotic circuit and observed the coexistence of an infinite number of attractors14. 
The chaos singularities and instabilities can be described by hidden attractors and self-excited attractors. A self-
excited one means that the basin of attraction is excited from unstable equilibria15. The other is defined as an 
attractor with multiple equilibrium points and stable equilibrium states, or without any equilibrium16,17. Until 
now, nonlinear electronic circuits with complex dynamical behaviors, such as self-excited chaotic oscillations, 
hidden oscillations, and the behaviors of coexisting multiple attractors18 have been explored theoretically and 
numerically.

With booming Internet techniques, the security of information transmission is required of great significance 
to the public. Nowadays, chaos synchronization has been successfully applied in secure communication19,20. 
On the basis of proposing a chaotic self-synchronization method and realizing synchronization of two chaotic 
systems21, various chaos synchronization schemes have been developed, such as complete synchronization22, 
anti-synchronization23, generalized synchronization24, phase and anti-phase synchronization25,26, projective 
synchronization27, combination synchronization28,29, combination–combination synchronization30, and com-
pound synchronization31. Firstly, reference32 introduced a difference synchronization method, which realizes 
synchronization between two driving systems and one response system by using the method of linear weighted 
combination. The flexible selection of scaling factor makes the geometric topology of coupled system more 
complex and the prediction of the path to chaos more difficult for better secure communication performance. 
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In order to realize the above chaotic synchronization schemes, a large amount of control techniques have been 
developed, such as linear and nonlinear feedback control33, sliding mode control34, active control35, adaptive 
control36, and neural network37. Du et al. derived a criterion for finite-time synchronization of fractional order 
memristor-based neural networks with time delay38. Wang et al. proposed a memristive synapse control method 
for designing multi-structure chaotic attractors and investigated the synchronization issue of memristive neural 
networks via an aobserver-based controller39,40.

In this research, we intend to propose a three-dimensional nonlinear chaotic system with multiple stable 
states whose stability and equilibrium points can be easily controlled. Unlike only quadratic nonlinear terms in 
most existent systems, our system makes the dynamic characteristics more complex by adding a cubic nonlinear 
term. In addition, by introducing stable variable parameters, we solve the Jacobin matrix and plot the portraits 
of the characteristics of the stable state to obtain the details of the unstable focus, stable nodes, and stable points. 
Moreover, we employ a bifurcation diagram coinciding with a spectrum of the largest Lyapunov exponents to 
explore chaos behaviors and coexisting attractors. Specifically, the contribution of this paper is mainly four fold: 
(1) The designed system is adaptable to a self-excited oscillator in an integrated system; (2) circuit of chaotic 
system is designed and simulated by Multisim software, which can effectively verify the numerical simulation 
results; (3) linear feedback control is suitable for chaotic systems with cubic nonlinearity, used in difference 
synchronization; (4) based on synchronization schemes, our results are practical in secure communication.

System description
Mathematical model.  In 2013, a series of three-dimensional chaotic systems with quadratic nonlinearities 
were proposed by Jafari and Sprott41, where the mathematical models of Sprott A system and NE8 system can be 
expressed by following autonomous differential Eqs. (1) and (2)

Sprott A system:

NE8 system:

where x1 , y1 , z1 and x2 , y2 , z2 are state variables, aandb are constant parameters.
Remarkably, multiple stability exists in the above systems with no equilibrium, indicating the existence 

of coexisting attractors42. Intuitively, Fig. 1 shows chaotic attractors of the systems with parameters a = 1 and 
b = 1.47. Then, a new 3D chaotic system is constructed from Sprott A system by adding a cubic nonlinear term. 
Consequently, the corresponding mathematical model of this system is formulated as

where x , y , z are state variables, and v is a constant parameter.

