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A novel shape‑based approach 
to identify gestational 
age‑adjusted growth patterns 
from birth to 11 years of age
Lorena López‑Domínguez 1,2, Diego G. Bassani 3,4,5, Celine Bourdon 2,6, Paraskevi Massara 1,2, 
Iná S. Santos 7, Alicia Matijasevich 7,8, Aluísio. J. D. Barros 7, Elena M. Comelli 1,9* & 
Robert H. J. Bandsma 1,2,4,10*

Child growth patterns assessment is critical to design public health interventions. However, current 
analytical approaches may overlook population heterogeneity. To overcome this limitation, we 
developed a growth trajectories clustering pipeline that incorporates a shape‑respecting distance, 
baseline centering (i.e., birth‑size normalized trajectories) and Gestational Age (GA)‑correction to 
characterize shape‑based child growth patterns. We used data from 3945 children (461 preterm) in 
the 2004 Pelotas Birth Cohort with at least 3 measurements between birth (included) and 11 years of 
age. Sex‑adjusted weight‑, length/height‑ and body mass index‑for‑age z‑scores were derived at birth, 
3 months, and at 1, 2, 4, 6 and 11 years of age (INTERGROWTH‑21st and WHO growth standards). 
Growth trajectories clustering was conducted for each anthropometric index using k‑means and a 
shape‑respecting distance, accounting or not for birth size and/or GA‑correction. We identified 3 
trajectory patterns for each anthropometric index: increasing (High), stable (Middle) and decreasing 
(Low). Baseline centering resulted in pattern classification that considered early life growth traits. 
GA‑correction increased the intercepts of preterm‑born children trajectories, impacting their pattern 
classification. Incorporating shape‑based clustering, baseline centering and GA‑correction in growth 
patterns analysis improves the identification of subgroups meaningful for public health interventions.

Childhood growth is a routinely tracked marker of optimal health and  development1. Cohort studies provide 
longitudinal measurements at various time points that are typically used to represent growth in a population 
using trajectories. Traditionally, individual child trajectories are summarized into a single average trajectory 
for the population under study. Although an average growth trajectory can be representative of the population, 
reducing the entire population to a single average trajectory can disregard details of growth patterns related to 
the heterogeneity in  growth2.

To address this limitation, clustering can be used to uncover the inherent heterogeneity of growth data. This 
group-based approach relies on algorithms to classify individuals and allows to identify meaningful subgroups 
of individuals who share common characteristics over  time3. There is no consensus on the best method to use 
for clustering  trajectories4, k-means is commonly employed because of simplicity and flexibility. Variations 
of k-means use different distance metrics, which evaluate the difference between each pair of elements. Most 
classical distances (e.g., Euclidean, Manhattan) assess the similarity of values at each time point of a trajectory. 
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However, growth trajectories are non-linear and the intervals available for each individual in a cohort study 
are often variable. Distances that consider the whole shape of the trajectory can help capture the progression of 
growth over time, accounting for heterogeneity and summarizing subgroups of growth trajectories in a popula-
tion. Growth trajectory clusters can also potentially be influenced by the intercept (i.e., start point of the trajec-
tory), which can mask part of the heterogeneity in the population by grouping together individuals with a closer 
intercept but that do not share a similar shape.

The World Health Organization (WHO) Child Growth  Standards5,6 are the most widely applied international 
standards for evaluating postnatal growth in children worldwide; however, they are based on a reference popu-
lation of term-born  children7. The International Fetal and Newborn Growth Consortium for the 21st Century 
(INTERGROWTH-21st) newborn size standards have been developed to account for gestational age (GA) in the 
application of growth standards until 64 weeks’ postmenstrual  age8. Applying GA-correction to growth standards 
improves the understanding of growth and the associated outcomes, especially in Low- and Middle-Income 
 Countries9. However, the impact of GA-correction in the context of clustering childhood growth trajectories 
has not been investigated.

We aimed to implement a pipeline for clustering growth trajectories that incorporates a shape-respecting 
distance, baseline centering (i.e., normalizing the trajectory intercept to account for birth size) in combination 
with GA-correction to identify shape-based child growth patterns. We anticipated that this approach would 
allow for a characterization of childhood growth patterns that capture the full spectrum of heterogeneity in 
growth trajectories.

