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Thermoelectric properties 
of topological chains coupled 
to a quantum dot
A. C. P. Lima 1, R. C. Bento Ribeiro 1, J. H. Correa 2, Fernanda Deus 3, M. S. Figueira 4* & 
Mucio A. Continentino 1

Topological one-dimensional superconductors can sustain zero energy modes protected by different 
kinds of symmetries in their extremities. Observing these excitations in the form of Majorana fermions 
is one of the most intensive quests in condensed matter physics. We are interested in another class 
of one-dimensional topological systems in this work, namely topological insulators. Which present 
symmetry-protected end modes with robust properties and do not require the low temperatures 
necessary for topological superconductivity. We consider a device in the form of a single electron 
transistor coupled to the simplest kind of topological insulators, namely chains of atoms with 
hybridized sp orbitals. We study the thermoelectric properties of the device in the trivial, non-trivial 
topological phases and at the quantum topological transition of the chains. We show that the device’s 
electrical conductance and the Wiedemann–Franz ratio at the topological transition have universal 
values at very low temperatures. The conductance and thermopower of the device with diatomic 
sp-chains, at their topological transition, give direct evidence of fractional charges in the system. The 
former has an anomalous low-temperature behavior, attaining a universal value that is a consequence 
of the double degeneracy of the system due to the presence of zero energy modes. On the other hand, 
the system can be tuned to exhibit high values of the thermoelectric figure of merit and the power 
factor at high temperatures.

The origin of thermoelectricity can be traced back to the discovery of the Seebeck effect in the 19th century. It 
consists in the production of electrical energy directly from heat, and its inverse, the Peltier effect, that transforms 
electrical energy into thermal energy. After the development of the first thermoelectric generators (TEGs) with 
applications in  industry1, these lost the competition with the dynamoelectric machines due to the high costs of 
their electrical energy generation. Their technological development was interrupted for several decades. Only 
in the middle of the last century, due to the needs of the aerospacial and military industries, did the interest in 
developing new TEGs reappear. The thermoelectricity acquires some practical applications in those strategic 
areas after the discovery that the doped semiconductor Bi2Te3 and its alloys Sb2Te3 , and Bi2Se32–4, present high 
electric conductivities σ and low thermal conductivities κ . In consequence, those thermoelectric materials (TEM) 
exhibit at ambient temperatures a higher dimensionless thermoelectric figure of merit (zT)1,2 and a high power 
factor (PF) and, until now, dominate the commercial industry of  TEGs5.

Recently, it was shown that the usual thermoelectric materials (TEM), like Bi2Te3 , Bi2Se3 , Sb2Te3 , and FeSb2
6–8 are also three-dimensional topological insulators exhibiting surface states with a single Dirac cone and some 
of their striking properties are due to their strong spin–orbit  coupling5,9,10 and their conducting surface  states11,12. 
A promising route to explore the effects of the topologically non-trivial surface states (TNSS) on the TE proper-
ties was followed in Ref.13, which studied thin films of Bi2Te3 . The authors used first-principles calculations and 
Boltzmann theory to obtain zT for different film thicknesses. They defined a unit (QL) of quintuple layers of the 
real material Te–Bi–Te–Bi–Te and observed a p−type and n−type zT ≃ 2 peak in QL = 3 when the system enters 
the topologically non-trivial regime from the trivial one. The results show a relevant enhancement of zT due to 
the contribution of TNSS compared to the pristine form of bulk Bi2Te3 , zT = 0.4 . Another step in the direction 
of the use of TNSS states in real systems was obtained after the recent advances in the synthesis of Bi2Te3 thin 
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films, which allows separating the bulk from the TNSS states in order to design quantum devices with improved 
thermoelectric  properties14.

The study of topological systems is now one of the most active areas of research in condensed matter 
 physics15–18. The theoretical efforts to understand the properties of these systems has lead to the predictions of 
emergent excitations with unexpected properties that make them potentially useful for different types of applica-
tions. Among these works, Kitaev model for a p-wave superconducting  chain19 has played a fundamental role 
and many suggestions have appeared of how to realize this model in actual physical systems. In the topological 
phase, the finite one-dimensional Kitaev superconducting chain presents Majorana, zero energy modes, at its 
ends. The physical implementation of the p-wave Kitaev model and the  detection20–28 of the zero energy Majorana 
modes is a modern Graal in materials research. In this pursuit an initial major difficulty is to obtain a p-wave 
superconductor, since this is far from being common in  nature29. Several proposals have been put forward to 
generate this type of pairing in a chain, mostly using proximity effects and magnetic  fields15.