Equilibrium points and stability analysis.  When parameter v denotes an adjustable variable, it is easy 
to deduce equilibrium points of system (3) by solving ẋ = 0 , ẏ = 0 , ż = 0:

The equilibrium points can be expressed as S = (x̂, ŷ, ẑ) , where

(1)






ẋ1 = y1,
ẏ1 = −x1 − y1z1
ż1 = y21 − a.

,

(2)






ẋ2 = y2,
ẏ2 = −x2 − y2z2,
ż2 = 0.5x22 + x2y2 − b,

(3)






ẋ = y − 2xz,
ẏ = −x + 0.5

�
1− x2

�
y − 0.5yz,

ż = 0.1xy + νx2 − 0.8,

Figure 1.   Chaotic attractors of systems (1) and (2) with (a) parameter a = 1 and initial condition (− 0.1, − 1, 0.3). 
(b) Parameter b = 1.47 and initial condition (0, 0.1, 0).
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From Eq. (4), it is trivial to make out that ŷ  and ẑ  are subject to state variable x̂  and parameter v . Thus, S 
changes with parameter v . By linearizing (3) around the equilibrium point, the Jacobin matrix can be expressed 
as:

The characteristic equation can be derived as

where � is the eigenvalues of Eq. (6) and

The constant parameter v changes in the range of [ − c, c] with the time evolution, thus we can get the values 
of x̂  , further ŷ  , and ẑ  . To explore the exact points and stability of the equilibrium point, we set the boundary of 
parameter A as [− 2, 2], then the results are depicted in Fig. 2 intuitively.

In order to avoid solving numerical solution of eigenvalues of the Jacobi matrix, stability of the equilibrium 
point is described by phase diagram trajectory, due to existence of quadratic and cubic nonlinear terms. Accord-
ing to the Routh–Hurwitz criterion, the stability of equilibrium points can be estimated by solving Eq. (6). In this 
chaotic system, equilibrium points are classified into two types: unstable saddle focus and stable node. Negative 
real eigenvalues or complex eigenvalues with negative real parts are stable nodes. On the contrary, those positive 
real eigenvalues or complex eigenvalues with positive real parts are unstable nodes. Those eigenvalues are saddle 
nodes if the roots are real eigenvalues with different signs.

From Fig. 2, it can be observed that the locus of equilibrium points changes with parameter v in range of 
[− 2, 2] as time goes on. The red line denotes the unstable saddle focus and the blue line denotes the stable nodes. 
The three diagrams labeled (a), (b), and (c) in Fig. 2 represent values of three dimensions of the equilibrium 
points.

Dynamical analysis.  Route to chaos.  By changing initial conditions and tuning parameters, phase trajec-
tories and dynamics behaviors are investigated qualitatively. Bifurcation diagrams versus v ∈ [0.14, 0.32] from 
initial conditions x01 = (0.1, 2, 0.1), x02 = (− 0.1,− 2, 0.1) are depicted in Fig. 3a,b, with proving the existence of 
chaotic attractors of various trajectories, limit cycles of different periods, period-doubling bifurcation, and coex-
istence bifurcation in the system. Different from the systems in most papers, the system developed in this paper 
is a period-doubling bifurcation of periodic and quasi-periodic states. According to Fig. 3b, as setting the param-
eters ν1 = 0.147 and ν2 = 0.156, respectively, the corresponding attractors are shown in Fig. 4, where the Lyapu-
nov exponents calculated by the algorithm (A. Wolf, J. B. Swift) are �11 = 0.0153, �12 = − 0.0159, �13 = − 2.1108 
and �21 = 0.0040, �22 = − 0.2545, �23 = − 1.7009 , indicating that the system is in quasi-periodic and periodic 
states, respectively. In various conditions, the system undergoes Hopf bifurcation and enters a continuous oscil-
lation state, and then falls into chaos through period-doubling bifurcation. A normal oscillating behavior sud-
denly appears or disappears, leading to emergence of coexisting attractors, reflecting the complexity of nonlinear 
characteristics of the system.

