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Heterogeneity of interaction 
strengths and its consequences 
on ecological systems
Zachary Jackson 1* & BingKan Xue 1,2*

Ecosystems are formed by networks of species and their interactions. Traditional models of such 
interactions assume a constant interaction strength between a given pair of species. However, 
there is often significant trait variation among individual organisms even within the same species, 
causing heterogeneity in their interaction strengths with other species. The consequences of such 
heterogeneous interactions for the ecosystem have not been studied systematically. As a theoretical 
exploration, we analyze a simple ecosystem with trophic interactions between two predators and a 
shared prey, which would exhibit competitive exclusion in models with homogeneous interactions. 
We consider several scenarios where individuals of the prey species differentiate into subpopulations 
with different interaction strengths. We show that in all these cases, whether the heterogeneity is 
inherent, reversible, or adaptive, the ecosystem can stabilize at a new equilibrium where all three 
species coexist. Moreover, the prey population that has heterogeneous interactions with its predators 
reaches a higher density than it would without heterogeneity, and can even reach a higher density in 
the presence of two predators than with just one. Our results suggest that heterogeneity may be a 
naturally selected feature of ecological interactions that have important consequences for the stability 
and diversity of ecosystems.

Traditional physical systems involve interactions between objects characterized by universal coupling constants, 
such as the Newtonian constant of gravitation and the Coulomb constant for electrostatic forces. This is true 
whether the objects are subatomic particles, electric charges, or celestial bodies. The objects can differ in the 
amount of charge or mass they have, but otherwise interact in the same way with each other. This is in contrast 
to biological systems, where individual organisms are described by a large number of traits, be it morphological, 
metabolic, or behavioral, which are not all identical even between individuals of the same  species1–3. Any of these 
traits can affect the way an individual interacts with other organisms and the environment. Thus, for biologi-
cal interactions, the coupling constants (or “interaction strengths”) themselves can be heterogeneous among 
individuals. Such interaction strengths can also vary in time due to behavioral changes, seasonal variations, or 
different life stages of an organism.

However, when trying to apply dynamical models to biological systems, the heterogeneity among individuals 
is often left out, so that a whole population is treated as having the same interaction strength. A classic example is 
the Lotka-Volterra model of trophic interaction between two species, a predator and a prey. The predation rate is 
assumed to be proportional to the population densities of both species (in a quadratic form that loosely resem-
bles some of the physical interactions mentioned above). This may be true if each population is homogeneous, 
so that only the population size or density is relevant. However, if we take into account the individual variation 
in various external or internal traits, the interaction strength between the predator and prey need not be the 
same for every individual. Thus, using an “average” interaction strength and ignoring the heterogeneity among 
individuals may cause models to miss important features. Here we address these problems by analyzing simple 
ecological models that demonstrate nontrivial consequences of dynamic heterogeneity in interaction strengths.

In this study, we analyze an ecosystem with “exploitative competition” between two predators feeding on 
the same prey species. Traditional models of such ecosystems treat each species as being homogeneous, so that 
the interaction strength between each pair is constant. We incorporate heterogeneity in how the prey species 
interacts with the predators, which can happen if there is trait variation among the prey population. Our model 
allows us to study several kinds of heterogeneity, including what we call “inherent”, “reversible”, and “adaptive” 
heterogeneities, depending on whether the prey phenotype is determined at birth, can change reversibly, or 
adapts plastically to the density of predators. In all cases, we show that heterogeneous interactions lead to new 
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phenomena in the population dynamics of species. Without heterogeneity, the expected outcome of the ecosystem 
is that one of the predators drives the other to extinction, a phenomenon known as “competitive exclusion”4–6. 
However, if the interaction strength with predators varies within the prey species, it turns out that the system can 
stabilize in a state where both predators coexist. For some range of parameters, we observe emergent facilitation 
between the  predators7, such that the presence of one predator allows the other predator to persist. Moreover, 
the prey species can reach a higher abundance than when it interacts with only one predator, suggesting that 
heterogeneity in interactions may be an evolutionarily favorable feature for the population.

Coexistence between competing species has been studied in terms of niche separation, where different spe-
cies fill different roles in an ecosystem, such that they can both consume enough resources to  survive4,5. Our 
results suggest a different cause of coexistence resulting from a convergence of fitness rather than a separation of 
 niches8. The idea that intraspecific trait variation can have significant ecological effects has been studied in recent 
 works1,9. In addition, the trait of a species can be influenced by the environment or another species, leading to 
further effects on the population, known as trait-mediated indirect  effects10. The heterogeneous interactions in 
our model give rise to similar effects due to dynamic changes of trait composition in the population. The relation 
between our results and those previous studies are discussed in section “Discussion”.