Besides one-dimensional p-wave superconductors there is a class of topological  insulating30,31 chains that 
is much simpler and also presents protected zero energy modes at their ends. Representative members of this 
class are sp-chains consisting of atoms with hybridized s and p  orbitals32. The mixing between s and p orbitals 
in neighboring ions is antisymmetric and this gives rise to non-trivial topological  properties33, in close analogy 
with the antisymmetric p-wave paring of the Kitaev chain. Notice that the asymmetry of the mixing holds for 
any pair of orbitals that have angular momentum quantum numbers differing by an odd number. In spite of 
their symmetry protection, the edge modes in topological sp-chains have distinct features from the Majoranas 
in the Kitaev chain. The former are quasi-particles with a hybrid sp-character that are formed of two different 
types of  Majoranas32.

The sp-chains may be easier to realize in practice then p-wave superconductors. Also, they do not require the 
low temperatures necessary for superconductivity, to manifest their topological properties. A possible realiza-
tion of the sp-chain is carbyne, the one-dimensional allotropic form of  carbon34–38. In this system the 2s orbital 
hybridizes with a single 2p orbital favoring a linear atomic  alignment39. A significant effort has been made in the 
synthesis of these materials that in principal can exist in a metallic state (cumulene) and in an insulating, broken 
symmetry state, with alternating single and triple  bonds35.

As we show in the appendix monoatomic and diatomic sp-chains can be mapped in two very well known topo-
logical chains, the Su–Schrieffer–Heeger (SSH)40,41 and the Rice–Mele (RM)42,43 chains, respectively. These chains 
have been intensively studied and their topological properties are well known. For this reason we study here 
the latter two models since they yield results for the thermoelectric properties similar to those of the sp-chains.

This paper studies the thermoelectric properties of two semi-infinite Rice–Mele chains connected to a quan-
tum dot. We investigate the device’s electrical and thermal transport properties as a function of temperature, in 
the topologically non-trivial and trivial phases and at the topological transition. According to Refs.13,14 we expect 
an increase of zT due to topological states at the edges of these chains.

This work has the following structure: in “he Rice–Mele model”, we introduce the Rice-Mele model and 
present its topological properties. In “The surface density of states”, we employ a method developed in Ref.44 to 
obtain the local Green’s function at the edge of the chain. This yields the surface density of states for the Rice-
Mele chain. In “Thermoelectric properties of two semi-infinite chains coupled to a quantum dot”, we present 
the device consisting of two identical semi-infinite topological chains connected to a singly occupied quantum 
 dot45, without correlations effects. We use linear response theory to define the thermoelectric coefficients. In 
“Results for SSH chains or monoatomic sp-chains” and “Results of the diatomic sp or Rice–Mele chains”, we 
calculate, electrical and thermal conductances, thermopower, Wiedemann–Franz ratio, power factor, and the 
dimensionless thermoelectric figure of merit of our device when the quantum dot is connected to monoatomic 
sp or SSH chains, and to diatomic sp or Rice–Mele chains, respectively. Notice that the figure of merit measures 
the usefulness of the device to produce electrical power. In “High temperature results”, we present the high tem-
perature results and finally, we conclude with a discussion of our results and the perspectives of our approach.

The Rice–Mele model
The Rice–Mele model has been used to describe polymeric chains with alternating  bonds42. It is generally associ-
ated with fractional charges that arise due to their topological properties and it is used here to model diatomic 
sp-chains. Its Hamiltonian is given by

where c†(A,B),n and c(A,B),n create and annihilate electrons on site n of sub-lattice (A,B), respectively. The hopping 
V1 connect electrons in the same unit cell n, and V2 those in different unit cells. The site energies ǫ(A,B) are dif-
ferent in sub-lattices A and B and µ is the chemical potential. For a semi-infinite chain the sum extends from 
n = 0 to n = ∞ . The SSH model is obtained from the RM model, Eq. (1), when the site energies are taken equal 
zero, i.e., ǫA = ǫB = 0.

The energy of the bands of the infinite, translation invariant RM chain can be obtained transforming to 
momentum space and diagonalizing the  Hamiltonian30. They are given by

(1)

HRM = −V1

∑

n

c†A,ncB,n − V2

∑

n

c†A,n+1cB,n

+ (ǫA − µ)
∑

n

c†A,ncA,n + (ǫB − µ)
∑

n

c†B,ncB,n +H .c.,

(2)ω̃1(k) = −µ̃+

√
2Ṽ cos(k)+ Ṽ2 + ǫ̃2 + 1
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The extrema of the bands occur for k = π . Notice that there is always a gap between the bands, which is 
given by

The tilde quantities are dimensionless, normalized by the hopping V2 and Ṽ = V1/V2 . We took ǫA = −ǫB = ǫ . 
In the case of the SSH model, with ǫ = 0 , the band gap closes for Ṽ = 1 , at the topological transition.

