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Efficient light transfer in coupled 
nonlinear triple waveguides using 
shortcuts to adiabaticity
Vasileios Evangelakos , Emmanuel Paspalakis  & Dionisis Stefanatos *

We use the method of shortcuts to adiabaticity to design the variable couplings in a three-waveguide 
directional coupler which may contain nonlinear elements, in order to accomplish efficient light 
transfer between the outer waveguides for shorter device lengths, despite the presence of 
nonlinearity. The shortcut couplings are obtained for the ideal case where all the waveguides are 
linear, for which a perfect transfer is guaranteed in theory, but are tested for various combinations 
of linear and nonlinear waveguides in the device. We show with numerical simulations that, in 
most configurations, high levels of transfer efficiency can be maintained even for large values of 
the input power, and for shorter lengths than those of conventional adiabatic devices. We also find 
that efficiency is improved for shortcut couplings with less spatial extent, since in this case the 
nonlinearity acts during a shorter range. The present work is expected to find application in research 
fields like optoelectronic computing and ultrafast light switching, where the fast and controlled light 
transmission inside a set of waveguides is a crucial task. Additionally, the reduction in the device 
size may be exploited for incorporating them in integrated optical systems, where a high density of 
waveguides is required.

Studying the properties of waveguide directional couplers constitutes a very active research area within the fields 
of photonics and optoelectronics1. The reason behind this intense interest is that such devices may be exploited as 
beam splitters, switches, Mach-Zehnder interferometers, optical ring resonators, and other parts of components 
appearing in a variety of optical integrated circuits. The most simple directional coupler arrangement consists 
of two parallel coupled waveguides at a short distance between them. In this device, light travels in a periodic 
manner from the one waveguide to the other, as it propagates along them.

In order to improve the robustness properties of the above simple directional coupler, more sophisticated 
configurations have been suggested through the years. Many of these designs rely on the use of varying coupling 
and propagation coefficients2–6. In these configuration the switching of light between the waveguides relies on 
the adiabatic (slow) evolution of a normal mode (eigenstate) of the system. The advantage of such devices lies 
on the fact that adiabatic evolution is robust against small to modest deviations in the system parameters (e.g. 
errors during the layout implementation). A three-waveguide directional coupler relying on the adiabatic evolu-
tion of system’s “dark” state was put forward4,5,7, essentially suggesting the optical analogue of stimulated Raman 
adiabatic passage (STIRAP), an extremely successful method for high fidelity population transfer in quantum 
systems8,9. If the varied coupling coefficients are applied in the counter-intuitive order and also satisfy the adi-
abaticity condition, then light is efficiently transmitted between the first and third outermost waveguides, while 
the intermediate waveguide is hardly excited. The aforementioned adiabatic directional coupler was initially 
investigated experimentally by Longhi et al.10. The basic idea for adiabatic design of the varying coupling coef-
ficients has been exploited in many other coupler layouts, in both theoretical11–14 and experimental15,15–18 works. 
An analogous technique has been suggested in periodic (grating-assisted) directional waveguide couplers19–21, 
in a device composed of three coupled waveguides with curved axes22, as well as for adiabatic mode switching in 
multimode waveguides by making use of computer-generated planar holograms23. Finally, different works24,25, 
presented methods inspired by adiabatic elimination in quantum physics was proposed for the transfer of light 
between the outer waveguides in a waveguide array.

Despite the advantages of optical devices which exploit adiabatic propagation, including the broadband range 
of supported frequencies and also the tolerance against moderate variations in device parameters, there is also 
an important drawback. In order to satisfy the conditions which ensure the adiabatic propagation of light, the 
length of the corresponding devices should be sufficiently large. This puts a major obstacle in using such devices 
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in integrated optical systems, where a high density of waveguides is required. For this reason many efforts have 
been made to improve the geometry and reduce their size326–32, however, the lack of a simple set of design rules 
made it difficult to choose the appropriate modification for each application. An additional problem arises for the 
important class of directional waveguide couplers with waveguides containing nonlinear optical materials33–46. 
Note that the particular research interest for these devices follows from their all-optical switching applications33. 
Lahini et al.16 thoroughly investigated the influence of optical nonlinearity on the light transfer properties in 
an adiabatic three-waveguide directional coupler. They demonstrated both in theory and experiment that for 
materials whose refractive index depends on the intensity of light (optical Kerr effect), increasing the power of 
light inserted into the device results in a decrease in the transfer efficiency between the outer waveguides, because 
of the destruction of the “dark” eigenstate.