The largest Lyapunov exponent is an important quantitative index to measure dynamic characteristics. It 
represents the average exponential rate of the convergence or divergence of a system between adjacent orbits in 
phase space. A critical threshold of the system state can be obtained indirectly from a joint state of the largest 

(4)
{
ŷ = 8

x̂
− 10vx̂,

ẑ = 4
x̂2

− 5v.

(5)J =




−2�z 1 −2�x

−1− �x�y 0.5
�
1− �x2 − �z

�
−0.5�y

0.1�y + 2v�x 0.1�x 0



.

(6)�
3+a1�

2 + a2�+ a3 = 0,

(7)
a1 = 2.5ẑ − 0.5

(
1− x̂2

)
,

a2 = 4vx̂2 + 1.25x̂ŷ −
(
1− x̂2

)
ẑ + ẑ2 + 1,

a3 = 2vx̂4 − 0.1x̂3y − (0.2+ 2v)x̂2 + 2vẑx̂2 + 0.2x̂ŷẑ + (v − 0.1)x̂ŷ + 0.05ŷ2.

Figure 2.   Numerically simulated equilibrium points and stability analysis with ν ∈ [− 2, 2].
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Lyapunov exponents of the system. When v is varied from 0.14 to 0.32, the single-parameter Lyapunov exponent 
spectrum is drawn in Fig. 3c. We can see that the marker point indicates the periodic state of the system resulting 
from the sign of three Lyapunov exponents is (0,−,−) . It is worth noting that the bifurcation diagram coincides 
with the spectrum of the largest Lyapunov exponents. In particular, the algorithm employed in this work for 
determining the largest Lyapunov exponents was proposed in (A. Wolf, J. B. Swift).

Figure 3.   For the initial values (0.1, 2, 0.1) and (− 0.1, − 2, 0.1), the bifurcation diagram and Lyapunov 
spectrum of system (3) as v varies.

Figure 4.   For the initial values (− 0.1, − 2, 0.1), the phase diagrams of system (3) in x–y plane: (a) quasi-
periodic state with ν1 = 0.147 . (b) Period state with ν1 = 0.156.
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Coexisting attractors.  Coexisting attractors provide multiple optional steady states for the system to respond to 
different requirements. For parameter v = 0.21 and initial condition (0.1, 2, 0.1), the double-scroll chaotic attrac-
tor is depicted in Fig. 5. The Lyapunov exponents of the system are �1 = 0.0864, �2 = −0.0037, �3 = − 1.3122 . 
It can be derived that the summation of LEs is negative:

which shows dissipation of system. The corresponding Lyapunov exponent dimension is

where variable j satisfies 
∑j

i=1�i > 0 and 
∑j+1

i=1�i < 0 . The symmetric strange attractor can be observed because 
the Lyapunov exponent dimension is fractional and system dissipation.

Change the parameter v = 0.26 , then two independent attractors are yielded in the system (3) with initial val-
ues (± 0.1, ± 2, 0.1), as shown in Fig. 6. The red line denotes the attractor with initial condition x01 = (0.1, 2, 0.1) 
and the blue line denotes the attractor with initial condition x02 = (− 0.1,− 2, 0.1) . It can be verified that the 
attractors are chaotic as they have the same positive maximum Lyapunov exponent �1 = 0.0758 and fractal 
Lyapunov dimension D� = 2.078 . Accordingly, the double-scroll chaotic attractor in Fig. 5 is broken into two 
singular attractors. It is easy to verify that the two strange attractors have rotational symmetry about the z-axis.

The period-doubling bifurcation and coexistence bifurcation can be visually illustrated by generating the 
phase portraits of the system (3) with initial conditions (± 0.1, ± 2, 0.1). As shown in Fig. 7, system (3) performs 
period-1, period-2, and chaos respectively for v = 0.1, 0.15, 0.3, implying that the process of chaos produced by 
period-doubling bifurcation is accompanied by coexistence bifurcation.

