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Cancer‑associated fibroblasts 
are the main contributors 
to epithelial‑to‑mesenchymal 
signatures in the tumor 
microenvironment
Peter M. Szabo 1,2, Amir Vajdi 3,4, Namit Kumar 5*, Michael Y. Tolstorukov 3, Benjamin J. Chen 6, 
Robin Edwards 1,7, Keith L. Ligon 3, Scott D. Chasalow 1, Kin‑Hoe Chow 3, Aniket Shetty 3, 
Mohan Bolisetty 1, James L. Holloway 8, Ryan Golhar 1, Brian A. Kidd 9, Philip Ansumana Hull 9, 
Jeff Houser 9, Logan Vlach 9,10, Nathan O. Siemers 1,11 & Saurabh Saha 1,12

Epithelial‑to‑mesenchymal transition (EMT) is associated with tumor initiation, metastasis, and drug 
resistance. However, the mechanisms underlying these associations are largely unknown. We studied 
several tumor types to identify the source of EMT gene expression signals and a potential mechanism 
of resistance to immuno‑oncology treatment. Across tumor types, EMT‑related gene expression was 
strongly associated with expression of stroma‑related genes. Based on RNA sequencing of multiple 
patient‑derived xenograft models, EMT‑related gene expression was enriched in the stroma versus 
parenchyma. EMT‑related markers were predominantly expressed by cancer‑associated fibroblasts 
(CAFs), cells of mesenchymal origin which produce a variety of matrix proteins and growth factors. 
Scores derived from a 3‑gene CAF transcriptional signature (COL1A1, COL1A2, COL3A1) were 
sufficient to reproduce association between EMT‑related markers and disease prognosis. Our results 
suggest that CAFs are the primary source of EMT signaling and have potential roles as biomarkers and 
targets for immuno‑oncology therapies.

Epithelial-to-mesenchymal transition (EMT) is a process of tissue dedifferentiation occurring during devel-
opment and tissue repair that results in epithelial cells transitioning into cells with a more mesenchymal 
 phenotype1–4. Depending on the contextual signals received by the cell within a tissue, a series of intermediate 
phenotypic states may be generated along the epithelial-mesenchymal spectrum up to a fully mesenchymal cell 
 state4. Tumor cells may induce this transition to drive tumor growth and initiate  metastasis5. Given the important 
role of this process in cancer progression, a variety of gene expression signatures that characterize EMT have 
been  identified6–11.

EMT-related gene expression has been shown to impact T-cell function and infiltration into the tumor 
 parenchyma10. The extent of lymphocyte infiltration is influenced by stromal factors within the tumor microen-
vironment (TME), such as transforming growth factor beta (TGFβ). TGFβ signaling has been shown to inhibit 
T-cell proliferation and regulate T-cell effector functions, and it has been implicated as a contributor to the 
acquisition of a cancer-associated fibroblast (CAF) phenotype in stromal  cells12–15. CAFs have been suggested to 
originate from mesenchymal stromal cells, among  others16, and shown to exert diverse tumor-promoting func-
tions in the context of the TME, notably tumorigenesis, cancer cell proliferation and metastasis, extracellular 
matrix remodeling, drug resistance, immune evasion, and  immunosuppression14,17–21. Additionally, TGFβ signal-
ing and collagen production by  CAFs22 may contribute to the exclusion of T cells from the tumor  parenchyma23.
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Previous studies have found that tumors with high baseline expression levels of immune-related genes in the 
TME were more likely to respond favorably to immuno-oncology (I-O)  therapy24–26. In tumors with high levels of 
inflammation, gene expression signature scores indicative of lower EMT and stromal signaling have been shown 
to be associated with increased response rates and prolonged survival in patients with urothelial carcinoma (UC) 
treated with the programmed death 1 (PD-1) inhibitor  nivolumab10,27. In patient-derived xenograft (PDX) models 
of UC, EMT-related gene signatures were shown to be strongly correlated with stroma-related gene signatures, 
implying that stromal cells may be a key source of EMT-related gene  expression10. Of note, these models have 
been shown to have many advantages compared with other models, such as retaining the characteristics of the 
donor tumor, including tissue structure and gene expression profiles, and therefore are potentially predictive of 
human tumor biology and patient response to  treatment28–33. Separate work done in colorectal cancer (CRC) 
using single-cell RNA sequencing (scRNA-seq) demonstrated that tumors with a strong epithelial signature and 
weak fibroblast and myeloid signatures had the best survival  rate34. Notably, in this study, expression of EMT-
related genes was significantly increased in  CAFs34.

The role of EMT signaling has been extensively studied using preclinical models of individual tumor types. 
While previous evidence suggests that EMT signaling is emanating from cells within the stromal  compartment10, 
there is ongoing research into the role of specific cell types, such as CAFs, in the EMT process and their asso-
ciations with factors that can influence response to I-O therapy. In the current study, bulk and single-cell RNA 
sequencing analysis and immunohistochemistry (IHC)-based methods were used to investigate the source of 
EMT- and stroma-related gene expression across multiple tumor types and to determine factors in the stromal 
compartment of the TME that may associate with prognosis or response to treatment.

Results
Correlation between EMT‑ and TME‑related gene expression signatures. In RNA-seq data for 
17 tumor types in The Cancer Genome Atlas (TCGA), scores for 7 of 8 previously published EMT gene signa-
tures (EMT_Carretero_2010, IPRES_Hugo_2016, PATHWAY_Carretero_2010, EMT_STROMA_Wang_2018, 
GENERIC_EMT_MES_Tan_2014, HALLMARK_EMT, and PAN_EMT_Mak_2016)6–11 were negatively cor-
related with scores for a tumor purity signature and positively correlated with scores for immune and stroma 
signatures (Fig. 1a, Supplementary Fig. 1, and Supplementary Table 1). Correlations tended to be smaller and 
in the opposite direction for the  GENERIC_EMT_EPI_Tan_20147 gene set, which is characteristic of epithelial 
features rather than mesenchymal features (Fig. 1a). A strong positive correlation was observed between EMT 
gene set signature scores and estimates of stromal content in samples from TCGA across all tumor types with 
epithelial origin, including colon, stomach, urothelial, and breast (Fig. 1b, Supplementary Fig. 1, and Supple-
mentary Table 1). In tumors with a mesenchymal origin, such as sarcoma, these correlations were weaker (Sup-
plementary Fig. 1n).