In order to accelerate adiabatic propagation and thus reduce the size of the corresponding directional cou-
plers, a collection of methods referred as shortcuts to adiabaticity47 have been employed. Originally developed 
in the context of quantum control theory, these methods were quickly adopted for the efficient design of optical 
devices by exploiting the analogy between quantum mechanics and waveguide optics48, according to which the 
propagation of light along arrays of coupled waveguides is equivalent to the time evolution of a multilevel quan-
tum system. The main idea behind these methods is to reach the same final state as the slow adiabatic evolution, 
without necessarily tracking the instantaneous adiabatic eigenstate at each moment. In order to accomplish a 
shortcut to the adiabatic propagation of light following the transitionless tracking algorithm49–53, in Refs.54,55 a 
driving opposite to the non-adiabatic evolution of the system was added to the couplings between the waveguides. 
In the above works, however, the counterdiabatic terms in the couplings turned out to be complex and thus 
inapplicable. The problem was resolved in Ref.56 using Lie transformation theory, in order to modify the terms 
which cancel the non-adiabatic evolution and make them real and physically applicable. The same technique 
was later used to realize beam splitters consisting of a three-waveguide array57. Another shortcut method used 
to accelerate adiabatic propagation is reverse engineering58 based on the Lewis-Riesenfeld invariant theory59. It 
was used to improve light transferring in systems consisting of multi-mode waveguides60,61 or arrays of several 
coupled waveguides62. It also led to the realization of three-waveguide directional couplers63 and quantum logic 
gates based on waveguides64. The two shortcut techniques discussed above, although seem to be quite different, 
are actually equivalent approaches with different parameterization65. Based on these previous works, several 
protocols have emerged that are used to accelerate adiabatic propagation and studies are being carried out that 
apply these protocols to devices that function as beam splitters66,67 or directional couplers68,69. Recent reviews on 
the applications of shortcut to adiabaticity methods in optical waveguides can be found in Refs.70,71.

In this work we use the transitionless tracking algorithm to design the varying couplings in a three-waveguide 
directional coupler which may contain nonlinear elements, in order to achieve efficient light transfer between the 
outer waveguides for shorter device lengths and despite the presence of nonlinearity. The shortcut couplings are 
derived for the ideal case where all the waveguides are linear, for which a perfect transfer is assured, but are tested 
for various combinations of linear and nonlinear waveguides in the device. We show with numerical simulations 
that, in most configurations, high levels of transfer efficiency can be maintained even for large values of the input 
power, and for shorter lengths than those needed by conventional adiabatic devices. We also find that the effi-
ciency is improved for shortcut couplings with less spatial extent, since in this case the nonlinearity acts during 
a shorter interval. The best performance is obtained for the symmetric configurations where the nonlinearity 
is present only in the middle or only in the two outer waveguides. The reason is that in the first case the dark 
state is still an eigenstate of the system, while in the second case the effective two-photon detuning is reduced. 
The worst performance for increasing input power is observed for the nonsymmetric configurations where the 
nonlinearity is present in the first (input) waveguide, thus it is immediately activated and undermines the transfer.

Nonlinear triple waveguide
A schematic illustration of the directional coupler under study is given in Fig. 1. The propagation of light in 
a system of three coupled nonlinear waveguides with the same transmission coefficients β is described by the 
following equation16
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Figure 1.   Schematic illustration of the nonlinear triple waveguide.
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where

is the vector with components the field amplitudes in the waveguides, expressed as functions of the propagation 
distance z, and M(z) is the transmission matrix given by the expression

Note that here we have omitted the common transmission coefficient, since it simply adds a common phase factor 
to the field amplitudes. On the other hand, k12 and k23 are the coupling coefficients between the waveguides 1-2 
and 2-3, respectively, while Qi = (2πn

(2)
i )/(�A

(eff )
i )72 are the nonlinearity coefficients which are proportional 

to the nonlinear refractive index n(2)i  and inversely proportional to the effective cross section A(eff )
i  of each 

waveguide. Typical values of these parameters are given in the first paragraph of the section where we present 
the simulation results. Note that the total refractive index ni = n

(0)
i + n

(2)
i I depends on the field intensity I, and 

this is the physical origin of the nonlinearity in system (3). By carefully selecting the functions k12(z), k23(z) 
we can manipulate the light distribution between the waveguides, as it propagates along them. The variation of 
the coupling coefficients with the propagation distance can be achieved using properly designed gratings54 or 
by appropriately varying the distance between the corresponding waveguides65 as shown in Fig. 1, see also the 
recent reviews70,71.