For the coexisting symmetric attractors illustrated in Fig. 7c, the corresponding attractor basins three different 
planes are shown in Fig. 8, where the purple region corresponds to a pair of symmetric strange attractors, and 
the black region represents the initial condition for generating unbounded orbits. The basin has expected z-axis 
rotation symmetry and a complex fractal structure.

(8)�1 + �2 + �3 = − 1.2295 < 0,

(9)D� = j +
∑j

i=1�i

|jj+1| = 2+ �1+�2
|�3| = 2.063,

Figure 5.   Chaotic attractors of the system (3) with parameter ν = 0.21 and initial condition (0.1, 2, 0.1).
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The initial condition can be regarded as an invariant measure for the classification of dynamic behavior. For 
chaotic systems, slight differences among initial conditions can cause large differences in solutions over time. If 
the bounded behaviors are found, the dynamic behaviors of chaotic spiking, stable resting, and periodic spiking 
are afterward classified by measuring the attractor sizes. According to the local basins of attraction, the stability 
of the initial condition-dependent dynamic behaviors can be distinguished evidently. The initial conditions are 
considered as (x(0), y(0), 0.1) , (x(0), 2, z(0)) and (0.1, y(0), z(0)) while the parameter is kept as ν = 0.3 . Figure 8 
portrays the attraction basin in x(0)− y(0) , x(0)− z(0) , and y(0)− z(0) , respectively. Figure 8a demonstrates 
that two red lines are parallel to the x-axis and y-axis. And the intersection of two straight lines which indicates 
the initial state (0.1, 2, 0.1) is located in the black regions meanwhile the parameter of system v = 0.3 . The initial 

Figure 6.   A pair of symmetry singular attractors of the system (3) with parameter ν = 0.26 and initial 
condition ( ± 0.1, ± 2, 0.1).

Figure 7.   The phase portraits of coexisting symmetric attractors in the x–y plane with initial conditions 
(± 0.1, ± 2, 0.1): (a) ν = 0.1 . (b) ν = 0.15 . (c) ν = 0.3.
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condition (0.1, 2, 0.1) demonstrates that initial-dependent behavior of system performed as unstable chaos. There-
fore, it can be deduced from this phenomenon that long-term dynamical behaviors are associated with initial 
conditions. And it leads to emergence of bi-stability as well as consisting of unstable chaos and stable points. 
According to Fig. 8b, the local basin of attraction changes in a circular orbit, which is not continuous but discrete, 
indicating that the chaotic oscillator transitions from one oscillating state to another state. This is similar to the 
energy level transition in physics. Such basin of attraction is rare in the proposed chaotic systems. The basin 
of attraction in Fig. 8c changes in a discrete strip orbit, showing more abundant oscillation characteristics, so 
it can enhance the security of synchronous communication. Notably, the attractors of the proposed system are 
self-excited rather than hidden because their basins of attraction include multiple unstable equilibrium fields.

In addition to the coexistence of symmetric attractors, when v = 0.3, 0.32 with the initial values (0.1, 2, 0.1) 
and (0.1, 0, 0.1), two types of asymmetric coexistence attractors phase diagrams and the corresponding time 
series of variable x are shown in Fig. 9. The coexistence of chaotic attractors and limit cycles and quasi-periodic 
coexistence can also be observed in Fig. 9a,b respectively. The time series of the variable x corresponding to 
Fig. 9a are illustrated in Fig. 9c,d. Similarly, the relationship of Fig. 9b,e,f is the same as the former. From Fig. 9d,f, 
a transient effect is produced when the oscillation is started, and stability is achieved after some time.

Circuit design.  To investigate dynamics and confirm feasibility of a theoretical chaotic model, the circuit 
implementation of their corresponding mathematical models43,44 is commonly used. It is practical to use elec-
tronic circuits emulating chaotic systems because of their extensive application in engineering. Hence, the elec-
tronic circuit of the new chaotic system (3) is designed and verified in this section.