EMT‑related genes enriched in the stromal compartment of PDX samples. Given the above 
findings, we sought to elucidate the source of EMT-related gene expression in the tumor parenchyma or stromal 
cells. Expression of genes in each of the 8 selected EMT gene sets and the ESTIMATE_STROMA gene  set6–11 
were analyzed in RNA-seq data from PDX samples representing individual tumor types and containing tis-
sue derived from the stromal (mouse) and tumor (human) compartments of the TME. While variability was 
observed across tumor types in the proportion of EMT-related gene expression derived from the stroma, in 
many tumor types, a substantial proportion of transcripts of EMT-related genes were derived from stromal 
tissue (Fig. 2, Supplementary Fig. 2, and Supplementary Table 2). The exception was the GENERIC_EMT_EPI_
Tan_2014 gene set (Supplementary Fig. 2f.), which represents epithelial cells before transition to mesenchymal 
cells; it is expected that these genes would originate from the tumor parenchymal tissue. Evidence of stromal 
origin for most of the transcripts in the EMT gene sets was not observed for ovarian carcinosarcoma or uterine 
carcinoma (Fig. 2c and Supplementary Fig. 2), likely due to their mesenchymal origin or presence of intrinsic 
mesenchymal components. Despite this, we detected significant enrichment of stromal transcripts in the major-
ity of EMT gene sets (Supplementary Table 2), suggesting measurable contributions from stromal cells in gene 
expression estimates in these cancer types. As a positive control, a large majority of transcripts of genes in the 
ESTIMATE_STROMA gene set were derived from stromal tissue for all tumor types, including ovarian carcino-
sarcoma (Supplementary Fig. 2e).

EMT‑related genes expressed by CAFs, endothelial cells, and myeloid progenitor cells. The 
types of cells in samples from 14 treatment-naive patients with colorectal or renal carcinoma were identified 
using canonical correlation analysis of scRNA-seq profiles, shown in Fig. 3a as a two-dimensional projection. 
After filtering for poor quality, a total of 56,667 cells across 32 resected tumor and adjacent normal tissue samples 
were selected for downstream analysis. EMT signature gene expression was scored for each scRNA-seq dataset 
and applied to the projection to identify cell types with enriched expression of EMT signatures. The greatest 
fold enrichment was observed in fibroblasts; other enrichments were observed to a lesser extent in adipocytes, 
epithelial, endothelial, and myeloid progenitor cells (example shown in Fig. 3b,c for the HALLMARK_EMT 
gene set).

Median scores for the EMT-related gene sets used in this study were determined in the scRNA-seq datasets 
identified as fibroblasts or as epithelial tumor parenchymal cells. Across a select range of EMT-related gene sets, 
the median scores for the EMT signatures (with the exception of those in the GENERIC_EMT_EPI_Tan_2014 
gene set) were greater (p < 0.01) in fibroblasts found in the stroma than in tumor parenchymal cells (Supple-
mentary Fig. 3).
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Figure 1.  EMT signatures and the TME. (a) Distribution over tumor types in TCGA of estimated correlation 
(Pearson coefficients) between scores for EMT-related gene sets and tumor purity, an immune gene expression 
signature, and a stroma signature. Boxes extend from the first to third quartiles, the middle line shows the 
median, and the whiskers extend to the most extreme data point that is no more than 1.5 times the IQR from 
the box. Consensus purity estimates were not available for esophageal carcinoma, pancreatic and stomach 
adenocarcinoma, and sarcoma. (b) Scatterplots of scores for two EMT-related gene signatures versus a stroma 
signature, for selected tumor types in TCGA. Pink plotting symbols represent tumor tissue. Aqua plotting 
symbols represent samples collected from non-involved healthy tissue of patients with cancer in TCGA.
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Strong positive correlation between EMT and CAF gene expression signature scores and asso‑
ciation with overall survival (OS). To further support the hypothesis that CAFs are a major source of 
EMT gene expression, we developed a “CAF signature” derived from the expression of 3 collagen genes (COL1A1, 
COL1A2, and COL3A1), as described in the Methods, and assessed the correlation between EMT-related and 
CAF gene expression in samples from TCGA. Across multiple tumor types, a strong positive correlation was 
observed between scores for all the EMT gene sets (except GENERIC_EMT_EPI_Tan_2014) and CAF signature 
scores (Fig. 4, Supplementary Fig. 4, Supplementary Table 3). As expected, the positive correlations were some-
what weaker for sarcoma (Supplementary Fig. 4n, Supplementary Table 3).

In these same tumor types, lower CAF signature scores tended to be associated with prolonged survival 
(Fig. 5). As expected, given the strong positive correlations observed, associations between OS and CAF sig-
nature scores were similar in magnitude and direction to associations between OS and EMT signature scores 
(Supplementary Table 4). This is consistent with previous literature regarding associations between OS and EMT 
gene  expression10.

Collagen scores inversely associated with parenchymal T‑cell counts in squamous cell carci‑
noma of the head and neck (SCCHN). We then sought to investigate possible mechanisms behind the 

Figure 2.  Expression of HALLMARK_EMT-related genes in mouse (stromal) and human (tumor 
parenchymal) tissues using PDX samples. Horizontal reference line indicates proportion of reads from 
stroma = 0.5 (signifying equal contribution from stromal and cancer cells to the estimated gene expression). 
Boxes extend from the first to third quartiles, the middle line shows the median, and the whiskers extend to 
the most extreme data point that is no more than 1.5 times the interquartile range from the box, open circles 
show individual values that are more than 1.5 times the interquartile range from the box. (a) Colon (n = 70). 
(b) Pancreatic (n = 57). (c) Ovarian carcinosarcoma (n = 4). Additional tumor types and gene sets are shown 
in Supplementary Fig. 2. These figures demonstrate that, for multiple tumor types, a greater proportion of 
transcripts of EMT-related genes were derived from stromal tissue than from tumor tissue, with the exception 
being the GENERIC_EMT_EPI_Tan_2014 gene set (shown in Supplementary Fig. 2f.).
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Figure 3.  scRNA-seq of tumor samples. (a) Identification of cell type in individual scRNA-seq datasets 
displayed as a 2-dimensional projection. (b) Location and expression level of HALLMARK_EMT signature 
genes in scRNA-seq datasets displayed as a 2-dimensional projection. (c) HALLMARK_EMT-related gene 
expression by cell type. In (b) and (c), the gene signature scores (0–100) represent the gene expression level for 
the EMT signatures in the scRNA-seq data. Analysis of additional EMT gene set signatures showed greater fold 
enrichment in fibroblasts and other non-malignant stromal cells than from tumor tissue, with the exception 
being the GENERIC_EMT_EPI_Tan_2014 gene set (data not shown).
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Figure 3.  (continued)