The topological properties of the RM and SSH chains are well  known18,30. For the latter there is a non-trivial 
topological phase for Ṽ < 1 characterized by a non-trivial winding number. For Ṽ = 1 there is a topological 
transition for a topologically trivial phase with Ṽ > 1 . In the non-trivial topological phase there are edge modes 
at the ends of a finite chain. These edge states decay into the bulk with a characteristic length that depends on 
the distance to the topological transition, ξ = (1− Ṽ)−ν . At the topological transition ξ diverges and the surface 
state spreads into the  bulk32. For the SSH model the critical exponent ν = 1.

The topological properties of the RM model are more complex, but also well  known18,30. The topological 
phases can be characterized by Chern  numbers18,30,43,46,47, nC = −sgn[ǫ(V2 − V1)] , such that for V1 = V2 or 
ǫ = 0 there are topological quantum phase  transitions30,46,47. The phase with Ṽ < 1 is topologically non-trivial.

The surface density of states
In order to obtain the thermoelectric properties of our device, we need to calculate the surface density of states 
of the semi-infinite RM and SSH chains. Here, we use a method developed in Ref.44 that yields the local Green’s 
functions at the edge of this chain. This Green’s function is obtained from the self-consistent equation,

from which, we can get the surface density of states,

SSH chains. Let us start with the simpler case of the semi-infinite SSH chain, which corresponds to the 
RM model with ǫ = 0 . From Eq. (5), with ǫ = 0 , we obtain a self-consistent problem involving a second degree 
algebraic equation for the local Green’s function,

with

We consider the case of half-filled band and take µ = 0 . The surface Green’s function can be directly obtained 
from Eq. (7). It is given by,

where ω̃ = ω/V2 , and Ṽ = V1/V2.
The surface density of states is obtained from Eqs. (6) and (9) and is given by

where D = 1− Ṽ2 and ω̃ → ω̃ + iǫ . The sign of the root is chosen so that the density of states is positive and 
from now on we take V2 = 1 . There is an additional contribution to the zero energy mode due to the second, 
square root term. Considering this explicitly, we can rewrite Eq. (10) as

where one sees that the zero energy mode only appears for D > 0 , or Ṽ < 1 , i.e., in the topological phase of the 
chain (see Fig. 1). In the trivial phase there is a cancellation and the zero energy surface mode disappears. Notice 
that the zero energy mode is a true surface state since its energy does not coincide with any of the bulk states.

For completeness and since it will be used further on, we also obtain the real part of the surface Green’s func-
tion (see Fig. 1). This is given by
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Notice that

Then, we find that the surface Green’s function gives direct information on the topological state of the chain. 
Furthermore, the weight of the zero energy mode vanishes linearly with the distance to the topological transi-
tion ( D ∝ (1− Ṽ)).

Rice–Mele chains. The surface density of states of the semi-infinite RM chain, obtained from Eqs.  (5) 
and (6) is given by

with

Notice the presence of a surface mode at a finite energy ωS = ǫ − µ , for Ṽ < 1 (since V2 = 1 we keep the 
tilde  only in Ṽ  ). Differently from the SSH model, as seen in  “SSH chains”, the RM system is always gapped 
even at Ṽ = 1 . However, the phases with Ṽ > 1 and Ṽ < 1 can still be distinguished by the absence or presence, 
respectively of the surface mode (besides their Chern numbers)18,30,43,46,47. The phase with Ṽ < 1 is the topologi-
cally non-trivial.

(12)ReG00(ω̃) =
1

2

{
D
1

ω̃
+ ω̃ +

Re
√

(ω̃2 + D)2 − 4ω̃2

ω̃

}
.

lim
ω̃→0

ReG00(ω̃) =
1

2

(D + |D|)

ω̃
.