System with homogeneous interactions
As a null model, we first consider an ecosystem with homogeneous interactions. The two predators and one prey 
species are modeled by a Lotka-Volterra dynamical  system11, 

Here A, B, and C represent the density of each species in a spatially well-mixed system, where A and B are the 
predators and C is the prey (Fig. 1a). Parameters βA and βB are the death rates of A and B, respectively; αAC 
and αBC are the predation rates of A and B on C. Species C has a birth rate βC and an intraspecific competition 
strength αCC . The ε ’s are the efficiency by which an amount of C consumed is converted to the increase of the 
predator population. We can rescale the variables by t ← βC t , A ← αCC

βC
A , B ← αCC

βC
B , and C ← αCC

βC
C , so that 

the equations above simplify to 

where the rescaled parameters are a = εAαAC
αCC

 , a0 = βA
βC

 , b = εBαAC
αCC

 , b0 = βB
βC

.
There are 4 equilibrium states of this system, which are labeled PO , PC , PA , and PB , as shown in Fig. 2. They 

all belong to the surface a0A+ b0B = C(1− C) restricted to the non-negative octant of the A-B-C space. PO is 
the point where all three species have zero population sizes, which is an unstable equilibrium. PC is where only 
C persists; PA and PB are where A or B coexists with C, respectively. In general, only one of PA , PB , and PC can 
be stable for a given set of parameters. This demonstrates the competitive exclusion principle, by which two 
consumers (predators) of the same resource (prey) cannot coexist. The persistent predator is the one that has a 
lower R∗ value (i.e., the minimal prey density required to sustain a predator, R∗

A
= a0/a and R∗

B
= b0/b ). Only 

(1a)Ȧ = A (εA αAC C − βA)

(1b)Ḃ = B (εB αBC C − βB)

(1c)Ċ = C (βC − αCC C − αAC A− αBC B)

(2a)Ȧ = A (a C − a0)

(2b)Ḃ = B (b C − b0)

(2c)Ċ = C (1− C − aA− b B)

,1 2

(a) (c)(b)

Figure 1.  An ecosystem with two predators (A, B) and one prey (C). (a) A homogeneous system where all 
individuals of a species have the same interaction strength with another species. Arrows represent trophic 
interaction pointing from prey to predator. (b) Heterogeneity is added by splitting the prey into two types ( C1 , 
C2 ), each with their own interaction strengths with the predators. Double-sided arrow represents the exchange 
of individuals between the prey subpopulations. (c) An equivalent description using the total prey population C 
and the prey type composition � . Arrows represent “effective” interaction strengths that depend on �.
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if the parameters are fine-tuned, such that the two predators have equal R∗ , will all three species coexist. In such 
a fine-tuned system, there is a continuum of possible equilibria that form a line attractor L shown in Fig. 2.

Heterogeneous interactions
Now consider a generalized model in which the species interactions are heterogeneous. A natural way of intro-
ducing heterogeneity in the system is by having a species diversify into subpopulations with different interaction 
 strengths12–15. This way of modeling heterogeneity is useful as it can describe different kinds of heterogeneity. For 
example, the subpopulations could represent polymorphic traits that are genetically determined or result from 
plastic response to heterogeneous environments. A population could also be divided into local subpopulations 
in different spatial patches, which can migrate between patches and may face different local predators. We can 
also model different behavioral modes as subpopulations that, for instance, spend more time foraging for food 
or hiding from predators. We study several kinds of heterogeneity after we introduce a common mathematical 
framework. By studying these different scenarios using variants of the model, we show that our main results are 
not sensitive to the details of the model.

We focus on the simple case where only the prey species splits into two types, C1 and C2 , as illustrated in 
Fig. 1b. The situation is interesting when predator A consumes C1 more readily than predator B and B consumes 
C2 more readily than A (i.e., a1/a0 > b1/b0 and b2/b0 > a2/a0 , which is equivalent to the condition that the 
nullclines of A and B cross, see section “Resources competition and nullcline analysis”). The arrows between C1 
and C2 in Fig. 1b represent the exchange of individuals between the two subpopulations, which can happen by 
various mechanisms considered below. Such exchange as well as intraspecific competition between C1 and C2 
result from the fact that the two prey types remain a single species.

The system is now described by an enlarged Lotka-Volterra system with four variables, A, B, C1 , and C2 : 

The parameters in these equations and their meanings are listed in Table 1. Here we assume that the prey types 
C1 and C2 have the same birth rate and intraspecific competition strength, but different interaction strengths with 
A and B. Note that C1 and C2 are connected by the σi terms, which represent the exchange of individuals between 
these subpopulations through mechanisms studied below; these terms indicate a major difference between our 
model of a prey with intraspecific heterogeneity and other models of two prey species. For the convenience of 
analysis, we transform the variables C1 and C2 to another pair of variables C and � , where C ≡ C1 + C2 is the total 

(3a)Ȧ = εA αA1 AC1 + αA2 AC2 − βA A

(3b)Ḃ = εB αB1 BC1 + αB2 BC2 − βB B

(3c)Ċ1 = C1 (βC − αCC C)− αA1 C1A− αB1 C1B− σ1 C1 + σ2 C2

(3d)Ċ2 = C2 (βC − αCC C)− αA2 C2A− αB2 C2B+ σ1 C1 − σ2 C2

= (0,0,1)

= (0,0,0)

ℒ

Figure 2.  A-B-C space showing the locations of the equilibrium points. PO (black) is an unstable equilibrium 
at the origin where all species go extinct. PC (yellow) is where only C survives. PA (red) and PB (blue) represent 
the persistence of one predator (A and B, respectively) and the prey. These points each lie on a parabola in the 
B = 0 and A = 0 planes, respectively. PN (green) is a point where all three species coexist, which lies on a line L 
(purple) that is a line attractor for � = �

∗ . All five possible equilibria are on the surface a0A+ b0B = C(1− C) , 
shown in gray.
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population of C as before, and � ≡ C2/(C1 + C2) represents the composition of the population (Fig. 1c). After this 
transformation and rescaling of variables (described in “Methods”), the new dynamical system can be written as: 

Here, ai and bi are the (rescaled) feeding rates of the predators on the prey type Ci ; a0 and b0 are the death 
rates of the predators as before; η1 and η2 are the exchange rates of the prey types (Table 1). The latter can be 
functions of other variables, representing different kinds of heterogeneous interactions that we study below. 
Notice that Eqs. (4a–4c) are equivalent to the homogeneous Eqs. (2a–2c) but with effective interaction strengths 
aeff = (1− �) a1 + � a2 and beff = (1− �) b1 + � b2 that both depend on the prey composition � (Fig. 1c).