Figure 4.  Correlation between EMT-related and CAF (BMS_FIBROBLAST) signature scores in tumor datasets 
from TCGA. Pink plotting symbols represent tumor tissue. Aqua plotting symbols represent samples collected 
from non-involved healthy tissue of patients with cancer from TCGA.
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link between CAF scores and prognosis. Using IHC, we studied the relationship between collagen abundance 
in the tumor stroma and exclusion of CD8+ T cells from the tumor parenchyma in SCCHN tumor specimens. 
Low stromal collagen scores were observed in samples with high parenchymal CD8+ T-cell counts, while high 
collagen scores were observed in samples with low levels of parenchymal CD8+ T cells. Samples with low levels 
of both stroma collagen and parenchymal CD8+ T cells were also observed; however, no sample had high levels 
of both stroma collagen and parenchymal CD8+ T cells (Fig. 6). Representative IHC images are shown in Sup-
plementary Fig. 5.

Correlation between TGFβ‑ and TME‑related gene expression signatures. Given the known 
role of TGFβ signaling in the acquisition of a CAF  phenotype14, we analyzed various TGFβ-related signatures, 
including the Hallmark_TGF_BETA_SIGNALING and GO_TRANSFORMING_GROWTH_FACTOR_BETA_
BINDING gene sets using RNA-seq data from TCGA. These signatures were obtained from previously pub-
lished  literature11,35–38 or retrieved from an online database as described in the methods. These signatures were 
negatively correlated with tumor purity and positively correlated with stromal signature scores (Supplementary 
Fig. 6), similar to the patterns observed for the EMT signature scores. A smaller positive correlation between 
TGβ-related signatures and immune signature scores was also observed (Supplementary Fig. 6).

To further investigate the cellular source of TGFβ signaling, expression scores were determined for the TGFβ-
binding protein gene signatures and were applied to our scRNA-seq projections to identify which cell types were 
enriched for expression of TGFβ-related genes (Fig. 3a). Expression of TGFβ-related genes was strongly enriched 
in myeloid progenitor cells, endothelial cells, and CAFs, relative to other cell types (Supplementary Fig. 7a, b). 
Similar to our results regarding EMT-related gene expression, TGFβ-related gene expression was greater on 
average in stromal cells than in parenchymal cells.

Discussion
EMT is a critical step for cancer cell metastasis, drug resistance, and immune  evasion2. In this study, we sought 
to determine the source of EMT-related gene expression within the TME. A graphical representation of our 
overall findings is presented in Fig. 7. According to prior literature supporting tumor cells as the source of 

Figure 5.  Association between CAF signature scores and OS. HRs were estimated from TCGA datasets using 
Cox proportional hazards models assuming a linear effect of signature scores. Estimated HRs (high signature 
score/low signature score) were scaled to compare hazards for scores differing by the IQR for each tumor type.
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Figure 6.  Association between collagen and parenchymal CD8+ T-cell abundance in SCCHN tumor samples. 
Collagen staining was assessed by image analysis to identify tumor parenchymal and stromal compartments and 
calculate the % area of collagen staining relative to the area of the total stromal compartment. An AI-powered 
image analysis algorithm was used to classify the tumor parenchymal and stromal regions and identify and 
quantify the density (cells/mm2) of CD8+ T cells in each compartment.

Figure 7.  Overview of the main findings from this study. Top images provide graphical representation of the 
TME. Bottom text describes the main results and corresponding experimental datasets and methods. GEP, gene 
expression profiling.
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EMT-related gene  expression39, one would assume tumors become more resistant to immune cell infiltration 
as they go through the EMT process and begin to express mesenchymal genes. One would therefore expect 
expression of EMT genes to be positively correlated with the number of cancer cells present in the tumor and 
negatively correlated with immune and other stromal cell content. Instead, using gene expression profiling of bulk 
tumor tissues, the opposite was observed across a variety of tumor types: a strong negative correlation between 
multiple EMT gene set signatures and proportion of cancer cells, and a strong positive correlation between these 
same gene set signatures and stromal content. This suggests that EMT gene signatures largely are not measur-
ing tumor cell–related mechanisms, but rather the amount of stromal content in the TME. The exception was 
the GENERIC_EMT_EPI_Tan_2014 gene set, which did not show strong correlations with signatures of tumor 
purity, stroma, or immune components of the TME. This could be because, in our study, most of the analyzed 
EMT gene sets measured mesenchymal features of the tumor cells, whereas this signature was chosen by Tan 
et al. to represent polarized epithelial cells before the transition to mesenchymal  cells7. Tumor cells with epithelial 
origins, such as carcinomas, already express epithelial markers and could therefore display positive correlations 
with the GENERIC_EMT_EPI_Tan_2014 gene set and tumor purity.