Results
Participant’s characteristics. We studied 3945 children from the 2004 Pelotas birth cohort in which chil-
dren were recruited at birth and followed up longitudinally at months 3, 12, 24, and 48, and at 6 and 11 years 
of age. Table  1 shows the characteristics of the 3945 all participants and those born preterm only (n = 461). 
The mean birth weight was 3.2 (± 0.5) kg and the mean birth length was 48.3 (± 2.4) cm. Mean gestational age 
of term-born children was 39.4 (± 1.99) weeks and 8.3% (n = 329) of children classified as Low Birth Weight 
(< 2500 g) (n = 12 Very Low Birth Weight (< 1500 g)). The sample comprised 1903 (48.2%) females. The mean 
difference between GA-corrected-age and uncorrected age was of 1.08 months.

Identification of patterns using the centering approach in GA‑corrected growth data. Chil-
dren with < 3 observations were excluded from the clustering analysis (n = 93), resulting in the inclusion of a 
minimum of four out of the seven time points available to trace their growth trajectories. This allowed us to 
retain 3945 (97.7%) of the total participants (see study Flow chart, Fig. 1a).

Quality indices indicated the best number of clusters to be 2, however, we chose the second-best number of 
clusters (n = 3) for analyses, since this enhanced the difference between the two more distinct clusters (Supple-
mentary Fig. S3). Three clusters provided an additional intermediate cluster. Three growth patterns were identi-
fied in the four analytical approaches for the three anthropometric z-scores (HAZ, Fig. 2 and Supplementary 
Fig. S4; WAZ and BMIZ, Supplementary Fig. S5). Children were grouped in “High”, “Middle” or “Low” patterns 
with an approximate split of a quarter, a half, and a quarter in each pattern, respectively (Supplementary Table S1). 
The mean z-score of the three growth patterns differed significantly across timepoints, regardless of the approach 
used with an average overall difference between groups of 0.34 SD in HAZ, 0.47 in WAZ, and 0.52 in BMIZ (data 
not shown). We did not find differences by sex among growth patterns, except in the corrected and centered 
approach for HAZ, where the Low pattern had a higher proportion of boys (16% vs 13%, data not shown). This 
discrepancy could be driven by the difference in pubertal timing earlier observed in girls. We performed a sen-
sitivity analysis including children with less than 3 time points using the adjusted Rand  index10,11, which resulted 
in clusters with moderate to an excellent agreement (range 0.72–0.92, data not shown)12.

Table 1.  Characteristics of participants from the 2004 Pelotas Birth cohort included in this analysis, 2004–
2015. GA gestational age, SD standard deviation.

Total
n = 3945 Preterm birth, < 37 weeks GA n = 416 (11.7%)

Female sex, n (%) 1903 (48%) 234 (12%)

Gestational age, weeks, mean ± SD 38.9 ± 2.4 35.2 ± 2.0

Birth weight, g, mean ± SD 318.5 ± 50.8 258.1 ± 52.7

Birth length, cm, mean ± SD 48.3 ± 2.4 45.6 ± 2.9

Low birth weight (< 2500 g), n (%) 329 (8.3%) 183 (39.7%)

GA-corrected age, months, mean ± SD

 Follow up 1 3.0 ± 0.1

 Follow up 2 11.9 ± 0.2

 Follow up 3 23.9 ± 0.4

 Follow up 4 49.6 ± 1.8

 Follow up 5 80.4 ± 2.4

 Follow up 6 130.6 ± 3.2
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Growth trajectories were summarized by their features, including intercept, slope, and tempo (Supplementary 
Figs. S6–8). The High trajectory pattern demonstrated the highest intercept (HAZ 0.64 ± 0.55 and 0.59 ± 0.63) 
and showed the highest tempo (HAZ 0.85 ± 0.53 and 0.82 ± 0.59). The Middle pattern was identified as having 
the lowest slope (HAZ 0.005 ± 0.012 and 0.005 ± 0.13). Meanwhile, the Low pattern showed the lowest intercept 
(HAZ − 1.85 ± 0.70 and 1.49 ± 0.75), and tempo (HAZ − 1.43 ± 0.70 and − 1.20 ± 0.67). Features for WAZ and 
BMIZ can be found in Supplementary Figs. S8 and 9.