The variable � can be considered an internal degree of freedom within the C population. In all of the models 
we study below, � dynamically stabilizes to a special value �∗ (a bifurcation point), as shown in Fig. 3a. Accord-
ingly, a new equilibrium point PN appears (on the line L in Fig. 2), at which all three species coexist. For com-
parison, Fig. 3b shows the equilibrium points if � is held fixed at any other values, which all result in the exclusion 
of one of the predators. Thus, heterogeneous interactions give rise to a new coexistence phase (see Fig. 4 below) 
by bringing the prey composition � to the value �∗ , instead of having to fine-tune the interaction strengths. The 
exact conditions for this new equilibrium to be stable are detailed in “Methods”.

(4a)Ȧ = A
(

C (a1(1− �)+ a2�)− a0

)

(4b)Ḃ = B
(

C (b1(1− �)+ b2�)− b0

)

(4c)Ċ = C
(

1− C − A(a1(1− �)+ a2�)− B(b1(1− �)+ b2�)
)

(4d)�̇ = �(1− �)
(

A(a1 − a2)+ B(b1 − b2)
)

+ η1(1− �)− η2�

Table 1.  Model parameters (before/after rescaling) and their meanings.

Original Rescaled Meaning

αA1 a1 Consumption rate of C1 by A

αA2 a2 Consumption rate of C2 by A

αB1 b1 Consumption rate of C1 by B

αB2 b2 Consumption rate of C2 by B

αCC 1 Intraspecific competition rate of C

βA a0 Death rate of A

βB b0 Death rate of B

βC 1 Birth rate of C

εA 1 Biomass conversion of C to A

εB 1 Biomass conversion of C to B

σ1 η1 Exchange rate from C1 to C2

σ2 η2 Exchange rate from C2 to C1

(a) (b)

∗

Inherent
Reversible
Adap�ve

Figure 3.  (a) Time series of � for systems with each kind of heterogeneity. All three systems stabilize at the same 
�
∗ value, which is the bifurcation point in panel (b). (b) Equilibrium population of each species X = A , B, or C, 

with � held fixed at different values. Solid curves represent stable equilibria and dashed curves represent unstable 
equilibria (see Eq. (9) in “Methods”). The vertical dashed line is where � = �

∗ , which is also the bifurcation 
point. Notice that the equilibrium population of C is maximized at this point (for a1 > a2 and b2 > b1 ). 
Parameters used here are (a0, a1, a2, b0, b1, b2, ρ, η1, η2, κ) = (0.25, 0.5, 0.2, 0.4, 0.2, 0.6, 0.5, 0.05, 0.05, 50).
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Inherent heterogeneity. We first consider a scenario where individuals of the prey species are born as 
one of two types with a fixed ratio, such that a fraction ρ of the newborns are C2 and (1− ρ) are C1 . This could 
describe dimorphic traits, such as the winged and wingless morphs in  aphids12 or the horned and hornless 
morphs in  beetles13. We call this “inherent” heterogeneity, because individuals are born with a certain type 
and cannot change in later stages of life. The prey type given at birth determines the individual’s interaction 
strength with the predators. This kind of heterogeneity can be described by Eq. (4d) with η1 = ρ(1− C) and 
η2 = (1− ρ)(1− C) (see “Methods”).

The stable equilibrium of the system can be represented by phase diagrams that show the identities of the 
species at equilibrium. We plot these phase diagrams by varying the parameters a2 and b1 while keeping a1 and 
b2 constant. As shown in Fig. 4a–d, the equilibrium state depends on the parameter ρ . In the limit ρ = 0 or 1, 