Numerous studies45 have pointed out that the fractional-order operators cannot be realized directly under 
the standard definition of fractional-order differ integral in time-domain simulations. If circuit is designed 
directly according to system equations, the circuit will not work normally. By applying operational-amplifier 
approach46, the variables’ state of the system (3) should be scaled down to realize strange attractors. According 
to system Eq. (3), scaling variables X , Y  , Z are settled as X = x/2 , Y = y/2 , Z = z/4 , respectively. Where x , y , 
and z are the state variables in system Eq. (3). The system can be implemented by utilizing common electronic 
components which are resistors, capacitors, analog multipliers, and operational amplifiers.

By applying Kirchhoff laws to the electronic circuit, the corresponding circuit state equation set of the pro-
posed novel chaotic system can be expressed as

where vc1 , vc2 , and vc3 are the voltages across the capacitors C1 , C2 , C3 , respectively. And Vα is a stable DC volt-
age source to implement the constant in a numerical system (3). Noticeably, the only parameter v in (3) can 
be set by manually tuning resistor R8 . It can be inferred that three scaling variables X , Y  , and Z represent the 
voltage across the corresponding capacitors, respectively. The complete circuit is implemented on the electronic 
simulation platform Multisim, where Fig. 10 describes the designed circuit implemented by Multisim simula-
tion. To realize a nonlinear chaotic system, the whole circuit contains three capacitors, eleven resistors, six 
multipliers, and four operational amplifiers. It can be noticed that three multipliers are configured as 1/10, the 
other two are configured as -1/10, and the last one is 1/1. The values of all electronic components in Fig. 10 are 
determined as follows: R1 = R3 = R7 = 40 k� , R2 = 2 k� , R4 = 80 k� , R5 = R6 = 8 k�,R8 = 13.33 k� , R9 = 
50 k� , C1 = C2 = C3 = 2.2 nF , and Vα = 1 V, where R8 is a variable resistor, and its resistance value needs to be 
adjusted to achieve different states. Other resistance and capacitance parameters in the chaotic circuit are not 
unique. The circuit depicted in Fig. 10 is just one implementation of the oscillator, which depends on different 
application scenarios. For example, in the PCB layout, it is necessary to adjust the appropriate capacitance posi-
tion and parameters to reduce the influence of parasitic capacitance on the overall circuit.

(10)






dνC1
dt = 1

R1C1
vC2 − 1

10R2C1
vc1vc3,

dvc2
dt = − 1

R3C2
vc1 + 1

R4C2
vc2 − 1

10R5C2
v2c1vc2 − 1

10R6C2
vc2vc3

dvc3
dt = − 1

10R7C3
vc1vc2 + 1

10R8C3
v2C1 − 1

R9C3
Vα ,

,

Figure 8.   The local basins of attraction in three different planes. (a) The x(0)− y(0) plane with z(0) = 0.1 . (b) 
The x(0)− z(0) plane with y(0) = 2 . (c) The y(0)− z(0) plane with x(0) = 0.1.
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The simulation results, which are phase portraits in the x–y plane of the system, are shown in Fig. 11 with 
connecting the channels of vc1 and vc2 in the circuit to oscilloscope. When the resistance is adjusted to R8 = 
40 k� , the phase portraits of limit cycle are illustrated in Fig. 11a,d with the corresponding parameter v = 0.1. 
Figure 11b,e depict the attractors of period-2 by setting the resistance R8 = 26.67 k� with the corresponding 
parameter v = 0.15. Similarly, while the value of R8 is set as R8 = 13.33 k� for the corresponding parameter ν 
=0.3, the phase portraits of chaotic attractors are demonstrated in Fig. 11c,f. Obviously, the simulation results of 
the circuit state Eq. (16) illustrated in Fig. 11 are similar to the theoretical numerical phase trajectories depicted 
in Fig. 7.