Differences in features of growth and group mobility detected with and without GA correc‑
tion. GA-correction without baseline centering of HAZ did not influence the relatively flat horizontal mean 
growth patterns seen after 24 months of age (see Supplementary Fig. S4 vs. Fig. 2a). However, GA-correction 

Participants included in the analysis 
n = 3,945

HAZ clustering WAZ clustering BMIZ clustering

Non-corrected age –
no baseline centering 

(nCorr-nCent)

GA-Corrected age –
no baseline centering 

(Corr-nCent)

Non-corrected age 
with baseline centering 

(nCorr-Cent)

GA-Corrected age 
with baseline centering 

(Corr-Cent)

n = 41 Missing or discordant GA
n = 2   Missing birthweigth and length

n = 45 Implausible HAz or WAz at birth

n = 105 One follow up only

2004 Pelotas Birth 
Cohort

N = 4,231

n = 4,188

n = 4,083

n = 4,038
n = 93 Less than 3 observations for

either HAz, WAz or BMIzParticipants included 
in the analysis 

n = 3,945

a)

b)

Figure 1.  Flowchart of participants and analytical approaches tested. Participants were excluded if missing or 
discordant GA (n = 41), if missing or implausible birthweight or length variables (n = 47), if having only one 
follow up (n = 105), and those with < 3 observations for either HAz, WAz or BMIz (n = 93). GA, gestational age; 
HAZ, Height-for-age z-score; WAZ, Weight-for-age z-score; BMIZ, body mass index z-score.
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increased the intercepts of the z-scores of all 3 patterns by a mean of 0.37 SD. This result was linked to moder-
ate differences in the initial slope of the High and Low growth trajectories seen before 24 months of age, where 
GA-correction identified trajectories with initial slopes closer to zero. While most participants remained in the 
same trajectory patterns, 24% showed group mobility between High and Middle and between Middle and Low 
trajectories. Most children who changed pattern (n = 428, 10% of total sample) moved from the Middle pattern 
without GA-correction towards the Low growth pattern with GA-correction (Supplementary Table S2). For the 
group of preterm-born infants, 44.7% changed clusters with 19.1% reclassifying from Middle to High pattern, 
and 24.1% showing mobility between Low and Middle patterns. Percentages of reclassification across trajectories 
using the different approaches are presented in Supplementary Table S2.

Differences in features of growth and group mobility detected with and without baseline cen‑
tering. Compared to HAZ patterns obtained without centering, baseline centering resulted in more distinct 
overall mean trajectories, characterized by heterogeneous growth patterns in the first 2 years of life (see Sup-
plementary Fig. S4). The children in the High pattern of non-GA-corrected centering approach started from the 
lowest intercept (HAZ − 0.75 ± 1.18) but showed the steepest positive slope (HAZ 0.02 ± 0.01) until reaching and 
maintaining the highest HAZ across the rest of childhood. While the mean Middle trajectory was similar with or 
without baseline centering, the mean Low trajectory captured with centering started from the highest intercept 
(HAZ − 0.33 ± 0.93) but decreased its z-score with a negative slope (HAZ − 0.003 ± 0.01) until HAZ stabilized at 
− 0.55 SD at 24 months of age to then gradually increase to − 0.27 SD by 11 years (Fig. 2d, and Supplementary 
Fig. S4c).

Importantly, group mobility was significant between High, Middle and Low patterns obtained with or with-
out baseline centering, with most participants (64.2 and 65.3%) being reclassified (Supplementary Fig. S4 and 
Supplementary Table S2). This means that the centering approach provided a different set of children in each 
pattern. Group mobility was highest in both the High and Middle patterns. Interestingly, the type of group 
mobility between non-corrected age and centering non-corrected age was similar to that observed between the 
non-corrected and GA-corrected age, grouping more children in the Low pattern, but moving pre-term children 
from the Low to Middle and High patterns, though the percentage of mobility in the centering approach was 
greater. GA-correction of baseline centered HAZ showed a similar influence on mean patterns as seen with GA-
correction without centering (i.e., differences in intercepts associated with slight changes in initial slope before 
2 years of age). While baseline centering did reveal heterogeneity in growth rate before 2 years of age, the slopes 
of HAZ across all patterns (High, Middle, and Low) and analytical approaches were similar after 49 months for 
all conditions.