Figure 4.  Phase diagrams showing regions of parameter space identified by the stable equilibrium points. 
Yellow region represents PC (predators A, B both extinct), red represents PA (A excludes B), blue represents PB 
(B excludes A), and green represents PN (A, B coexist). The middle point (black dot) is where the preferences of 
the two predators are identical, a2/a0 = b2/b0 and b1/b0 = a1/a0 . The coexistence phase appears in all three 
kinds of heterogeneity modeled here. (a–d) Inherent heterogeneity: Individuals of the prey population are born 
in two types with a fixed composition ρ . In the extreme cases of ρ = 0 and 1, the prey is homogeneous and 
there is no coexistence of the predators. (e–h) Reversible heterogeneity: Individual prey can switch types with 
fixed switching rates η1 and η2 . As the switching rates increase, the coexistence region shrinks because the prey 
population becomes effectively homogeneous (the occasional green spots are numerical artifacts because the 
time to reach the equilibrium becomes long in this limit). (i–l) Adaptive heterogeneity: The switching rates ηi 
dynamically adapt to the predator densities, so as to maximize the growth rate of the prey. As the sharpness κ 
of the sigmoidal decision function is increased, the prey adapts more optimally and the region of coexistence 
expands. Parameters used here are (a0, a1, b0, b2) = (0.3, 0.5, 0.4, 0.6).
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we recover the homogeneous case because only one type of C is produced. The corresponding phase diagrams 
(Fig. 4a, d) contain only two phases where either of the predators is excluded, illustrating the competitive exclu-
sion principle. For intermediate values of ρ , however, there is a new phase of coexistence that separates the two 
exclusion phases (Fig. 4b, c). There are two such regions of coexistence, which touch at a middle point and open 
toward the bottom left and upper right, respectively. The middle point is at (a2/a0 = b2/b0, b1/b0 = a1/a0) , 
where the feeding preferences of the two predators are identical (hence their niches fully overlap). Towards the 
origin and the far upper right, the predators consume one type of C each (hence their niches separate). The coex-
istence region in the bottom left is where the feeding rates of the predators are the lowest overall. There can be a 
region (yellow) where both predators go extinct, if their primary prey type alone is not enough to sustain each 
predator. Increasing the productivity of the system by increasing the birth rate ( βC ) of the prey eliminates this 
extinction region, whereas lowering productivity causes the extinction region to take over the lower coexistence 
region. Because the existence and identity of the phases is determined by the configuration of the equilibrium 
points (Fig. 2, see also section “Mathematical methods”), the qualitative shape of the phase diagram is not sensi-
tive to changes of parameter values.

The new equilibrium is not only where the predators A and B can coexist, but also where the prey species C 
grows to a larger density than what is possible for a homogeneous population. This is illustrated in Fig. 3b, which 
shows the equilibrium population of C if we hold � fixed at different values. The point � = �

∗ is where the system 
with a dynamic � is stable, and also where the population of C is maximized (when A and B prefer different prey 
types). That means the population automatically stabilizes at the optimal composition of prey types. Moreover, 
the value of C∗ at this coexistence point can even be larger than the equilibrium population of C when there is 
only one predator A or B. This is discussed further in section “Multiple-predator effects and emergent promotion 
of prey”. These results suggest that heterogeneity in interaction strengths can potentially be a strategy for the prey 
population to leverage the effects of multiple predators against each other to improve survival.

Reversible heterogeneity. We next consider a scenario where individual prey can switch their types. This 
kind of heterogeneity can model reversible changes of phenotypes, i.e., trait changes that affect the prey’s inter-
action with predators but are not permanent. For example, changes in coat color or  camouflage14,16,17, physi-
ological changes such as  defense15, and biomass allocation among  tissues18,19. One could also think of the prey 
types as subpopulations within different spatial patches, if each predator hunts at a preferred patch and the prey 
migrate between the  patches20,21. With some generalization, one could even consider heterogeneity in resources, 
such as nutrients located in different places, that can be reached by primary consumers, such as swimming 
 phytoplankton22. We can model this “reversible” kind of heterogeneity by introducing switching rates from one 
prey type to the other. In Eq. (4d), η1 and η2 now represent the switching rates per capita from C1 to C2 and from 
C2 to C1 , respectively. Here we study the simplest case where both rates are fixed.

In the absence of the predators, the natural composition of the prey species given by the switching rates would 
be ρ ≡ η1/(η1 + η2) , and the rate at which � relaxes to this natural composition is γ ≡ η1 + η2 . Compared to 
the previous scenario where we had only one parameter ρ , here we have an additional parameter γ that modifies 
the behavior of the system. Fig. 4e–h shows phase diagrams for the system as ρ is fixed and γ varies. We again 
find the new equilibrium PN where all three species coexist. When γ is small, the system has a large region of 
coexistence. As γ is increased, this region is squeezed into a border between the two regions of exclusion, where 
the slope of the border is given by η1/η2 as determined by the parameter ρ . However, this is different from the 
exclusion we see in the case of inherent heterogeneity, which happens only for ρ → 0 or 1, where the borders 
are horizontal or vertical (Fig. 4a,d). Here the predators exclude each other despite having a mixture of prey 
types in the population.

This special limit can be understood as follows. For a large γ , � is effectively set to a constant value equal to 
ρ , because it has a very fast relaxation rate. In other words, the prey types exchange so often that the population 
always maintains a constant composition. In this limit, the system behaves as if it were a homogeneous system 
with effective interaction strengths aeff = (1− ρ) a1 + ρ a2 and beff = (1− ρ) b1 + ρ b2 . As in a homogeneous 
system, there is competitive exclusion between the predators instead of coexistence. This demonstrates that 
having a constant level of heterogeneity is not sufficient to cause coexistence. The overall composition of the 
population must be able to change dynamically as a result of population growth and consumption by predators.

An interesting behavior is seen when we examine a point inside the shrinking coexistence region as γ is 
increased. Typical trajectories of the system for such parameter values are shown in Fig. 5. As γ increases, the 
system relaxes to the line L quickly, then slowly crawls along it towards the final equilibrium point PN . This is 
because increasing γ increases the speed that � relaxes to �∗ , and when � → �

∗ , L becomes marginally stable. 
Therefore, the attraction to L in the perpendicular direction is strong, but the attraction towards the equilibrium 
point along L is weak. This leads to a long transient behavior that makes the system appear to reach no equi-
librium in a limited  time23,24. It is especially true when there is noise in the dynamics, which causes the system 
to diffuse along L with only a weak drift towards the final equilibrium (Fig. 5). Thus, the introduction of a fast 
timescale (quick relaxation of � due to a large γ ) actually results in a long transient.