(13)ρ(ω)=(D + |D|)δ(ω + µ− ǫ)+
sgn(ω + µ)ℑm[R(ω)]

2(ω + µ− ǫ)

(14)
R(ω) =

(
−(µ+ ω)2 + (1− Ṽ)2 + ǫ2

) 1
2

×
(
−(µ+ ω)2 + (1+ Ṽ)2 + ǫ2

) 1
2

Figure 1.   (a) Density of states at the surface of the semi-infinite SSH chain and (b) real part of the surface 
Green’s function. In the topological phase (red, dashed), the trivial phase (black, continuous) and at the 
topological transition (blue, dotted). We took V2 = 1 , such that ω̃ = ω.
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Figure 2 shows the surface density of states and the real part of the surface Green’s function for RM-chains at 
the topological transition Ṽ = 1 . The figures are for two values of the energy of the local surface mode, ǫ = ±0.1 . 
The chemical potential is located on the energies of these modes ( µ = ǫ).

Thermoelectric properties of two semi-infinite chains coupled to a quantum dot
In this section we study the transport properties of a device consisting of two identical semi-infinite chains con-
nected to a quantum  dot45,48, as shown in Fig. 3. Since we are dealing with spinless fermions, the dot can either 
be empty, or singly occupied. The non-interacting quantum dot has a single state with energy E0 and is coupled 
to the chains by a hopping term td that transfers quasi-particles in and out of the dot. Then, the dot provides 
a connection between the semi-infinite chains and allows to probe the nature of the edge states through their 
contribution to the thermal and electrical conductances of the device, as we discuss below. The coupling Hamil-
tonian between the dot and the semi-infinite chains is given by, Hc = −

∑
α td,αc

+
α,0d +H .c. , where the second 

Figure 2.  Surface density of states of the semi-infinite diatomic sp-chain (RM chain), Eq. (13), at the 
topological transition ( ̃V = 1 ), for (a) µ = ǫ = −0.3 ; (b) µ = ǫ = 0.3 . Real part of the surface Green’s function 
for (c) µ = ǫ = −0.3 and (d) µ = ǫ = 0.3.

Figure 3.  Two semi-infinite sp-chains connected to a quantum dot (QD). A very small potential difference Vc is 
applied in the chains. Notice that td is the coupling between the dot and the chains.
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quantization operators c and d refer to the chains and dot and α = r, l to the right and left chains, respectively. 
The dot couples to the first site of each chain (site 0)49. For simplicity, we take here td,r = td,l = td.

The full local Green’s function of the dot connected to the two semi-infinite chains is given  by49,

where,

is the Green’s function of the non-interacting dot. The Green’s function G00 is that of the edge of the chains and 
is given by the self-consistent solution of Eq. (5). Notice that Eq. (15) can be rewritten as,

The dimensionless electrical conductance of the device, chain-dot-chain can be obtained as in Ref.50. It is 
given by,

where f (ω) is the Fermi–Dirac distribution and

with Ŵ = 2π |td |
2ImG00 , the Anderson broadening50. In Eq. (18), G0 = e2/h is the quantum of conductance.

More generally, we define the quantities,

in terms of which we can obtain the thermoelectric coefficients. The conductance can be rewritten as G = e2L0 . 
The thermal conductance K and the thermopower S are given, respectively, by

These in turn define the Wiedemann–Franz ratio (WF) and the dimensionless figure of merit ZT that are 
given, respectively, by

where the former ratio WF is given in units of the Lorenz number L0 = (π2/3)(kB/e)
2.

The Mahan–Sofo parameter ζ51 is defined in terms of the thermoelectric coefficients

and using this parameter, the dimensionless thermoelectric figure of merit, defined in Eq. (23), can be written as

The best ZT occurs at the limit ζ → 1.

Results for SSH chains or monoatomic sp-chains
We start obtaining the thermoelectric properties of the device in the case the dot is coupled to SSH chains. We 
calculate, using the equations above, the thermoelectric properties of the coupled system, dot-chains, in the 
different topological phases of the SSH chains and at the topological transition. When the chains are in either 
the trivial or topological phases, i.e., for Ṽ > 1 and Ṽ < 1 , respectively, the conductances are zero at zero tem-
perature, since the bulk of the chains are insulators. At finite temperatures these conductances become finite due 
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to thermal activation of quasi-particles above the band gap. The results presented are obtained for the chemical 
potential of the chains µ = 0 , i.e., for a full lower band (half-filling). The dot energy is E0 = 0 , and the coupling 
between the dot and the chains is taken as, td/V2 = 0.15.

Figure 4a shows the conductance of the device in the trivial and topological phases. As expected the conduct-
ances vanish at T = 0 in both phases and become finite at finite temperatures. The finite temperature conductance 
is larger in the topological phase. Notice that in both cases shown, Ṽ = 1.03 and Ṽ = 0.97 , the system is at the 
same distance of the topological transition at Ṽ = 1 . The increment of the conductance in the topological phase 
can be attributed to the presence of the edge mode.