Influence of baseline centering on growth trajectory group attribution of stunted chil‑
dren. We next evaluated the impact of baseline centering on estimations of stunting in groups with distinct 
growth patterns. We examined the group attribution of children classified as stunted (HAZ < − 2) at 3 months 
and 1, 2, 4, 6 and 11 years across the groups of High, Middle and Low growth patterns obtained from each of the 
4 analytical approaches (Fig. 3).

With no baseline centering, most stunted children at any time point were grouped in the Low pattern, with 
only a small proportion (< 0.5% at all time points) classified in the Middle pattern (Fig. 3a). However, with base-
line centering, stunted children were distributed among all three patterns (Low, Middle and High), regardless of 
age correction (Fig. 3). Thus, clusters identified using baseline centering helped identify groups that character-
ized stunting by early catch-up growth rates, showing either early improvements (High pattern), stable growth 
(Middle pattern), or experiencing growth declines (Low pattern) in early life. Interestingly, 70% (n = 91) of the 
children classified as stunted at 3 months in the High pattern with non-GA-corrected and centering approach 
were preterm-born (Fig. 3), reflecting the misclassification due to the use of the WHO-GS at birth for preterm-
born children. However, this effect was not observed in the GA-corrected age approaches (Fig. 3e–h). Similar 
results were observed for underweight (WAZ < − 2), wasting (BMIZ < − 2), underweight (BMIZ > 2 and < 3) and 
obesity (BMIZ > 3) classifications (Fig. 3).

Discussion
To the best of our knowledge, this is the first study that explores the impact of intercept and gestational age 
correction in the identification of children’s growth trajectories using a shape-based approach. We developed a 
pipeline and compared 4 analytical approaches which identified three distinct growth patterns (High, Medium, 
and Low), for 3 anthropometric z-scores (HAZ, WAZ, and BMIZ). While our analysis was conducted over a 

Figure 2.  The impact of baseline centering on GA-corrected mean growth patterns of height-for-age z-score, 
2004 Pelotas Birth cohort. (a) Growth patterns and (b) their features, identified with GA-correction and without 
baseline centering; (d) Growth patterns and (e) their features, identified with GA-correction and baseline 
centering. Percentage of children included in each pattern are indicated on top of each trajectory graph. (b,e) 
Features extracted from the linear model represent the starting point of the trajectory (intercept); the overall 
growth rate from birth to 11y (slope) and the average growth of the child per month (tempo). (c) Alluvial 
plot shows group mobility between mean High, Middle and Low growth patterns of height-for-age z-score 
between the analytical approaches, where the flow lines and numbers indicate children who change group 
(Supplementary Table S2). Mean differences in features assessed by non-parametric Kruskal–Wallis test and 
Dunn’s group comparison was used to assess mean differences. (p < 0.05). Corr-nCent, GA-corrected and non-
centered at baseline; Corr-Cent, GA-corrected and centered at baseline; GA, gestational age.

◂
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broad age range from birth to 11 years (i.e., pre/early adolescence), we found that the use of baseline centering 
highlighted sub-groups of children with distinct early growth patterns. GA-correction increased the intercept 
and reduced the slope of the trajectories between birth and 24 months of life for preterm children but had little 
impact on the overall classification of growth patterns. The baseline centering approach identified mean trajec-
tories with early steeper slopes and classified stunted children that differed based on early catch-up growth rates. 
Thus, highlighting more contrasting early life features of growth trajectories (ie. long-term growth and direction 
of change), which would otherwise remain hidden as they are highly influenced by size at birth. This approach 
provided different grouping of children and could reveal child groups at risk of stunting in later childhood.