Adaptive heterogeneity. A third kind of heterogeneity we consider is the change of interactions in time. 
By this we mean an individual can actively change its interaction strength with others in response to certain con-
ditions. This kind of response is often invoked in models of adaptive foraging behavior, where individuals choose 
appropriate actions to maximize some form of  fitness25,26. For example, we may consider two behaviors, resting 
and foraging, as our prey types. Different predators may prefer to strike when the prey is doing different things. 
In response, the prey may choose to do one thing or the other depending on the current abundances of different 
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predators. Such behavioral modulation is seen, for example, in systems of predatory spiders and  grasshoppers27. 
Phenotypic plasticity is also seen in plant tissues in response to  consumers28–30.

This kind of “adaptive” heterogeneity can be modeled by having switching rates η1 and η2 that are time-
dependent. Let us assume that the prey species tries to maximize its population growth rate by switching to the 
more favorable type. From Eq. (4c), we see that the growth rate of C depends linearly on the composition � with 
a coefficient u(A,B) ≡ (a1 − a2)A+ (b1 − b2)B . Therefore, when this coefficient is positive, it is favorable for 
C to increase � by switching to type C2 . This can be achieved by having a positive switching rate η2 whenever 
u(A,B) > 0 . Similarly, whenever u(A,B) < 0 , it is favorable for C to switch to type C1 by having a positive η1 . 
In this way, the heterogeneity of the prey population constantly adapts to the predator densities. We model 
such adaptive switching by making η1 and η2 functions of the coefficient u(A, B), e.g., η1(u) = 1/(1+ eκu) and 
η2(u) = 1/(1+ e−κu) . The sigmoidal form of the functions means that the switching rate in the favorable direc-
tion for C is turned on quickly, while the other direction is turned off. The parameter κ controls the sharpness 
of this transition.

Phase diagrams for the system with different values of κ are shown in Fig. 4i–l. A larger κ means the prey 
adapts its composition faster and more optimally, which causes the coexistence region to expand. In the extreme 
limit, the system changes its dynamics instantaneously whenever it crosses the boundary where u(A,B) = 0 , 
like in a hybrid  system31. Such a system can still reach a stable equilibrium that lies on the boundary, if the flow 
on each side of the boundary points towards the other  side32. This is what happens in our system and, interest-
ingly, the equilibrium is the same three-species coexistence point PN as in the previous scenarios. The region of 
coexistence turns out to be largest in this limit (Fig. 4l).

Our results suggest that the coexistence of the predators can be viewed as a by-product of the prey’s strategy 
to maximize its own benefit. The time-dependent case studied here represents a strategy that involves the prey 
evaluating the risk posed by different predators. This is in contrast to the scenarios studied above, where the 
prey population passively creates phenotypic heterogeneity regardless of the presence of the predators. These 
two types of behavior are analogous to the two strategies studied for adaptation in varying environments, i.e., 
sensing and bet-hedging33,34. The former requires accessing information about the current environment to make 
optimal decisions, whereas the latter relies on maintaining a diverse population to reduce detrimental effects 
caused by environmental changes. Here the varying abundances of the predators play a similar role as the vary-
ing environment. From this point of view, the heterogeneous interactions studied here can be a strategy of the 
prey species that is evolutionarily favorable.

Discussion
Exploitative competition is a basic motif in the modeling of trophic interactions. However, the exclusion of all 
but one competing species as implied by such models is at odds with the high diversity of species seen in natural 
 ecosystems35. Many explanations for this apparent paradox have been  considered36–40. Our results suggest a 
new mechanism for species coexistence in these ecosystems through heterogeneous interactions between the 

= 0.5

= 10.0

= 0.05

= 5.0

(with noise)

ℒ

Figure 5.  Trajectories of the system projected in the A-B plane, with parameters inside the coexistence region 
(by holding the position of PN fixed). As γ increases, the system tends to approach the line L quickly and then 
crawl along it. The grey trajectory is with independent Gaussian white noise ( ∼ N(0, 0.5) ) added to each 
variable’s dynamics. Noise causes the system to diffuse along L for a long transient period before coming to the 
equilibrium point PN . Parameters used here are (a0, a1, a2, b0, b1, b2) = (0.2, 0.8, 0.5, 0.2, 0.6, 0.9) , chosen to 
place PN away from the middle of L to show the trajectory drifting toward the equilibrium.
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predators and prey. Our model is general enough to describe many types of trait differentiation within a species, 
including phenotypic polymorphism and switching, spatial localization and migration, as well as behavioral 
changes and foraging strategies. Our results are related to the following ecological concepts that have been 
studied previously.

Resources competition and nullcline analysis. If we think of the two subpopulations of the prey as 
two resources, then the competition between the two predators can be analyzed using nullclines. A nullcline 
is a contour line in the space of both prey densities ( C1 and C2 ), along which the net growth rate of a predator 
( Ȧ or Ḃ ) is zero. As illustrated in Fig. 6, there is one nullcline for each predator (A and B). The nullcline is a 
generalization of the R∗ value for a single (homogeneous) prey, and represents the minimal combination of prey 
levels required for a predator to sustain its population. For two preys that vary independently, the persistence of 
the predators can be determined from this picture. For example, if the prey levels are above the A nullcline and 
below the B nullcline, then the A population can grow but the B population will decline, leading to the exclusion 
of B by A. By such analysis, the two predators can coexist only if the prey levels are precisely at the intersection 
of the  nullclines41.