Difference synchronization of chaotic systems
Difference synchronization scheme.  The difference synchronization scheme consists of two master sys-
tems and one slave system, where the master systems are defined as

and the slave system is considered as

where x = [x1(t), x2(t), . . . , xn(t)]T , y = [y1(t), y2(t), . . . , yn(t)]T , z = [z1(t), z2(t), . . . , zn(t)]T are state vec-
tors of master systems and slave system, F(x),G(y),H(z) : R → R are the continuous vector functions and 
U
(
x, y, z

)
: R × R × R → R is a controller which is going to be designed using feedback control technique.

Definition  The master systems and the slave system are said to be difference synchronization, if there exist three 
constant matrices M1,M2,M3 ∈ R satisfying lim

t→∞
�M3z − (M2y −M1x)� = 0 where M3  = 0 and � · � represent 

the norm of the matrix.

(11)ẋ = Ax + F(x),

(12)ẏ = By + G
(
y
)
,

(13)ż = Cz +H(z)+ U
(
x, y, z

)
,

Figure 9.   Two types of coexisting asymmetric attractors and time series of the variable x emerged from the 
initial values (0.1, 2, 0.1) and (0.1, 0, 0.1).
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Figure 10.   Implementation of circuit chaotic system.

Figure 11.   The symmetric coexisting attractors obtained from the designed circuit with the channels of vc1 and 
vc2.
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Case 1 If constant matrices M3  = 0 , M2  = 0 , and M1 = 0 , the difference synchronization degenerates into 
complete synchronized mode.

Case 2 If constant matrices M3  = 0 , M2 = 0 , and M1  = 0 , the difference synchronization degenerates into 
anti-synchronized mode.

Difference synchronization of three nonidentical 3D chaotic systems.  According to Lyapunov 
stability principle, the linearization method is used to determine the stability of the system (3). We convert 
Eq. (3) to

where X = (x, y, z)τ . According to Taylor expansion theorem to obtain

The characteristic equation of coefficient matrix A can be derived as:

where � is the eigenvalues of Eq. (16).
The eigenvalues of coefficient matrix A are �1 = 0 , �2,3 = (1±

√
15i)/4 . The system is unstable because of 

the positive real part of the eigenvalues �2,3.
To formulate the difference synchronization method, systems (1) and (2) are considered as two master sys-

tems, and the slave system with control functions is specified by

where u1(t) , u2(t) and u3(t) are the controllers need to be designed. Letting the matrices M3 = diag(m31,m32,m33) , 
M2 = diag(m21,m22,m23) and M1 = diag(m11,m12,m13) , then error functions can be defined as follows:

By deriving the error functions (18), we can derive the error systems

The control functions are acquired while simplifying the linear term of the error system and adding linear 
feedback controllers:

Putting the control functions into error system, the error system is reduced to

The Jacobian matrix of the linear error system (18) is

Following the criteria of Routh–Hurwitz, the error system is stabilized if the eigenvalues of the Jacobian 
matrix are negative, so three considered chaotic coupled systems would achieve differential synchronization. 
By calculation, the eigenvalues of Jacobian matrix (22) are �1 = k3 , �2 = (k1 + k2 +

√
(k1 − k2)

2 − 4)/2 , 
�3 = (k1 + k2 −

√
(k1 − k2)

2 − 4)/2 , where k1 , k2,k3 are feedback factors.
If feedback factors satisfy

(14)
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ẏ
ż
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1− x23
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(18)

{
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e2 = m32y3 −m22y2 +m12y1,
e3 = m33z3 −m23z2 +m13z1.

(19)






ė1 = e2 − 2m31x3z3 +m31u1(t),
ė3 = −e1 + 0.5m32y3 − 0.5m32x

2
3y3 − 0.5m32y3z3 +m22y2z2 −m12y1z1 +m32u2(t),

ė3 = 0.1m33x3y3 + νm33x
2
3 − 0.8m33 + bm23 − 0.5m23x

2
2 −m23x2y2 +m13y

2
1 − am13 +m33u3(t).