Light transfer in the absence of nonlinearity
In this section we describe how the coupling coefficients can be designed for the efficient transfer of light entering 
the first waveguide to the third waveguide. The coupling coefficients will be obtained for the ideal case where 
Q1 = Q2 = Q3 = 0 , but their performance will be tested in the presence of nonlinearity with nonzero Qi in 
the next section. We start by quickly reminding the reader the adiabatic transfer method and then present the 
shortcut to adiabaticity method.

Adiabatic transfer.  In the absence of nonlinearity ( Qi = 0 ), but also describing the case where the input 
power is small, the transmission matrix (3) becomes

In this case, the propagation equation (1) is analogous to the Schrödinger equation for a three-level �-type 
quantum system. The light transfer from the first to the third waveguide is analogous to the population transfer 
from the first to the third level in this quantum system, thus Stimulated Raman Adiabatic Passage (STIRAP) can 
be used for the derivation of the appropriate coupling coefficients5,8,9. We briefly explain how it can be done. The 
three-waveguide problem with transmission matrix (4) can be reduced to a two-waveguide problem with matrix

where the original field amplitudes b(z) = [b1(z) b2(z) b3(z)]T are connected to those of the simplified system 
c(z) = [c1(z) c2(z)]T through the transformation

If the coupling coefficients are parameterized as follows

where k(z) =
√

k212(z)+ k223(z) and tan θ(z) = k12(z)/k23(z) , then the two-waveguide system has the following 
eigenstates 

(1)−i
d

dz
b(z) = M(z)b(z),

(2)b(z) =
(

b1(z)
b2(z)
b3(z)

)

(3)M(z) =





Q1|b1(z)|2 k12(z) 0

k12(z) Q2|b2(z)|2 k23(z)
0 k23(z) Q3|b3(z)|2



.

(4)M0(z) =
(

0 k12(z) 0

k12(z) 0 k23(z)
0 k23(z) 0

)

(5)M ′
0(z) =

1

2

(

k23(z) k12(z)
k12(z) − k23(z)

)

=
1

2
(k12σx + k23σz),

(6)
b1(z) = |c1(z)|2 − |c2(z)|2
b2(z) = 2i Im

[

c∗1 (z)c2(z)
]

b3(z) = − 2 Re
[

c∗1 (z)c2(z)
]

.

(7)k12 = k(z) sin θ(z)
k23 = k(z) cos θ(z)

,

(8a)|φ+(z)� =
(

cos
θ(z)
2

sin
θ(z)
2

)

,
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 with corresponding eigenvalues E±(z) = ±k(z)/2 . By slowly changing the mixing angle θ(z) of the coupling 
coefficients from θ(0) = 0 , the two-waveguide system evolves along the eigenstate |φ+(z)� , and thus amplitudes 
c1(z), c2(z) follow Eq. (8a). The initial condition on the angle ensures that |φ+(0)� = (1 0)T , corresponding to 
light entering from the first waveguide. From transformation (6) we easily find that in this case the original 
three-waveguide system evolves along the “dark” state

where only the first and third waveguides have nonzero field amplitudes, since any fraction of light entering the 
second waveguide is immediately transferred to the third one. From this expression it is obvious that, if we choose 
the function θ(z) to satisfy the terminal condition θ(Z) = π/2 at the final distance z = Z , then light travels from 
the first waveguide initially to the third waveguide at the end of the propagation distance Z. The necessary condi-
tion for this light transfer to be adiabatic is 

√

k212(z)+ k223(z)�z ≫ 1 , where �z is the distance for which both 
k12(z), k23(z) are nonzero, thus strong coupling and enough space overlapping between the coefficients is 
required5,8,9.

A popular choice is the coupling coefficients to have the following Gaussian form

where k0 is the maximum value of the coupling coefficients, ζ denotes the width of the couplings and 2τ is the 
spatial separation between their peaks. By selecting those parameters appropriately, we can approximately satisfy 
the above boundary conditions. For τ > 0 , corresponding to the counterintuitive pulse order of STIRAP where 
the k23 coupling is activated before the k12 coupling, and with properly choosing parameters k0, τ , ζ , the bound-
ary conditions θ(0) = 0, θ(Z) = π/2 , as well as the adiabaticity condition can be satisfied. In the left column of 
Fig. 2 we display Gaussian coupling coefficients for Z = 30 mm, k0 = 2 mm−1 and various values of parameters 
τ , ζ , while in the left column of Fig. 3 we plot the normalized power Pi(z)/P0 , i = 1, 2, 3 in each waveguide, as 
a function of normalized distance z/Z. We observe that for the combination of coupling coefficients shown in 
the left panel of the top row in Fig. 2, the light transfer to the third waveguide is accomplished with high fidelity, 
thus the adiabaticity condition is satisfied. As we move from the top to the bottom of the left column in Fig. 2, 
we observe that the coupling coefficients are more narrow and there is less overlap between them. This results in 
the violation of the adiabaticity condition and the incomplete light transfer to the third waveguide, as displayed 
in the lower three panels of the left column of Fig. 3. The adiabaticity condition for these cases can be restored 
by increasing the value of k0 , i.e. using larger coupling coefficients, or by increasing the absolute propagation 
length Z. In the following subsection we explain how light transfer to the third waveguide can be effectively 
accomplished by modifying the shape of the coupling coefficients, without increasing k0 or Z.