The nullcline analysis helps determine the location of the coexistent equilibrium in the parameter space. 
However, the stability of this equilibrium point cannot be derived from the picture, because in our model the 
two resource types interact with each other dynamically. Indeed, they are subpopulations of the same prey spe-
cies, exchanging fluxes of individuals and sharing a common carrying capacity. The ratio of the prey types ( � ) 
is determined by the angle of lines going through the origin (Fig. 6). The dynamics of � and of the total prey 
population C both depend on the densities of A and B (Eqs. (4c,4d)) and are not captured in the picture here. 
Nevertheless, the nullcline analysis does show that the equilibrium values of C∗ and �∗ in the coexistence phase 
do not depend on the parameters such as ρ and γ , and in fact do not depend on the form of heterogeneity at all 
(see “Methods”). Beyond that, the main point of our model is to demonstrate that the coexistent equilibrium is 
in fact stable, and is robust to the different kinds of heterogeneity that we studied.

Emergent fitness equalization vs. niche separation. It is important to note that the coexistence of 
the predators shown here does not result from the separation of niches, but rather from the convergence of the 
predators to a common fitness, similar to the situation studied in (van Velzen 2020)8. The separation of niches 
would mean that each predator consumes only one prey type. Here the niches of the predators overlap because 
all of the interaction strengths (a1, a2, b1, b2) are non-zero, meaning that both predators consume a mixture of 
prey types, although with different preferences. In (van Velzen 2020)8 and in the models that we study here, an 
internal variable of the prey population (the phenotype composition in our case, and the defense level in (van 
Velzen 2020)8) is adjusted to ensure equal fitness of the predators. Here fitness is used to mean the R∗ values of 
the predators for a given internal trait value. The convergence of fitness is emergent in that it is not the result 
of fine-tuning the predators’ consumption preferences (i.e., interaction strengths), but rather a result of the 
dynamics of the prey composition that automatically stabilizes at the critical value where R∗ ’s are equal. Thus, the 

∗

2

1∗ ∗

∗

∗

1 + 2 = ∗

Figure 6.  A schematic for nullcline analysis showing the prey subpopulations as two resources. Nullclines 
for A and B are shown in black; the intercepts are the amount of a single resource that a consumer needs to 
survive, R∗

Ai
= a0/ai and R∗

Bi
= b0/bi . The total population of C is represented by a line with slope −1 . Prey 

composition � is represented by the angle of a line going through the origin. The equilibrium values of C∗ and 
�
∗ at three-species coexistence is determined by the intersection of the nullclines. However, for our models of 

heterogeneous interactions, the dynamics of � and its stability at �∗ are undetermined by this picture.
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coexistence of predators observed in our model is an emergent consequence of the prey having heterogeneous 
interaction strengths with the predators.

Emergent facilitation and trait‑mediated indirect effects. Our model also demonstrates an inter-
esting effect that one predator can have on the other, called  facilitation7,42. It happens when one predator is better 
off in the presence of another even though they compete for the same resources. We can distinguish between two 
levels of facilitation: Strong facilitation is such that one predator would go extinct if the other predator is absent 
but can survive when both are present. Weak facilitation is such that the abundance of one predator is increased 
when the other predator is present rather than absent. Strong facilitation was studied in (de Roos et al. 2008)7 in 
the case of adult and juvenile prey with body size differentiation. In that system, facilitation emerges as a result 
of two predators specializing in different prey stages and the prey stages competing with each other. Our system 
shares the feature that two predators prefer different subpopulations of the same prey. We found that our models 
exhibit both strong and weak facilitation, as show in Fig. 7a, b for the case of inherent heterogeneity. Intuitively, 
the consumption of one prey type by one predator allows the other prey type to flourish, thus helping the other 
predator.

We can interpret such emergent facilitation as a trait-mediated indirect  effect10,43. The interaction between 
the predator A and the prey C causes a shift in the composition of C, which can be considered a trait of C on 
the population level. This trait change then affects the overall interaction between C and the other predator B. 
Therefore, in a coarse-grained picture where the subpopulations of C are lumped together (Fig. 1c), it is as if one 
species A modifies the effective interaction strength beff(�) between the other two species B and C, and similarly 
for B that modifies the interaction between A and C. Here the interaction modification by one predator can be 
either detrimental to the other predator, or beneficial as in the cases of facilitation.

Multiple‑predator effects and emergent promotion of prey. In addition to the facilitation between 
predators shown above, our model also exhibits a surprising “promotion” of the prey population by a preda-
tor. By this we mean that the equilibrium population of the prey is higher in the presence of both predators 
than in the presence of just one. This will be an extreme case of subadditive effects on the prey from multiple 
 predators44,45, to the extent that the total effect from two predators is lower than that from one predator alone. 
Fig. 7c, d show the regions in parameter space where there is promotion of the prey C by predator A and B 
respectively. This surprising effect arises when both predators prefer to consume the same prey type, and the 
promoting predator has a stronger preference than the other. Heuristically, if we start with only the latter preda-
tor in equilibrium with the prey, then adding the promoting predator would push the composition of the prey 
further away from the preferred type. This compositional shift then inhibits both predators and allows the prey 
to reach a larger population at the new equilibrium. Mathematical conditions for such emergent promotion, as 
well as facilitation, are given in “Methods”.