It has been previously shown that adjusting for differences in gestational age in the application of growth 
standards impacts the association between early growth and later outcomes by reducing standard errors specifi-
cally in Low- and Middle-Income  Countries13. GA-correction has been applied previously in the identification 
of growth patterns in groups of preterm children only, in which heterogeneous post-term growth patterns were 
 identified14,15. However, we found no study which compared the use of this age correction in the identification 
of growth patterns including pre-and term-born children. Although our results show that GA-correction can 
influence the membership of later childhood growth trajectory patterns, the observed impact on the mean pat-
terns identified was very subtle affecting the mean trajectory only in the first 24 months. A notable contribution 
to the pattern classification was observed from GA-correction, which reduced the number of children classified 
as “stunted” in the Low pattern. Moreover, the number of children who were classified as “stunted” in the High 
pattern was lower in the first 12 months when GA-correction was applied; overall, this resulted in improving 
trajectories, which is possibly due to the “catch up” growth phenomenon often observed in this population. We 
did not explore the effect of applying GA-correction to all children (including term-born children), which could 
affect the classification of children born above 42 weeks GA (n = 243, 6% of total sample). Further epidemiologi-
cal studies focusing on child growth should take into account this correction when information is available, to 
consider growth differences between term- and preterm-born children and its potential impact in the identifica-
tion of growth trajectory patterns. Using clustering approaches is useful in epidemiological settings, where the 
identification of at-risk groups could inform the implementation of policies for interventions.

Complementing standard analysis of populational growth with techniques focused on capturing the hetero-
geneity of growth patterns could help sub-stratify at-risk children who could benefit from early intervention. 
Here, we show that using baseline centering before grouping children within trajectory patterns offers a focused 
perspective on the variation of early growth rates. By removing the weight of the starting point of the trajectory 
(centering) we were able to focus on the shape of the trajectories and capture the variation in growth that hap-
pens in the first 24 months of life. A similar normalizing approach has been used to identify patterns of crime 
over time and changes in antibody levels between animals of different  farms16,17. Researchers showed that when 
correcting by the mean value of the farm the scale of the antibody effect and the variability between farms were 
 removed17. Similar to the change in growth we captured in the patterns in our study, clustering by shape not 
only provided information on the direction of change, but also other complex nonlinear patterns which may 
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Figure 3.  Percentage of children classified as stunted in each follow-up for all children and preterm-born in all 
approaches GA-corrected centered and non-centered clustering approaches. (a,c) Non-corrected, non-centered; 
(b,d) Non-corrected, centered; (e,g) GA-corrected, non-centered; (f,h) GA-corrected, centered. HAZ, height-
for-age z-score; GA, gestational age.



7

Vol.:(0123456789)

Scientific Reports |         (2023) 13:1709  | https://doi.org/10.1038/s41598-023-28485-4

www.nature.com/scientificreports/

be influenced by changes in time. We found that the centering approach allows for a shape-based grouping of 
growth trajectories, which differ mostly in their early life slope and were highly affected by the first 24 months of 
life, capturing the heterogeneity of early growth. In combination with GA-correction, baseline centering allowed 
to identify distinctive patterns of stunting that differ in early catch-up growth rates that could be linked to a 
height-for-age trajectory that is either improving (High pattern), continuous (Middle pattern), or declining (Low 
pattern). The impact that centering showed here can help identify early life features of the growth trajectories 
that would otherwise remain hidden as they are highly influenced by size at birth.

Among the limitations of this study are the use of the last menstrual period and Dubowitz methods to derive 
GA, which is less precise compared to early pregnancy ultrasound assessment. Moreover, the clustering approach 
tested here was not compared to other methods for clustering trajectories, although the performance of k-means 
using Fréchet distance is closely related to that of latent class growth analysis when trajectories vary smoothly 
with  time18. However, the variability of clusters is expected within each clustering method and no standard for 
clustering has been established. Furthermore, we did not assess the association of the patterns identified in rela-
tion to prenatal, socioeconomic, or dietary variables. Yet, we analyzed growth trajectory patterns using a cohort 
study with high follow-up rates (> 85% at all time points) with high-quality data collection. We also tested this 
pipeline using three routinely applied growth standards used to assess child growth, which resulted in similar 
outcomes.