Figure 4b shows the thermal conductivity divided by temperature, in units of G0L0 . They also vanish for T = 0 , 
in both the trivial and topological phases, as expected, since the bulk of the chains is insulating.

Figure 4c shows the Wiedemann–Franz ratio, defined as WF = (K/T)/(G/G0) and in units of G0L0 , as a 
function of temperature. Away from the topological transition in both trivial and topological phases the Wiede-
mann–Franz law is violated. This can occur in topological  systems21,52, as for the monoatomic chains and in 
general for diatomic chains, as we discuss below and show in Fig. 11.

Figure 4a–c, also show the conductance, thermal conductivity and Wiedemann–Franz ratio at the topological 
transition, i.e., at Ṽ = 1 . The zero temperature dimensionless electrical conductance in this case is unity showing 
that a quantum of charge flows through the system. Then, at the transition the surface modes recombine to form 
a quasi-particle that transports electric current through the dot. The current can flow through the device since, at 
V1 = 1 , the chains are in a semi-metallic state (Dirac semi-metal). We point out that the zero temperature electri-
cal conductance at the transition does not depend on the coupling td between the dot and the chains. The thermal 
conductance K, differently from the electrical conductance vanishes at zero temperature, even at the topological 
transition. However, the temperature normalized thermal conductance (K/T) at the topological transition goes 
in this limit to 1, in units of G0L0 , as shown in Fig. 4b. The Wiedemann–Franz ratio, at the topological transition 
of the monoatomic chain, starts as unity at T = 0 and remains constant at very low temperatures showing that 
the Wiedemann–Franz law is obeyed in this case.

Finally, we remark that the thermopower, Eq. (21), vanishes at the trivial and topological phases and also at 
the topological transition. This occurs since the quantity L1 in this equation cancels out due to equal but opposite 
contributions of electrons and holes to this quantity in this particle-hole symmetric case.

Results of the diatomic sp or Rice–Mele chains
In this section, we obtain the thermoelectric properties of the device when Rice–Mele chains are attached to 
the quantum dot. Notice that in this case the chiral symmetry of the SSH chain is broken for RM chains. We 
consider the situation where the chemical potential coincides with the local energy of one of the sub-lattices, 
i.e., we take µ = ±ǫ . Furthermore we consider that the quantum dot is in resonance with the energy of the edge 
mode, which for the condition µ = ±ǫ corresponds to take E0 = 0 . Since ǫ  = 0 , the topological transition of the 
model occurs for Ṽ = 1 . We start showing the normalized temperature dependent conductances of the Rice-Mele 
model at the topological transition. As can be seen in Fig. 5, the normalized conductances at zero temperature 
now attains a value of 1/2, expected when fractional charges e/2 are responsible for the electronic transport in 
the system. This result is universal in the sense that it is independent of the coupling td between the dot and 
the chains and the value of ǫ , for the conditions specified above ( µ = ±ǫ , E0 = 0 ). Whenever we use this term 
here we refer to this type of universality. The figure shows the normalized conductance for two values of ǫ/V2 . 
Notice that for ǫ/V2 ≪ 1 the finite temperature conductance reaches a maximum value close to one, as if there 
is a recombination of the fractional charges in the system due to thermal effects.

We point out that the fractional charge as evidenced by the zero temperature conductance is a direct conse-
quence of the breaking of chiral symmetry of the original SSH model, due to the finite and distinct energies of 
the sub-lattices of the Rice–Mele model.

Thermopower. The thermopower is an interesting and unique physical property that contains fundamental 
information on both, transport and thermodynamic properties of the system. The temperature dependence of 
the thermopower of the device consisting of two Rice–Mele chains coupled to the quantum dot can be obtained 
using Eq. (21). At the topological transition ( ̃V = 1 ), this is shown in Fig. 6 for µ = ǫ and the cases of ǫ positive 

Figure 4.  (a) Dimensionless electrical conductance, (b) thermal conductivity divided by temperature in units 
of G0L0 and (c) Wiedemann–Franz ratio ( WF = (K/T)/(G/G0) ) in units of G0L0 as functions of temperature 
for the device with SSH chains. In the trivial phase ( ̃V = 1.03 ) black continuous, topological phase ( ̃V = 0.97 ) 
red dashed and at the topological transition ( ̃V = 1 ) blue continuous.
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and negative. The corresponding surface density of states for these two cases is shown in the upper panels of 
Fig. 2. The thermopower is positive or negative depending whether the charge carriers are holes or electrons, 
respectively. It is constant at low temperatures and its absolute value decreases with increasing temperature. It is 
remarkable that it does not vanish for T → 0 , as expected from the third law of thermodynamics. Mathemati-
cally, this arises since the function T (ω) in Eq. (19) has a jump discontinuity and is non-differentiable at ω = 0 , 
which precludes a low temperature Sommerfeld expansion.