Based on these findings, we hypothesized that stromal elements are the key contributors to EMT expression 
in the TME. Using a species-specific approach to parse mouse and human reads in a pan-cancer collection of 
gene expression data from xenograft samples, we demonstrated that, in the majority of tumor types, a greater 
proportion of transcripts from EMT-related genes originated from mouse stromal cells than from human tumor 
cells. In cancers known to have mesenchymal lineage components, such as ovarian  carcinosarcomas40, expres-
sion of EMT-related genes did not originate predominantly from mouse stromal regions. Analysis of individual 
cell transcriptomes from tumor samples by scRNA-seq demonstrated that these EMT-related genes were highly 
expressed by CAFs. Our results are consistent with other recent studies examining EMT and CAFs using similar 
methods. In a study by Puram et al., scRNA-seq was used to generate profiles for 18 SCCHN primary  tumors41. 
Similar to our study, genes used to identify a mesenchymal phenotype were found to be expressed by CAFs. 
This was further supported by Zhang et al., who used two scRNA-seq platforms to classify immune and stromal 
cell populations and evaluate cell–cell interactions in CRC tumors and adjacent normal tissues. In addition to 
CAFs being enriched in the stromal tissue compared with normal tissue, certain subsets of tumor-associated 
macrophages were found to preferentially bind to CAFs and endothelial cells leading to activation of MMP2, 
a gene associated with tumor growth and  metastasis42. These interactions highlight a potential mechanism by 
which CAFs can be regulated to drive tumor growth and metastasis.

To further validate CAFs as the source of EMT-related gene expression, we used fibroblast activation protein 
(previously established as a CAF-specific marker gene) as a sentinel marker and collagen genes, representing one 
of the fundamental functions of CAFs (extracellular matrix production), to generate a 3-gene CAF signature. 
Using collagen genes in preference to other genes associated with the CAF phenotype, such as α-smooth muscle 
actin, platelet-derived growth factor receptor β, and secreted protein acidic and rich in cysteine (SPARC)15, 
allowed us to use histological techniques (e.g. collagen quantitation) to investigate the biological mechanisms 
underlying the expression of EMT-related genes by CAFs. High correlation was observed between the EMT gene 
sets and our CAF signature when compared in bulk tumor tissue from TCGA, providing additional evidence 
that CAFs, rather than epithelial cells, are the primary source of EMT-related gene expression. Given the role of 
EMT in metastasis, drug resistance, and immune evasion, it is important to determine any clinical implications 
of EMT signature scores on patient survival and possible biological mechanisms behind these findings. Having 
observed a correlation between EMT and CAF signatures, we performed a retrospective analysis of patient data 
in TCGA. We found that CAF signature scores, similar to EMT signature scores, were negatively associated with 
overall survival, demonstrating the prognostic value of the CAF signature.

Preliminary exploration of the biological mechanisms involved in the association of EMT signature scores 
with immune cell infiltrates and signatures have shown that accumulation of CAFs in the tumor stroma is 
associated with decreased CD8+ T-cell infiltration, while the depletion of CAFs increases intratumoral T-cell 
 concentrations43–45. Our results in SCCHN showed that collagen, produced by CAFs in the  TME22, was also 
associated with T-cell exclusion and may thereby contribute to resistance to I-O therapy. Similar to these results, 
high expression of CAF and EMT-related genes was associated with T-cell exclusion in  UC10, ovarian  cancer46, 
and hepatocellular  carcinoma47. These findings support the possibility of using trichrome staining for collagen 
quantitation as a surrogate for CAF content.

Given that TGFβ signaling is the most well-characterized pathway known to induce EMT, acts through 
various intracellular messengers to drive immunosuppression, and is one of the main regulators of collagen 
synthesis, fibrosis, and conversion of normal fibroblasts to a CAF  phenotype15,48–50, we investigated TGFβ-related 
gene expression in the stromal and immune compartments of the TME. We demonstrated that genes coding for 
TGFβ-binding proteins are expressed by multiple cells within the stromal region, including endothelial cells, 
CAFs, and myeloid progenitors. These results are supported by previous studies examining TGFβ signaling in 
stromal cells. In a study using UC tumors from a large cohort of patients treated with the anti–PD-1 agent atezoli-
zumab, response was associated with CD8+ T-cell prevalence, while lack of response was associated with TGFβ 
signaling in fibroblasts and T-cell  exclusion23. Along with our results, this suggests a possible role for combining 
TGFβ inhibitors with immune checkpoint inhibitors to increase clinical benefit in patients with solid tumors.

There are some potential limitations to our study. Although our robust xenograft model provides further 
evidence of EMT signaling in the stromal region, interpretation is limited by the potential lack of a normal com-
plement of immune cells in immunocompromised murine hosts. However, our scRNA-seq results demonstrated 
that EMT gene expression was greater in fibroblasts than in immune cells, suggesting that this is not a major issue. 
The lack of a comparator arm in our survival analysis using samples from TCGA limits the ability to determine 
a predictive versus prognostic nature of the CAF signature score, and prospective validation of these results will 
be required. It should also be noted that prior studies in solid tumors have shown that tumor cells at the invasive 
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front also display mesenchymal features and may potentially be another source of EMT  expression41,51. This type 
of signaling may be diminished when using bulk RNA-seq methods but may explain the observed moderate 
increase in EMT expression in a subset of epithelial cells in our scRNA-seq analysis.

The results of our study provide comprehensive evidence that CAFs and other stromal cells, rather than tumor 
parenchymal cells as previously thought, are the predominant sources of EMT-related gene expression in the 
TME and are major contributors to assessments of EMT gene signatures derived from bulk tumor tissue across 
a broad range of tumor types. These novel findings align with previous literature showing that upregulation of 
EMT-related transcription factors in CAFs leads to promotion of tumor growth and  metastasis52–54. These results 
underscore the potential of studying CAFs as biomarkers for predicting response and resistance to immune 
checkpoint inhibitors. Given the important impact of these cells on tumor growth and immune cell infiltration, 
further study of these stromal cells may lead to the identification of novel targets for I-O therapies.

Methods
Analysis of gene expression data in TCGA . All tumor and normal tissue samples that were available 
from TCGA were used. To avoid bias no samples were excluded from the analysis, therefore the number of data 
points was not consistent between tumor types. RNA-seq data were analyzed using several previously pub-
lished EMT- and TGFβ-related gene  sets6–11,35–38,55. Additional TGFβ gene sets were retrieved from the KEGG 
PATHWAY (https:// www. genome. jp/ kegg/ pathw ay/ hsa/ hsa04 350. html), Mouse Genome Informatics (http:// 
www. infor matics. jax. org/ go/ term/ GO: 00051 60), and Gene Set Enrichment Analysis (https:// www. gsea- msigdb. 
org/ gsea/ msigdb/ cards/ BIOCA RTA_ TGFB_ PATHW AY) databases. Signature scores were derived by z-scoring 
(within each tumor type) the expression values for each gene separately, and then for each sample taking the 
median of these z-scored expression values over the genes in a set.