We were able to capture the growth patterns from childhood to early adolescence and confirm that even 
when removing the influence of the baseline values in the trajectory by centering, growth patterns are still 
predominantly defined by the first two years of life. The results of this study provide novel insights into the tra-
jectories of growth among children that could identify important associations with prenatal and socioeconomic 
characteristics. This study supports previous recommendations of using GA-correction when assessing growth 
in epidemiological studies. This is especially important in research concerning early childhood and when the 
objectives include the assessment of undernutrition in the first year of life, or in populations where preterm birth 
and stunting are high. Moreover, we show the advantages of using the centering approach in studies where the 
outcome of interest could be conditional to the baseline values and influenced by the different patterns of growth 
that happen in early versus late childhood (such as consistent undernutrition through childhood). Refined meth-
ods that capture more nuanced variations in growth at different ages can support the determination of critical 
periods for growth and development of interventions.

Methods
Study design and participants. The 2004 Pelotas birth cohort is a prospective study of 4231 children born 
in 2004 in the urban area of Pelotas in southern  Brazil19. Briefly, mothers were recruited at the five maternity hos-
pitals in the region, covering 98% of all deliveries, after providing written informed consent. After birth, children 
were followed up longitudinally at months 3 (3.0 ± 0.1), 12 (11.9 ± 0.2), 24 (23.9 ± 0.4), and 48 (49.5 ± 1.7), and at 
6 (6.8 ± 0.3) and 11 (11.0 ± 0.3) years of age. At each follow-up, anthropometry, socioeconomic, behavioural, and 
demographic data were collected by trained research staff. The 2004 Pelotas Birth cohort study was approved by 
the Research Ethics Committee of the Faculty of Medicine at the Universidade Federal de Pelotas for all follow-
ups and written informed consent was obtained from the parents. Approval for the analyses included in this 
work was granted by the Ethics Committee from the University of Toronto (REB #36176) and the Hospital for 
Sick Children, Toronto (REB #1000059180). All analyses were performed in accordance with relevant guidelines 
and regulations.

Participants were excluded if missing or discordant GA (n = 41), if missing or implausible birthweight or 
length variables (n = 47), if having only one follow up (n = 105), and those with < 3 observations for either HAz, 
WAz or BMIz (n = 93) (Fig. 1a).

Gestational age and postnatal age scale. Gestational age was estimated based on either the date of last 
menstruation as reported on a mother’s prenatal card or self-reported during the perinatal interview (n = 3316, 
84%); or if missing, using the Dubowitz score at birth (n = 629, 16%), as, in Villar et al.9. Non-corrected standard 
postnatal age at each follow-up was calculated from the date of birth and the date of each visit. For children born 
pre-term (< 37 weeks GA, n = 461 (11.7%)), age was corrected for GA (GA-corrected age) by subtracting the 
standard postnatal age by the difference between the estimated GA at birth in days and the expected duration of 
a full-term pregnancy (i.e., 280 days): GA-corrected age = [Postnatal age − (280 days − GA at birth)]20.

Anthropometric measurements. Details of anthropometric measurements were previously 
 described19,21,22. Briefly, children’s length/height and weight were measured using standardized  protocols23 by 
trained personnel. Length/height at birth, 3, 12, 24 and 48  months was measured using a foldable wooden 
anthropometer (with 1 mm precision). Height at 6 and 11 years was taken with a stadiometer (Harpenden) 
(maximum 2.06 m and 1 mm precision). Birthweight was measured using electronic pediatric scales with 10 g 
precision, and subsequent measurements were taken using an electronic scale (150 kg capacity and 100 g preci-
sion). At 3, 12 and 24-month visits, the mother’s and child’s weights were measured together, and the child’s final 
weight was calculated by subtracting the mother’s weight and the estimated weight of any remaining clothes. At 
the 4, 6 and 11-year visits, the child was weighted without shoes and wearing light clothes.

Application of growth standards. Age- and sex-corrected z-scores for weight (WAZ) and length/height 
(HAZ) were calculated at birth and 3 months using the INTERGROWTH-21st growth  standards8. WAZ, HAZ, 
and Body Mass Index z-scores (BMIZ) were calculated at each additional timepoint using WHO 2006 and 2007 
references for children under or over 5 years of age,  respectively5,6. z-score values were flagged for inspection 
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if: 1) the absolute difference between timepoints was greater than 4 SD (n = 58 for non-corrected age z-scores; 
n = 54 for GA-corrected z-scores), or 2) WAZ < − 6 or > 5, HAZ < -6 or > 6, BMIZ < − 5 or > 5, as per WHO growth 
standards criteria (n = 138 for non-corrected age z-scores; n = 107 for GA-corrected z-scores). These flagged 
observations were set to missing when found to be outliers within the context of previous or subsequent time-
points (n = 76 observations for non-corrected age z-scores; n = 55 observations for GA-corrected z-scores) (see 
study Flow chart, Fig. 1a).