The constant low temperature values for the thermopower, S(T → 0) ≈ ±1.386 can be rationalized in terms 
of the properties of the quantum dot and of the chains at the topological transition. Since we took µ = ǫ , the 
doubly degenerate zero energy surface  mode53 becomes delocalized at the transition and every site in the system 
including the dot has a double degenerescence. For a system of charged particles, the thermopower represents 
the entropy per carrier divided by the charge of the  carrier54,

This is also known as the Kelvin formula for the Seebeck  coefficient55. The entropy per site is S = ln 2 and 
remains finite at T = 0 due to the double degeneracy of the states, whether a site is occupied by a particle or by 
a hole. If the carriers have a fractional charge, q∗ = ±1/2 (in units of electric charge) as evidenced by the zero 
temperature conductance, we get

(26)S0 =
entropy per carrier

q∗
.

Figure 5.    Normalized conductances as a function of temperature for a system consisting of two semi-infinite 
Rice–Mele chains attached to a quantum dot at the topological phase transition of the chains ( ̃V = 1 ). In blue 
continuous ǫ/V2 = 0.1 , and in red dashed ǫ/V2 = 5× 10−5 . In both cases, the low temperature saturation 
value G/G0 = 1/2 gives evidence of fractional charges flowing in the system. The curves for G/G0 are 
independent of the coupling to the quantum dot and of the sign of ǫ , for µ = ǫ and the dot in resonance with 
the edge mode. Notice that for small values of ǫ/V2 as temperatures increases there is a kind of recombination of 
the fractional charges.

Figure 6.    Thermopower of the device as a function of temperature in units of (kB/e) at the topological 
transition of the RM chains. S > 0 correspond to µ = ǫ = +0.1 , and µ = ǫ = +3.3× 10−4 (light curve). 
Negative thermopower ( S < 0 ) corresponds to µ = ǫ = −0.1 and µ = ǫ = −3.3× 10−4 (light curve). 
The light color curves show the trend to the results the SSH chain with ǫ = 0 . The energy scale for the low 
temperature saturation of the thermopower is given by the difference in site energies, 2ǫ . The numerical results 
for the saturation values, S(T = 0) ≈ ±1.38634 are in close agreement with S0 = ±2 ln 2 ≈ ±1.38634 , as 
discussed in the text.
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which are exactly the low temperature saturation values, obtained numerically for the thermopower using 
Eq. (21), as shown in Fig. 6. These values are universal in the same sense we used for the conductance, i.e., they 
are independent of ǫ and td (for µ = ǫ , E0 = 0).

Then this result for the thermopower, together with that for the electrical conductance, corroborate the 
existence of carriers with fractional charges, q = ±e/2 , flowing in the device with RM chains at the topological 
transition. This transport charge does not necessarily coincide with the notion of a boundary charge in topologi-
cal  chains56. This concept is useful when the system is in the non-trivial topological phase but away from the 
topological  transition56. The wave function of the edge modes is finite inside the bulk of the material, and the 
boundary charge is obtained by integrating over a finite characteristic length that depends on the model’s param-
eters. The fractional charges we get from the transport properties appear at the topological transition. In this 
case, the relevant length scale is the penetration depth of the edge modes that diverge at this  transition32,57,58. It 
implies that the edge mode charge is spread all over the system; consequently, the concept of a boundary charge 
becomes meaningless.

For completeness we show in Fig. 7 the temperature dependent thermopower away from the topological 
transition in both trivial and non-trivial topological phases.

Thermal conductance and Wiedemann–Franz ratio. The thermal conductance divided by temperature (K/T) at 
the topological transition of the diatomic sp-chain is shown in Fig. 9. From Eqs. (19) to (22), we can write

and using the expressions for the thermopower and conductance we get,

We can obtain the limit of zero temperature analytically, (K/T)0 = (K/T)T→0 , using the results for the 
thermopower, Eq. (27), and for the conductance. We find,

in units of G0L0 . This is in agreement with the numerical result shown in Fig. 8 and it is independent of ǫ and td . 
The dimensionless Wiedemann–Franz ratio attains at zero temperature the value, W = (WF/L0) = 1/2 . This 
value of W is different from that for metallic chains where W = 1 . Violation of the Wiedemann–Franz law has 
been found in interacting  systems21,59 and in devices with interacting quantum  dots60,61.