The presence of stroma in tumor tissue and infiltration of T cells into the parenchyma were assessed using 
the ESTIMATE gene signatures. Consensus tumor purity estimates were used to assess tumor cell content in the 
TME. Details of both methods have been published  previously55.

A 3-gene “CAF signature” was created as a transcriptional marker for fibroblasts. This set was derived by 
first evaluating co-expression of candidate sentinel markers that displayed selectivity of RNA expression for 
the target cell type with all transcripts across TCGA solid-tumor cohorts, details of which have been published 
 previously56. Fibroblast activation protein is selectively expressed by CAFs in the TME and was therefore chosen 
as the sentinel  marker21,43,57. We then used a stringent method of mutual rank distance to identify gene neighbors 
for the sentinel  markers58. Based on these methods, COL1A1, COL1A2, and COL3A1 were chosen as a gene set 
for the CAF signature.

Gene expression profiling of PDX samples. Our study utilized previously published RNA-seq data on 
333 PDX samples from 11 tumor types (colon, n = 70; pancreatic, n = 57; breast, n = 54; melanoma, n = 42; lung, 
n = 40; ovarian, n = 32; renal, n = 19; endometrial, n = 9; uterine, n = 4; sarcoma, n = 4)59. Bioinformatic analyses 
were then performed to distinguish transcripts from patient donor (tumor parenchyma) and mouse recipient 
(tumor stroma) as previously  described60. For each tumor type, to assess whether expression of genes in a given 
EMT gene  set6–11 was enriched in stroma-derived mouse transcripts, we first calculated the fraction of tran-
scripts originating from mouse (the “mouse fraction”) for each gene in each sample. To account for potential 
differences in mouse content among individual samples, the mouse fraction for each gene was adjusted by sub-
tracting the mean (over the genes) within each sample. Then, for each gene, we calculated the median (over the 
samples) of these adjusted mouse fractions. The genes were ranked by the medians, and we used these rankings 
as the input for gene set enrichment  analysis61. Benjamini–Hochberg false discovery rates (FDRs) were used to 
adjust for multiple testing. The FDR adjustment was performed for each tumor type separately.

scRNA‑seq. Tissue procurement. Resected tumors and adjacent normal tissues were procured from 
BioIVT (BioIVT, Westbury, NY) from 14 treatment-naive patients with colorectal or renal cell carcinoma. After 
pathological analysis, all remaining tissue resections (> 0.6 g) were used to ensure tissue type representation.

Sorting. Tissue samples were enzymatically dissociated using a human Tumor Dissociation Kit (Miltenyi Bio-
tec, Bergisch Gladbach, Germany) according to the manufacturer’s recommendations, and red blood cells were 
lysed using 1X RBC solution (eBioscience, Thermo Fisher Scientific, Waltham, MA, USA) for 5 min at room 
temperature before quenching with cold phosphate-buffered saline. Subsequently, single cell suspensions were 
Fc-blocked using TruStain FcX (1:125 dilution; BioLegend, San Diego, CA, USA) for 5  min on ice. Surface 
CD45 was stained with anti-CD45-FITC (1:50; #REA747, Miltenyi Biotech) for 20 min at 4 °C. Washed cells 
were stained with propidium iodide (PI; BD Biosciences, Franklin Lakes, NJ, cat: 556463) and with DRAQ5 
(#62251, Thermo Fisher Scientific, Waltham, MA, USA) diluted 1:5000 in cold 1% bovine serum albumin in 
phosphate-buffered saline and stained for 10 min at room temperature. Single cells were sorted for live, nucle-
ated CD45+ and CD45− cells to enrich for immune and non-immune cells.

Sequencing. Consecutive single cell libraries were prepared using the Chromium Single Cell Controller, ver-
sion 3.16 (10 × Genomics, Pleasanton, CA) according to the respective protocol. Target cell number was 5000 
cells per sample, and sequencing depth was 80,000 reads per cell. All data was merged and filtered for high-qual-
ity sequencing data using thresholds (nFeature_RNA > 200 & nFeature_RNA < 6000 & mito.read.fraction < 0.15 
& nCount_RNA < 15,000). Expression counts were normalized using  SCTransform62 and aligned using canoni-
cal correlation analysis, with uniform manifold approximation and projection (UMAP)63 used for visualization. 
After clustering, cell types were identified (SingleR)64, combined, batch-corrected, and aligned using canonical 

https://www.genome.jp/kegg/pathway/hsa/hsa04350.html
http://www.informatics.jax.org/go/term/GO:0005160
http://www.informatics.jax.org/go/term/GO:0005160
https://www.gsea-msigdb.org/gsea/msigdb/cards/BIOCARTA_TGFB_PATHWAY
https://www.gsea-msigdb.org/gsea/msigdb/cards/BIOCARTA_TGFB_PATHWAY


11

Vol.:(0123456789)

Scientific Reports |         (2023) 13:3051  | https://doi.org/10.1038/s41598-023-28480-9

www.nature.com/scientificreports/

correlation analysis (Seurat v3, custom R script)65. UMAP was then used to project individual cells across a two-
dimensional plane based on similarity of gene expression  characteristics63.

CD8 IHC and trichrome staining. CD8 IHC was performed on commercially procured SCCHN samples 
(n = 50) by Mosaic Laboratories (Lake Forest, CA) using a monoclonal CD8 (clone C8/144B) antibody (Dako, 
an Agilent Technologies Co, Santa Clara, CA). Sample details can be found in Supplementary Table 5. A PathAI-
developed artificial intelligence (AI)-powered image analysis algorithm (PathAI research platform, Boston, MA) 
was used to classify the tumor parenchymal and stromal regions and identify and quantify the density (cells/
mm2) of CD8+ T cells in each  compartment27.