Conclusion
Heterogeneity is natural in biological systems, as each individual organism possesses a large number of traits 
that are influenced one way or the other by developmental noise or environmental variation. Every individual 
interacts with other individuals and the environment somewhat differently due to its unique combination of 
traits. The heterogeneity in such interactions are generally treated in one of two ways. It is ignored in some cases 
where the system is treated as being well-mixed or homogeneous, such as in the classic Lotka-Volterra  model11,46. 
In other cases the system is treated as “disordered” such that the interaction strengths are randomly drawn from 
some probability  distribution47–50. Here, we have addressed the heterogeneity of biological interactions in a more 

∗( ) − ∗( )

2/ 0

(d)

2/ 0

Promo�on 
of Prey

Strong
Facilita�on
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Facilita�on

(a) (b) (c)

∗( ) − ∗( )∗( ) − ∗( ) ∗( ) − ∗( )

2/ 02/ 0
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Figure 7.  Phase diagrams showing facilitation of predators by their competitor, and promotion of prey by 
predators. (a, b) Parameter regions of strong and weak facilitation, with (a) B facilitating A and (b) A facilitating 
B. Color represents the difference between equilibrium populations of each predator in the presence and 
absence of the other, with X∗(Pi) being the population of species X at equilibrium point Pi . (c, d) Parameter 
regions showing promotion of the prey by the addition of a second predator, with (c) B promoting C and (d) 
A promoting C. Color represents the difference in population levels of the prey C in the presence of both or 
only one predator. Parameter values used here are (a0, a1, b0, b2, ρ) = (0.25, 0.6, 0.5, 0.6, 0.55) , chosen to show 
significant areas of both types of facilitation and promotion.
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structured framework that considers subpopulations of a species with a dynamic composition. We have dem-
onstrated nontrivial consequences of having heterogeneous interactions. We expect such ecosystems to exhibit 
stronger persistence and richer diversity. We find that one predator can facilitate another both qualitatively and 
quantitatively through trait-mediated indirect effects. And we show that a prey species can change its population 
composition to benefit its own growth under multiple predators. These effects are apparent in our model with 
only one species of a small ecosystem exhibiting a single differentiating trait. In real natural ecosystems, there is 
a massively higher dimensionality in both the number of traits within a species that can vary among individuals 
and the number of species that can exhibit such trait differentiation. We expect such high dimensionality to lead 
to more manifestations of the effects illustrated here. Future research can address this point by either modeling a 
larger network of interacting species or including more subpopulations within a species. We have explored only 
one interaction pattern known as exploitative competition. Similar analyses can be done in the context of other 
interaction patterns, including both trophic interactions and competitive interactions.

We have focused here on biological and ecological systems, but heterogeneous interactions can have nontrivial 
effects on dynamical systems in general. Here we have seen new attractors appear where they could not in a 
homogeneous system. We have seen new timescales introduced to the system that can result in slow convergence 
to the equilibrium. We have even seen the transformation of the dynamical system from a simple differential 
system to one which exhibits flow switching depending on the state of the  system51. It is less common for tradi-
tional systems in physics to have heterogeneous interaction constants. However, non-uniform parameters can 
be important in systems involving a large number of mesoscopic components. In such systems, the parameters 
of the components are often non-identical, and the shape or width of the parameter distribution can have strong 
effects on the behavior of the system. This can be seen in systems of coupled  oscillators52–54 where the spread of 
the natural frequencies of the oscillators can lead to different degrees of synchronization. The effect of inhomo-
geneous parameters can also be seen in systems of  colloids55, where differences in size and mass among large 
numbers of colloids can lead to intermittent behavior with periods of ordered lattice configuration and more 
random motion. These are examples of systems where differences among interacting units of a system can have 
qualitative effects on the overall system behavior. As we have shown, incorporating such differences between the 
units can be important for predicting the outcome of these complex dynamics.

Data availability
All data generated or analysed during this study are included in this published article.

Methods
Mathematical methods. Our model of two predators and one prey that differentiates into two 
types is described by Eqs.  (3a–3d) in the main text. Changing variables from C1 and C2 to C ≡ C1 + C2 and 
� ≡ C2/(C1 + C2) leads to the equations: 

To simplify, we then rescale the variables by:

and redefine the parameters as:

After these transformations, we arrive at Eqs. (4a-4d) in the main text.
In the case of inherent heterogeneity, the dynamical equations for C1 and C2 are: 

Using the same transformations and rescaling as above, these equations become the same as Eqs. (4c-4d) in the 
main text with η1 = ρ(1− C) and η2 = (1− ρ)(1− C).

The locations of the equilibrium points in the A-B-C-� space are:

(5a)Ȧ = A
(

εA
(

αA1 (1− �)+ αA2 �
)

C − βA
)

(5b)Ḃ = B
(

εB
(

αB1 (1− �)+ αB2 �
)

C − βB
)

(5c)Ċ = C
(

βC − αCC C −
(

αA1 (1− �)+ αA2 �
)

A−
(

αB1 (1− �)+ αB2 �
)

B
)

(5d)�̇ = � (1− �)
(

(αA1 − αA2)A+ (αB1 − αB2)B
)

+ (1− �) σ1 − � σ2

t ← βCt, A ←
αCC

βC
A, B ←

αCC

βC
B, C ←

αCC

βC
C

a0 =
βA

βC
, a1 =

εA αAC1

αCC
, a2 =

εA αAC2

αCC
, η1 =

σ1

βC
,

b0 =
βB

βC
, b1 =

εB αBC1

αCC
, b2 =

εB αAC2

αCC
, η2 =

σ2

βC
.