Shortcut to adiabaticity.  When the condition for adiabatic transfer is not met, in order to retain the 
desired light transition we must introduce a counterdiabatic term in our transmission matrix which, for the 
equivalent two-waveguide system has the form49–53

Since |φ̇±(z)� = ∓|φ∓(z)� , we eventually get

where the dot denotes the derivative with respect to the propagation distance z. This counterdiabatic term, pro-
portional to the Pauli matrix σy , introduces in the original three-waveguide system a direct coupling between 
the first and third waveguides. In order to retain the original configuration, where only the waveguides 1-2 and 
2-3 are coupled, the following unitary transformation can be applied on the state (field amplitudes) of the two-
waveguide system52,53

The modified transmission matrix for the equivalent two-waveguide system, after the addition of the counterdi-
abatic term and the application of the unitary transformation, becomes

(8b)|φ−(z)� =
(

sin
θ(z)
2

− cos
θ(z)
2

)

,

(9)|ψd(z)� = cos θ(z)|1� − sin θ(z)|3�,

(10)k12 = k0e
−
(

z−Z/2−τ
ζ

)2

,

k23 = k0e
−
(

z−Z/2+τ
ζ

)2

,

(11)

M ′
cd(z) =i

∑

n=±

[

|φ̇n(z)��φn(z)|

− �φn(z)|φ̇n(z)�|φn(z)��φn(z)|
]

.

(12)M ′
cd(z) =

(

0 − i θ̇ (z)
2

i θ̇ (z)
2

0

)

=
θ̇ (z)

2
σy ,

(13)U(z) = e−i φ(z)
2

σz =
(

e−i φ(z)
2 0

0 e+i φ(z)
2

)

.
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Figure 2.   Gaussian (left column) and modified shortcut (right column) coupling coefficients for parameters 
Z = 30 mm, k0 = 2 mm−1 and (a) τ = Z/8 and ζ = Z/6 , (b) τ = Z/8 and ζ = Z/8 , (c) τ = Z/10 and 
ζ = Z/10 , (d) τ = Z/10 and ζ = Z/12.
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Figure 3.   Normalized power Pi(z)/P0 at each waveguide as a function of normalized distance, for the Gaussian 
(left column) and modified shortcut (right column) coupling coefficients of Fig. 2.
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In order to eliminate the term proportional to σy , we demand φ(z) = tan−1 (θ̇/k12) . Then, by defining the modi-
fied coupling coefficents as 

 the modified transmission matrix for the equivalent two-waveguide system attains the original form (5)

with the original couplings replaced by the modified ones. The corresponding modified transmission matrix for 
the three-waveguide system is

which is also similar to the original matrix (4) but again with the modified couplings. The field amplitudes 
b̃ = (b̃1 b̃2 b̃3)

T in the three-waveguide system under transmission matrix (17) are

where the field amplitudes in the equivalent two-waveguide system under transmission matrix (16) are obtained 
from the relation c̃ = (c̃1 c̃2)

T ∼ U†|φ+� , using Eqs. (13) and (8a), and P0 is the input power.
We next explain how to design53 the function θ(z) in order to accomplish light transfer from the first to the 

third waveguide under the modified transmission matrix (17) and thus the evolution given in Eq. (18). Note 
that by definition angle φ is expressed in terms of θ , θ̇ , thus any requirement on this may also be translated to 
a condition on θ . The normalized power inside each waveguide is Pi/P0 = |b̃i(z)|2/P0 , i = 1, 2, 3 . All the light 
is inserted at z = 0 to the first waveguide, thus |b̃1(0)|2 = P0 , which is translated into the condition θ(0) = 0 . 
At the end of the propagation length, z = Z , the light should be completely transferred to the third waveguide, 
which is accomplished if we take θ(Z) = π