Collagen was visualized on adjacent sections using a trichrome staining method consisting of Weigert’s hema-
toxylin, Biebrich scarlet-acid fuchsin, phosphomolybdic-phosphotungstic acid, and aniline blue, as described 
 previously66. Collagen staining was assessed by image analysis (Halo software, Indica Labs, Albuquerque, NM). 
Tumor parenchymal and stromal compartments were identified, and the percent area of collagen (blue) staining 
relative to the area of the total stromal compartment was calculated.

Statistical analyses. Associations between EMT signature scores and other TME signature scores were 
summarized by Pearson’s correlation coefficient (r) and linear regression models for each TCGA tumor type. For 
the scRNA-seq data, the strength of evidence for differences in median EMT signature scores between stroma 
fibroblasts and tumor parenchymal cells was assessed by Wilcoxon signed-rank tests. Cox proportional hazards 
regression models were used to explore the association between EMT and CAF signature scores and OS. Esti-
mated hazard ratios (HRs; high signature score/low signature score) were scaled to compare hazards for scores 
differing by the interquartile range for each tumor type.

Data availability
The single cell RNA-seq data generated in this study have been deposited in NCBI’s Gene Expression Omnibus 
(GEO) and are accessible through GEO Series accession number GSE213912. The mouse PDX model RNA-seq 
count tables and metadata generated in this study have been deposited in GEO and are accessible through GEO 
Series accession number GSE215307. The raw FASTQ files may be obtained from a repository at the Wasabi 
cloud platform upon approval by the Dana Farber Cancer Institute Center for Derived Patient Models. More 
information on Bristol Myers Squibb’s data sharing policy can be found here: https:// www. bms. com/ resea rchers- 
and- partn ers/ clini cal- trials- and- resea rch/ discl osure- commi tment. html. Any additional data not included in the 
manuscript or supplementary files that support the findings of this study are available from the corresponding 
author N.K.

Received: 5 April 2022; Accepted: 19 January 2023

References
 1. Chen, T., You, Y., Jiang, H. & Wang, Z. Z. Epithelial-mesenchymal transition (EMT): A biological process in the development, 

stem cell differentiation and tumorigenesis. J. Cell Physiol. 232, 3261–3272 (2017).
 2. Jolly, M. K. & Celia-Terrassa, T. Dynamics of phenotypic heterogeneity associated with EMT and stemness during cancer progres-

sion. J. Clin. Med. 8, 1542 (2019).
 3. Lu, W. & Kang, Y. Epithelial-mesenchymal plasticity in cancer progression and metastasis. Dev. Cell 49, 361–374 (2019).
 4. Nieto, M. A., Huang, R. Y., Jackson, R. A. & Thiery, J. P. EMT: 2016. Cell 166, 21–45 (2016).
 5. Ribatti, D., Tamma, R. & Annese, T. Epithelial-mesenchymal transition in cancer: A historical overview. Transl. Oncol. 13, 100773 

(2020).
 6. Mak, M. P. et al. A patient-derived, pan-cancer EMT signature identifies global molecular alterations and immune target enrich-

ment following epithelial-to-mesenchymal transition. Clin. Cancer Res. 22, 609–620 (2016).
 7. Tan, T. Z. et al. Epithelial-mesenchymal transition spectrum quantification and its efficacy in deciphering survival and drug 

responses of cancer patients. EMBO Mol. Med. 6, 1279–1293 (2014).
 8. Carretero, J. et al. Integrative genomic and proteomic analyses identify targets for Lkb1-deficient metastatic lung tumors. Cancer 

Cell 17, 547–559 (2010).
 9. Hugo, W. et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell 165, 35–44 

(2016).
 10. Wang, L. et al. EMT- and stroma-related gene expression and resistance to PD-1 blockade in urothelial cancer. Nat. Commun. 9, 

3503 (2018).
 11. Liberzon, A. et al. The molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst. 1, 417–425 (2015).
 12. Ahmadzadeh, M. & Rosenberg, S. A. TGF-β1 attenuates the acquisition and expression of effector function by tumor antigen-

specific human memory CD8 T cells. J. Immunol. 174, 5215–5223 (2005).
 13. Wrzesinski, S. H., Wan, Y. Y. & Flavell, R. Transforming growth factor-beta and the immune response: Implications for anticancer 

therapy. Clin. Cancer Res. 13, 5262–5270 (2007).
 14. Liu, T. et al. Cancer-associated fibroblasts: An emerging target of anti-cancer immunotherapy. J. Hematol. Oncol. 12, 86 (2019).
 15. Chandra Jena, B. et al. Paracrine TGF-β1 from breast cancer contributes to chemoresistance in cancer associated fibroblasts via 

upregulation of the p44/42 MAPK signaling pathway. Biochem. Pharmacol. 186, 114474 (2021).
 16. Borriello, L. et al. Cancer-associated fibroblasts share characteristics and protumorigenic activity with mesenchymal stromal cells. 

Cancer Res. 77, 5142–5157 (2017).
 17. Straussman, R. et al. Tumor microenvironment induces innate RAF-inhibitor resistance through HGF secretion. Nature 487, 

500–504 (2012).
 18. Feig, C. et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy 

in pancreatic cancer. Proc. Natl. Acad. Sci. U S A 110, 20212–20217 (2013).
 19. Yu, M. et al. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 339, 

580–584 (2013).

https://www.bms.com/researchers-and-partners/clinical-trials-and-research/disclosure-commitment.html
https://www.bms.com/researchers-and-partners/clinical-trials-and-research/disclosure-commitment.html


12

Vol:.(1234567890)

Scientific Reports |         (2023) 13:3051  | https://doi.org/10.1038/s41598-023-28480-9

www.nature.com/scientificreports/

 20. Ruhland, M. K. et al. Stromal senescence establishes an immunosuppressive microenvironment that drives tumorigenesis. Nat. 
Commun. 7, 11762 (2016).

 21. Yang, X. et al. FAP promotes immunosuppression by cancer-associated fibroblasts in the tumor microenvironment via STAT3–
CCL2 signaling. Cancer Res. 76, 4124–4135 (2016).

 22. Hanley, C. J. et al. A subset of myofibroblastic cancer-associated fibroblasts regulate collagen fiber elongation, which is prognostic 
in multiple cancers. Oncotarget 7, 6159–6174 (2016).