For completeness, we point out that away from the topological transition, both in the trivial and non-trivial 
topological phases we obtain that the conductance and thermal conductivities are thermally activated as in a 
semi-conductor.

Figure of merit and power factor. Figure 9 shows the dimensionless power  factors62 and figures of merit 
ZT = (S2GT)/K of the device, as functions of temperature, at the topological transition, Ṽ = 1 , and in the trivial 

(27)S0 =
ln 2

(±1/2)
= ±2 ln 2 ≈ ±1.386(kB/e),

(28)
K

T
=

L2

T2
−

(
L1

eTL0

)2

e2L0,

(29)
K

T
=

L2

T2
− S2G.

(30)(K/T)0 =
1

2
(1−

3

π2
(2 ln 2)2) ≈ 0.20792,

Figure 7.    Thermopower of the device as a function of temperature in units of (kB/e) away and at the 
topological transition of the RM chains. Red dashed corresponds to Ṽ = 0.95 , such that the chains are in the 
topological phase. Black continuous shows the thermopower in the trivial phase, with Ṽ = 1.05 and blue at the 
topological transition. The gray dashed line shows the classical result for a semiconductor with activation energy 
�.
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Ṽ = 1.05 and topological Ṽ = 0.95 phases of the RM chains. The power factor is defined as PF = (P̃F/S20G0) , 
where S0 is the zero temperature thermopower and G0 the unit of conductance. The quantity P̃F = S2G is the 
full dimensional power  factor63. These quantities ZT and PF do not depend on the sign of ǫ , only on its absolute 
value.

Notice that the figures of merit ZT at the trivial and topological phases assume large values, for the param-
eters used in Fig. 9 at a temperature ofT/V2 ≈ 0.01 , where the power factor is close to a maximum. In order to 
translate this in physical temperature notice that the energy scale V2 is of the order of a bandwidth ( ∼ 1 eV or 
∼ 104 K). In the trivial semiconductor phase although the figure merit increases at lower temperatures, the power 
factor drops to very small values, while it continues significant at the topological transition. The significance of 
this quantity (PF) is that, in a time reversible system at steady state, the maximum power for conversion of heat 
into work is given by Pmax = (1/4)P̃F for two heat reservoirs with a difference in temperature �T = 1 K. The 
efficiency of a device at this maximum power is given  by63,

where ηca is the efficiency of a Carnot engine working between the same reservoirs.
It is worth emphasizing that the relevant characteristic temperatures we obtain, for example, for the saturation 

of the thermopower at low temperatures, maxima of PF, saturation of WF using reasonable values for the param-
eters of the dot-chains system are much larger than the actual Kondo temperature of realistic quantum  dots64,65.

High temperature results
In this section, we present the results for the thermally activated thermoelectric properties of the device coupled 
to RM chains.

In Fig. 10, we present the density of states for different values of the ratio V1/V2 = 1.2; 1.0; 0.8; 0.5 . Two points 
should be noticed here: First, at the topological phase transition, V1/V2 = 1.0 , the density of states (red curve) 
presents a sharp behavior at µ = 0 that gives rise to an electrical conductance G/G0 = 0.5 at low temperatures. 

(31)η(Pmax) =
ηca

2

ZT

ZT + 2

Figure 8.  Thermal conductance divided by temperature of the device at the topological transition of the RM 
chains in units of G0L0 , where L0 is the Lorenz number for ǫ = 01 blue continuous, and ǫ = 0.3 red dashed. The 
zero temperature limiting value (K/T)0 ≈ 0.20792 (see text). is independent of the values of td and ǫ as long as, 
µ = ǫ and E0 = 0.

Figure 9.    (a) Dimensionless electrical conductance, (b) thermal conductivity divided by temperature in units 
of G0L0 and (c) Wiedemann–Franz ratio ( WF = (K/T)/(G/G0) ) in units of G0L0 as functions of temperature 
for the device with SSH chains. In the trivial phase ( ̃V = 1.03 ) black continuous, topological phase ( ̃V = 0.97 ) 
red dashed and at the topological transition ( ̃V = 1 ) blue continuous.
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On the contrary, inside the topological region, the density of states at the chemical potential presents a delta 
function, as indicated in the curves with V1/V2 = 0.8, 0.5 . On the other hand, the curve V1/V2 = 1.2 , outside the 
topological region, exhibits a full gap. The second point, and the most important for our purposes, is that inside 
the topological region, as V1/V2 decreases, the electrons migrate from the valence band to the peak located at 
the chemical potential, increasing its weight and the gap, allowing for tuning the thermoelectric properties to 
the room temperatures region.