(6a)Ċ1 = (1− ρ) (βC C − αCC C1 C)− αA1 C1A− αB1 C1B

(6b)Ċ2 = ρ (βC C − αCC C2 C)− αA2 C2 A− αB2 C2 B
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where � is the solution to the cubic equation

And PB has the same expression except with parameters associated with species B. The location of PN depends 
on the form of ηi’s, but it always lies on the line L given by {a0A+ b0B = C∗(1− C∗),C = C∗} . For fixed ηi’s,

where

with ã1 = a1/a0 , ã2 = a2/a0 , b̃1 = b1/b0 , and b̃2 = b2/a0 . The solutions for the inherent case are recovered by 
making the substitutions for η1 and η2 above, and for the adaptive case by removing the η terms.

The stability of these equilibrium points is determined by the following rules, with the physical region 
W ≡ {A ≥ 0, B ≥ 0, 0 ≤ C ≤ 1, 0 ≤ � ≤ 1}:

• If only the points PO and PC are in W , then PC is stable.
• If only PO , PC and PA (or PB ) are in W , then PA (or PB ) is stable.
• If PO , PC , PA , PB are all in W but not PN , then the one of PA or PB with a smaller equilibrium C population 

is stable.
• If PN is in W then it is stable, or there is a small limit cycle enclosing it that is stable.

For completeness we list here the exact conditions for the regions of coexistence between the predators. The 
expression is simplest for the case of instant ( κ → ∞ ) adaptive heterogeneity:

For the other kinds of heterogeneity, the condition for coexistence is given by (with X∗(Pi) being the population 
of X at point Pi)

In the case of inherent heterogeneity, the requirement for strong facilitation of predator B by predator A is that 
PC is stable in the system when A = 0 and PN is stable when A is present. For weak facilitation it is required 
that PB and PN are stable, respectively, and B∗(PN ) > B∗(PB) . In order to see emergent promotion, in addition 
to PN being stable, we need ã1 > b̃1 > b̃2 > ã2 for A to promote C, and b̃1 > ã1 > ã2 > b̃2 for B to promote C.

Numerical methods. Dynamical equations were solved numerically to generate the results in Figs. 3a, 4e–l, 
and 5. Numerical integration of the equations was performed using the NDSolve function of Wolfram Math-
ematica 12. For all cases except in Fig. 3, we used initial values A = 0.2,B = 0.15,C = 0.5, � = 0.5 . Our results 
do not depend on these initial values because they represent the only stable equilibrium in each case.

For Fig. 3a and the trajectories without noise in Fig. 5, the results are obtained as a simple integration of the 
equations using NDSolve. For the noisy trajectory in Fig. 5, four independent noise terms were added to the 
right-hand side of Eqs. (4a–4d). Each term represents a standard Wiener process. It is implemented by adding 
a random number ∼ N(0,�t) to each equation every time step �t until t = 2400 . We used �t = 0.05 but also 
checked that the behavior is robust to the step size.

To plot the regions in Fig. 4e–l, the ( a2 , b1 ) parameter space was divided into a grid of 100× 100 pixels. To gen-
erate Fig. 4e–h, Eqs. (4a–4d) were integrated for 20000 time units and the final values of A and B were compared 

(7)PO =

(

0, 0, 0,
η1

η1 + η2

)

(8)PC =

(

0, 0, 1,
η1

η1 + η2

)

(9)PA =

(

a1(1− �)+ a2�− a0

(a1(1− �)+ a2�)2
, 0,

a0

a1(1− �)+ a2�
, �

)

�(1− �)(a1 − a2)(a1(1− �)+ a2�− a0)+ (η1(1− �)− η2�)(a1(1− �)+ a2�)
2 = 0

(10)
PN =

(

1

a0

(

(b̃2 − b̃1)C
∗(1− C∗)

ã1 − ã2 + b̃2 − b̃1

−
η1

ã1 − b̃1

+
η2

b̃2 − ã2

)

,

1

b0

(

(ã1 − ã2)C
∗(1− C∗)

ã1 − ã2 + b̃2 − b̃1

+
η1

ã1 − b̃1

−
η2

b̃2 − ã2

)

,C∗, �∗
)

(11)C
∗ =

ã1 − ã2 + b̃2 − b̃1

ã1 b̃2 − ã2 b̃1

(12)�
∗ =

ã1 − b̃1

ã1 − ã2 + b̃2 − b̃1

(

(ã2 < b̃2) ∧ (b̃1 < b̃2) ∧ (C∗ < 1)
)

∨
(

(ã2 > ã1) ∧ (b̃1 > ã1)
)

(A∗(PN ) > 0) ∧ (B∗(PN ) > 0) ∧ (1 > C
∗(PN ) > 0) ∧ (1 > �

∗(PN ) > 0)
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to a threshold of 1× 10−10 . If the population of either predator species was below the threshold, then that species 
was deemed extinct. The corresponding pixel in the plot was then colored depending on the persisting species. 
For Fig. 4i–l, Eq. (4d) was modified so that η1,2(u) = 1/(1+ e±κu) where u = (a1 − a2)A+ (b1 − b2)B , as 
described in section “Adaptive heterogeneity”. Then, the figures were produced in the same way as above except 
with an integration time of 30,000 time units.
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