Shape‑based trajectory analysis. Shape-based trajectory analysis was conducted individually on each 
of the 3 anthropometric z-score measures using either non-corrected or GA-corrected age and with or without 
baseline centering.

Baseline centering. Baseline centering adjusts for the z-score value at birth by centering the intercept (i.e., ini-
tial value) to ~ 0 for all participants and was applied by subtracting 1.002 * the birth z-score value (HAZ/WAZ/
BMIZ) to all the values in the trajectory: z-score – (1.002 * z-score at birth). For example, a child with a baseline 
z-score of ~ − 2 at birth would have a baseline-centred z-score of ~ 0; the values of the trajectory would thus be 
displaced in the z-score scale but would maintain the same shape (Supplementary Fig. S1). The baseline values 
were transformed to ~ 0 since an exact zero value could not be used to compute the distance matrix.

Clustering pre-configuration. The number of relevant clusters was chosen based on the assessment of 24 differ-
ent quality indexes (Supplementary Fig. S3) obtained by varying all combinations of number of clusters, using 
the NbClust R  package24 and manual inspection.

Clustering of trajectories. Clustering analysis was conducted using k-means with the kmlShape R  package12 and 
using the shape-respecting generalized Fréchet’s distance metric, a similarity measure for geometric shapes. This 
method is defined on a continuous interval and thus allows for missing data and unequal interval  sampling12,25. 
Each cluster is referred to as a growth pattern. The clustering approach was set to iterate until clusters become 
stable. For the visual representation of results, the mean trajectory for each identified pattern was traced with the 
least-squares non-parametric locally weighted smoothing (LOWESS) function.

We conducted 4 parallel growth clustering analyses (Fig. 1b): (1) non-corrected age (without GA-correc-
tion)—without baseline centering; (2) non-corrected age (without GA-correction)—with baseline centering; 
(3) GA-corrected age—without baseline centering; and (4) GA-corrected age—with baseline centering. The 
combinations of these approaches created 12 sets of clustering results (4 for each anthropometric indicator). 
For the centering approach, we kept the pattern membership but used the original (un-transformed) z-scores to 
model the mean trajectories, allowing us to compare the results with the non-centering approach (Supplementary 
Fig. S2). We used alluvial plots to visualize the mobility of children between the patterns identified with each 
analytical approach. All analyses were implemented in R (version 3.6.1).

Characterization of growth features and attribution of malnutrition between patterns. To 
characterize the different growth clusters, we extracted linear model features for each child’s trajectory for HAZ, 
WAZ and BMIZ:

• intercept: starting point of the trajectory/initial measure,
• slope: slope of the linear trajectory, the overall growth rate from birth to 11y, and;
• tempo: the average growth of the child per month, calculated as the total area under the curve of the linear 

model divided by the child’s age in months.

For each growth measure, the non-parametric Kruskal–Wallis test followed by Dunn’s for group comparison 
was used to assess mean differences in features between children with distinct growth patterns.

To explore the application of the analytical approaches in the identification of groups of children at risk of 
malnutrition through childhood, we used a chi-squared test to compare the proportion of children classified as 
stunted (HAZ < − 2), underweight (WAZ < − 2), wasted (BMIZ < − 2), overweight (BMIZ > 2) and with obesity 
(BMIZ > 3) in each pattern among clustering approaches.

Data availability
The data that support the findings of this study are available from the 2004 Pelotas Birth cohort study investiga-
tors, but restrictions apply to the availability of these data, which were used under license for the current study, 
and so are not publicly available. Data are however available upon reasonable request and with permission of 
the 2004 Pelotas Birth cohort research committee.
Example analytic code is posted on GitHub at the following URL: https:// github. com/ Comel li- lab/ shape- based- 
appro ach- to- ident ify- gesta tional- age- adjus ted- growth- patte rns.
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