 23. Mariathasan, S. et al. TGF-β attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554, 
544–548 (2018).

 24. Hamid, O. et al. A prospective phase II trial exploring the association between tumor microenvironment biomarkers and clinical 
activity of ipilimumab in advanced melanoma. J. Transl. Med. 9, 204 (2011).

 25. Ji, R.-R. et al. An immune-active tumor microenvironment favors clinical response to ipilimumab. Cancer Immunol. Immunother. 
61, 1019–1031 (2012).

 26. Ayers, M. et al. IFN-γ–related mRNA profile predicts clinical response to PD-1 blockade. J. Clin. Invest. 127, 2930–2940 (2017).
 27. Szabo, P. M. et al. P110 Tumor CD8+ T-cell infiltration assessed by gene expression profiling alone or by immunohistochemistry 

plus epithelial-mesenchymal transition gene expression in urothelial carcinoma in CheckMate 275. J. Immunother. Cancer 7, 282 
(2019).

 28. Bertotti, A. et al. A molecularly annotated platform of patient-derived xenografts (“xenopatients”) identifies HER2 as an effective 
therapeutic target in cetuximab-resistant colorectal cancer. Cancer Discov. 1, 508–523 (2011).

 29. Julien, S. et al. Characterization of a large panel of patient-derived tumor xenografts representing the clinical heterogeneity of 
human colorectal cancer. Clin. Cancer Res. 18, 5314–5328 (2012).

 30. DeRose, Y. S. et al. Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis 
and disease outcomes. Nat. Med. 17, 1514–1520 (2011).

 31. Zhang, X. et al. A renewable tissue resource of phenotypically stable, biologically and ethnically diverse, patient-derived human 
breast cancer xenograft models. Cancer Res. 73, 4885–4897 (2013).

 32. Keysar, S. B. et al. A patient tumor transplant model of squamous cell cancer identifies PI3K inhibitors as candidate therapeutics 
in defined molecular bins. Mol. Oncol. 7, 776–790 (2013).

 33. Sivanand, S. et al. A validated tumorgraft model reveals activity of dovitinib against renal cell carcinoma. Sci. Transl. Med. 4, 
137ra175 (2012).

 34. Li, H. et al. Reference component analysis of single-cell transcriptomes elucidates cellular heterogeneity in human colorectal 
tumors. Nat. Genet. 49, 708–718 (2017).

 35. Verrecchia, F., Chu, M.-L. & Mauviel, A. Identification of novel TGF-beta /Smad gene targets in dermal fibroblasts using a combined 
cDNA microarray/promoter transactivation approach. J. Biol. Chem. 276, 17058–17062 (2001).

 36. Karakas, B. et al. Interleukin-1 alpha mediates the growth proliferative effects of transforming growth factor-beta in p21 null 
MCF-10A human mammary epithelial cells. Oncogene 25, 5561–5569 (2006).

 37. Coulouarn, C., Factor, V. M. & Thorgeirsson, S. S. Transforming growth factor-beta gene expression signature in mouse hepatocytes 
predicts clinical outcome in human cancer. Hepatology 47, 2059–2067 (2008).

 38. Plasari, G. et al. Nuclear factor I-C links platelet-derived growth factor and transforming growth factor beta1 signaling to skin 
wound healing progression. Mol. Cell Biol. 29, 6006–6017 (2009).

 39. Brabletz, T., Kalluri, R., Nieto, M. A. & Weinberg, R. A. EMT in cancer. Nature 18, 128–134 (2018).
 40. Hollis, R. L. et al. Ovarian carcinosarcoma is a distinct form of ovarian cancer with poorer survival compared to tubo-ovarian 

high-grade serous carcinoma. Br. J. Cancer 134, 46 (2022).
 41. Puram, S. V. et al. Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell 

171, 1611–1624 (2017).
 42. Zhang, L. et al. Single-cell analyses inform mechanisms of myeloid-targeted therapies in colon cancer. Cell 181, 442–459 (2020).
 43. Gunderson, A. J. et al. Blockade of fibroblast activation protein in combination with radiation treatment in murine models of 

pancreatic adenocarcinoma. PLoS ONE 14, e0211117 (2019).
 44. Lo, A. et al. Tumor-promoting desmoplasia is disrupted by depleting FAP-expressing stromal cells. Cancer Res. 75, 2800–2810 

(2015).
 45. Zhang, Y. & Ertl, H. C. J. Depletion of FAP+ cells reduces immunosuppressive cells and improves metabolism and functions CD8+T 

cells within tumors. Oncotarget 7, 23282–23299 (2016).
 46. Desbois, M. et al. Integrated digital pathology and transcriptome analysis identifies molecular mediators of T-cell exclusion in 

ovarian cancer. Nat. Commun. 11, 5583 (2020).
 47. Okrah, K. et al. Transcriptomic analysis of hepatocellular carcinoma reveals molecular features of disease progression and tumor 

immune biology. NPJ Precis. Oncol. 2, 25 (2018).
 48. Hua, W., Dijke, P. T., Kostidis, S., Giera, M. & Hornsveld, M. TGFβ-induced metabolic reprogramming during epithelial-to-

mesenchymal transition in cancer. Cell Mol. Life Sci. 77, 2103–2123 (2020).
 49. Gonzalez, D. M. & Medici, D. Signaling mechanisms of the epithelial-mesenchymal transition. Sci. Signal 7, re8 (2015).
 50. Wu, F. et al. Signaling pathways in cancer-associated fibroblasts and targeted therapy for cancer. Signal Transduct. Target. Ther. 6, 

218 (2021).
 51. Bonde, A.-K., Tischler, V., Kumar, S., Soltermann, A. & Schwendener, R. A. Intratumoral macrophages contribute to epithelial-

mesenchymal transition in solid tumors. BMC Cancer 12, 35 (2012).
 52. Baulida, J. Epithelial-to-mesenchymal transition transcription factors in cancer-associated fibroblasts. Mol. Oncol. 11, 847–859 