(20)






u1(t) = 1
m31

(2m31x3z3 + k1e1),

u2(t) = 1
m32

�
−0.5m32y3 + 0.5m32x

2
3y3 + 0.5m32y3z3 −m22y2z2 +m12y1z1 + k2e2

�
,

u3(t) = 1
m33

�
−0.1m33x3y3 − νm33x

2
3 + 0.8m33 − bm23 + 0.5m23x

2
2 +m23x2y2 −m13y

2
1 + am13 + k3e3

�
.

(21)

{
ė1 = k1e1 + e2,
ė3 = −e1 + k2e2,
ė3 = k3e3.

(22)J =
[
k1 1 0
−1 k2 0
0 0 k3

]
.
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the difference synchronization among chaotic systems (1), (2), and (17) will be realized.

Numerical simulation results.  To verify effectiveness of the difference synchronization, the fourth-order 
Runge–Kutta method is used to solve the equations in numerical simulation. Considering the parameters of the 
master Sprott A system and the slave NE8 system are taken as a = 1 and b = 1.47, the initial conditions are set 
as (0, 0.1, 0) and (− 0.1, − 1, 0.3), respectively. For initial condition (0.1, 2, 0.1), the parameter of the proposed 
system is considered as ν = 0.3 . Thus, both the master systems and the slave system are chaotic in this situation 
according to the above analysis. In the absence of the controller defined by Eq. (20), the state trajectory of the 
master–slave system presents a dramatically chaotic state. Applying the controller at t = 20, selecting the feedback 
coefficient as k1 = k2 = − 4, k3 = − 1 , the master systems and salve system are difference synchronized in a 
short time using feedback control technology. Figure 12a–c demonstrate the state trajectory of the master–slave 
system before and after control.

The error curve in Fig. 13a converges to zero in a short time, predicting that the coupled system is differential 
synchronized. As shown in Fig. 13b, when turning on the control at t = 0, the synchronization time of systems 
will be significantly shortened, indicating that the synchronization time is affected by initial conditions. The 
feedback control coefficient of the error functions shown in Fig. 13c is adjusted to k1 = k2 = k3 = −1 . It is 

(23)

{
k1 + k2 < 0,
|k1 − k2| < 2
k3 < 0,

,

Figure 12.   State trajectories of difference synchronization between (a) m21x2 −m11x1 and m31x3 , (b) 
m22y2 −m12y1 and m32y3 , (c) m23z2 −m13z1 and m33z3.
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obvious that the synchronization time of systems is significantly increased so that it can adapt to more practical 
engineering scenarios.

Conclusion
In this paper, a novel three-dimensional symmetric chaotic system with multiple equilibrium points has been 
developed. The developed system is a kind of chaotic system with coexisting attractors. The dynamic behaviors 
including strange attractors, symmetric features, bifurcation diagram, maximal Lyapunov exponents, and local 
basins of attraction and bi-stability behaviors have been discussed. And we have given a clear route to investi-
gate chaos behaviors by numeric analysis and obtain details behaviors of the chaotic system. To further confirm 
feasibility of the theoretical system, an electronic circuit emulating this chaotic system has been implemented 
by utilizing electronic simulation platform Multisim. All the results shown by the electronic circuit are closely 
consistent with those of numerical simulation. In addition, the feedback control method is used to achieve the 
difference synchronization between two mater systems Sprott A and the NE8 system with different structures. It 
indicates that the system proposed in this work can be practical for chaos-based engineering applications such 
as the design of self-excited oscillators and secure communication in future research.

Figure 13.   The trajectories of error functions with the controller activated at (a) t = 20 and 
k1 = k2 = −4, k3 = −1 . (b) t = 0 and k1 = k2 = −4, k3 = −1 . (c) t = 0 and k1 = k2 = k3 = −1.
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Data availability
The data that support the findings of this study are available from the corresponding author on reasonable 
request.
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