In Fig. 11a–d, we plot the transport thermoelectric properties for different values of the ratio V1/V2 : (a) 
1.2; (b) 1.0; (c) 0.8; (d) 0.5. Figure 11a shows a high ZT value, but the Power factor is very low, which limits the 
usefulness of this region. At the topological transition V1/V2 = 1.0 (Fig. 11b), ZT, ξ and the PF attain robust 
values. As V1/V2 decreases, the gap increases as indicated in Fig. 10; the ZT, ξ and the PF attain high values for 
V1/V2 = 0.95 (Fig. 11c). For V1/V2 = 0.80 , the peak of ZT, ξ and the PF occur at around T/V2 = 0.1 (Fig. 11d). 
However, the thermoelectric properties value tends to decrease for low values of V1/V2.

Conclusions and perspectives
Topological insulating chains have many exciting properties. These chains can be realized in materials with 
hybridized sp-states where the anti-symmetric nature of the hybridization between orbitals of different parities 
guarantees their topological properties. We consider in this work monoatomic and diatomic sp-chains that map 
directly in the SSH and Rice–Mele problems, respectively. We obtain the density of states at the edge of a semi-
infinite chain, which varies according to the topological phase of the chain. We show that the weight of the zero 
energy modes in the non-trivial topological phase vanishes continuously with the distance to the topological 
transition. In order to study the transport properties of the chains, we considered a simple device consisting of a 
quantum dot connected to two identical semi-infinite sp or Rice–Mele chains. Away from the topological transi-
tion and at T = 0 , the current through the device vanishes since the chains are insulators in their bulk, whether 
they are in the topologically trivial or non-trivial phases. However, at finite temperatures there is activated 
transport that is different in the trivial and topological phases. This work focuses on the linear response regime 
or zero voltage limit. It would be interesting to study this same problem at finite voltage. It will be the subject of 
future research, as it requires an entirely different approach, namely the Keldish  formalism66.

At the topological transition of the monoatomic, or SSH chains, and zero temperature, the conductance in 
the device has a finite universal value G/G0 = 1 , independent of the parameters of the model like the coupling 
between the chains and the dot, as long as the energy of the dot E0 = 0 . Since, at the transition, the surface modes 
penetrate into the bulk, the system carries current even at T = 0 . The normalized Wiedemann–Franz ratio turns 
out to be equal unity in terms of the Lorenz number. The thermal conductivity vanishes at T = 0 even at the topo-
logical transition and the thermopower of the monoatomic chains always vanishes due to particle-hole symmetry.

A different behavior arises when we consider diatomic sp-chains with different sub-lattices local energies. 
In this case the finite local energies break the chiral symmetry of the SSH Hamiltonian and the chain is now 
modeled by the Rice–Mele Hamiltonian. This system still presents non-trivial topological phases that are now 
characterized by Chern numbers. Interestingly, the zero temperature dimensionless conductance at the topologi-
cal transition assumes the value G/G0 = 1/2 , as would be expected for carriers with a fractional charge and is 
a consequence of the breakdown of chiral symmetry of the SSH model. The thermopower of the device in this 
case has an anomalous behavior and does not vanish at low temperatures. It attains a universal value at T = 0 
consistent with the result for the conductance that implies fractional charges q∗ = 1/2 flowing in the system. This 
is due to the double degeneracy of the system associated with the presence of zero energy modes. it is interesting 

Figure 10.  Density of states corresponding to different values of V1/V2 = 1.2; 1.0; 0.8; 0.5 . The legends 
represent the values of Ṽ = V1/V2.
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to compare the physical properties of the fractional charge carriers in the topological insulators with those of 
Majorana modes in p-wave  superconductors67.

Notice that the antisymmetric hybridization responsible for the non-trivial topological properties of chains 
does not mix the spins of the carriers. This is quite distinct from the case of spin–orbit interactions that mixes 
the spins. The consequence is that it is much easier to produce a singly polarized material in the former case.

The sp-chains, with edge modes in their topological phases are easier to realize in practice than p-wave 
superconductors. Carbyne, the one-dimensional allotropic form of carbon with hybridized sp orbitals provides a 
realization of these chains. They are potentially useful systems exhibiting properties that can be explored in a large 
temperature range. In particular, we show that varying V1/V2 , the figure of merit and power factors can attain 
high values at high temperatures, making the system very attractive to be explored in technological applications.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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