(2017).
 53. Sasaki, K. et al. Analysis of cancer-associated fibroblasts and the epithelial-mesenchymal transition in cutaneous basal cell carci-

noma, squamous cell carcinoma, and malignant melanoma. Hum. Pathol. 79, 1–8 (2018).
 54. You, J. et al. Snail1-dependent cancer-associated fibroblasts induce epithelial-mesenchymal transition in lung cancer cells via 

exosomes. QJM 112, 581–590 (2019).
 55. Yoshihara, K. et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat. Commun. 4, 2612 

(2013).
 56. Siemers, N. O. et al. Genome-wide association analysis identifies genetic correlates of immune infiltrates in solid tumors. PLoS 

ONE 12, e0179726 (2017).
 57. Denton, A. E., Roberts, E. W. & Linterman, M. A. Fibroblastic reticular cells of the lymph node are required for retention of resting 

but not activated CD8+ T cells. Proc. Natl. Acad. Sci. U S A 111, 12139–12144 (2014).
 58. Huttenhower, C. et al. Nearest Neighbor Networks: Clustering expression data based on gene neighborhoods. BMC Bioinformatics 

8, 250 (2007).
 59. Gao, H. et al. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nat. Med. 

21, 1318–1325 (2015).
 60. Liu, Y. et al. Gene expression differences between matched pairs of ovarian cancer patient tumors and patient derived xenografts. 

Sci. Rep. 9, 6314 (2018).
 61. Subramanian, A. et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression 

profiles. Proc. Natl. Acad. Sci. U S A 102, 15545–15550 (2005).



13

Vol.:(0123456789)

Scientific Reports |         (2023) 13:3051  | https://doi.org/10.1038/s41598-023-28480-9

www.nature.com/scientificreports/

 62. Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative bino-
mial regression. Genome Biol. 20, 296 (2019).

 63. McInnes, L., Healy, J. & Melville, J. UMAP: Uniform manifold approximation and projection for dimension reduction. arXiv 
https:// arxiv. org/ abs/ 1802. 03426 (2020).

 64. Aran, D. et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 
20, 163–172 (2019).

 65. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, 
technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).

 66. Prophet, E., Mills, B., Arrington, J. & Sobin, L. Laboratory Methods in Histotechnology. American Registry of Pathology (1992).

Acknowledgments
This study was supported by Bristol Myers Squibb (Princeton, NJ, USA). The results shown here are in whole 
or part based upon data generated by the TCGA Research Network: https:// www. cancer. gov/ tcga. The authors 
would like to thank Ruth Lan for her contributions to this study. The authors would also like to thank Dako, 
an Agilent Technologies, Inc. company, for collaborative development of the PD-L1 IHC 28-8 pharmDx assay 
and PathAI for development and use of the image analysis algorithm used to classify CD8 T cells. Writing and 
editorial assistance were provided by Emily Motola, PharmD, and Jay Rathi, MA, of Spark Medica Inc., funded 
by Bristol Myers Squibb, according to Good Publication Practice guidelines.

Author contributions
K.L.L. contributed to the conceptualization, data curation, supervision, investigation, methodology, and project 
administration. S.D.C. contributed to the software generation, visualization, and methodology. B.J.C was involved 
in the investigation and methodology. J.L.H. aided in the data curation and investigation. A.V., M.Y.T., N.K., and 
K.-H.C. contributed to data curation, formal analysis, visualization, methodology, and investigation. M.Y.T. also 
provided supervision, N.K. assisted in validation, and K.-H.C aided in project administration. J.H. contributed 
to the methodology. S.S. assisted in conceptualization, resourcing, funding acquisition, project administration, 
and supervision. N.O.S. contributed to the methodology. A.S. assisted in resourcing, data curation, and meth-
odology. R.E. aided in conceptualization and provided consultation. P.M.S. contributed to the conceptualization, 
resourcing, data curation, formal analysis, supervision, funding acquisition, investigation, visualization, and 
methodology. All authors contributed to the writing, review, and editing of this manuscript.

Competing interests 
P.M.S. is an employee of Fate Therapeutics. A.V., M.Y.T., K.-H.C., and A.S. have nothing to disclose. N.K., B.J.C., 
S.D.C., M.B., J.L.H., R.G., B.A.K., P.A.H., and J.H. are employees of and own stock in Bristol Myers Squibb. R.E. 
is a previous employee of Bristol Myers Squibb and owns stock in the company; and is an employee of Daiichi 
Sankyo, Inc. and owns stock in the company. K.L.L. has received financial support payable to Dana Farber 
Cancer Institute related to the submitted work. Outside the submitted work, K.L.L. has received personal fees 
from IntegraGen, RareCyte, and Bristol Myers Squibb and grants from Amgen, Lilly, and Bristol Myers Squibb. 
K.L.L. is also a cofounder of and owns equity in Travera LLC. L.V. is an employee of Vanderbilt University. 
N.O.S. is an employee of and owns stock in Abiosciences, Inc. S.S. is the CEO and Board Director of Centessa 
Pharmaceuticals.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 023- 28480-9.

Correspondence and requests for materials should be addressed to N.K.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2023

https://arxiv.org/abs/1802.03426
https://www.cancer.gov/tcga
https://doi.org/10.1038/s41598-023-28480-9
https://doi.org/10.1038/s41598-023-28480-9
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Cancer-associated fibroblasts are the main contributors to epithelial-to-mesenchymal signatures in the tumor microenvironment
	Results
	Correlation between EMT- and TME-related gene expression signatures. 
	EMT-related genes enriched in the stromal compartment of PDX samples. 
	EMT-related genes expressed by CAFs, endothelial cells, and myeloid progenitor cells. 
	Strong positive correlation between EMT and CAF gene expression signature scores and association with overall survival (OS). 
	Collagen scores inversely associated with parenchymal T-cell counts in squamous cell carcinoma of the head and neck (SCCHN). 
	Correlation between TGFβ- and TME-related gene expression signatures. 

	Discussion
	Methods
	Analysis of gene expression data in TCGA. 
	Gene expression profiling of PDX samples. 
	scRNA-seq. 
	Tissue procurement. 
	Sorting. 
	Sequencing. 

	CD8 IHC and trichrome staining. 
	Statistical analyses. 

	References
	Acknowledgments