2
 and φ(Z) = 0 . From the definition of angle φ we see that the latter 

condition is in general satisfied by setting θ̇ (Z) = 0 . We also require k̃12(0) = 0 and k̃23(Z) = 0 , so the initial 
and final states are stationary states of the equation −i

˙̃
b = M̃b̃ . Using Eqs. (15), (7), and the definition of φ , it is 

not hard to verify that these conditions can be satisfied if we additionally require θ̇ (0) = θ̈ (Z) = 0.
If we consider original coupling coefficients k12, k23 with the Gaussian shape (10), then from Eq. (7) we get

For this form of pulses the boundary conditions for θ are not exact, but can be fulfilled to an excellent approxi-
mation by the appropriate choice of the pulse parameters53. In the right column of Fig. 2 we plot the modified 
couplings for shortcut light transfer obtained from the Gaussian original couplings of the left column. In the 
right column of Fig. 3 we display the corresponding normalized power in each waveguide. We observe that with 
the modified couplings a perfect light transfer to the third waveguide is accomplished, even for the cases where 
the original couplings are more narrow and fail, see the three lower rows of Fig. 3. The spatial range over which 
the modified couplings are nonzero, which essentially determines the device length, covers a smaller portion 
of the propagation distance Z, compare for example the right panel of Fig. 2d with the left panel of Fig. 2a, thus 
lowering the requirement on the coupler length. The success of the modified couplings can be understood by 
carefully inspecting Fig. 2. There, in the left column, we notice that the overlapping region between the original 
Gaussian coefficients is reduced as we move from top to bottom. In the right column displaying the modified 
couplings we observe that the overlapping region is also reduced as we move from top to bottom, but at the same 
time the couplings in this region are increased, resulting in the successful transfer of light despite the limited 
spatial overlap. Another useful observation which can be made from the right column of Fig. 3 is that, as we 
move from top to bottom and the spatial extension of the coupling coefficients is reduced, the light transfer from 
the first to the third waveguide is accomplished with more power passing through the second (intermediate) 
waveguide (red dashed-dotted line).

(14)

M̃ ′ =U†(M ′
0 +M ′

cd)U + iU̇†U

=
1

2
(k12 cosφ + θ̇ sin φ)σx

+
1

2
(k12 sin φ − θ̇ cosφ)σy +

1

2
(k23 − φ̇)σz

(15a)k̃12 =k12 cos (φ)+ θ̇ sin φ,

(15b)k̃23 =k23 − φ̇,

(16)M̃ ′ =
1

2

(

k̃12σx + k̃23σz

)

,

(17)M̃ =





0 k̃12(z) 0

k̃12(z) 0 k̃23(z)

0 k̃23(z) 0



,

(18)
b̃1(z) = |c̃1(z)|2 − |c̃2(z)|2 =

√
P0 cos θ(z),

b̃2(z) = 2i Im [c̃∗1 (z)c̃2(z)] = i
√
P0 sin θ(z) cosφ(z),

b̃3(z) = − 2 Re [c̃∗1 (z)c̃2(z)] = −
√
P0 sin θ(z) cosφ(z),

(19)tan θ = e
4τ

ζ2
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Numerical results in the presence of nonlinearity
In this section we test the performance of the previously derived modified couplings in the presence of non-
linearity in the waveguides, using in the transmission matrix (3) the modified coefficients k̃12, k̃23 . The various 
configurations of the nonlinear coefficients Qi which we are going to study are shown in Table 1, along with the 
figure numbers where the corresponding results of numerical simulations are displayed. Note that in the consid-
ered configurations the coefficients Qi take only one of two values, Q if the corresponding waveguide is nonlinear, 
or zero if it is linear. In all the simulations we use propagation length Z = 30 mm and maximum value of the 
Gaussian coupling coefficients k0 = 2 mm−1 . For the nonlinear coefficients we use the parameters A(eff )

i = 4 
µm2 , n(2) = 1.5× 10−13 cm2/W, � = 1.55 µ m, which lead to the value Q = 1.52× 10−2 (mm · W)−146. Note 
that the value that we use for the nonlinear refractive index n(2) is typical for AlGaAs, see Refs.41,42,45. In Figs. 4, 
5,6, 7 and 8 we plot for each configuration shown in Table 1 the normalized output power Pouti /P0 = Pi(Z)/P0 
at each waveguide, as a function of the power P0 inserted in the first waveguide, normalized by the quantity 
k0/Q = 131.57 W46. In each of these figures, in the right column we display the results corresponding to the 
shortcut couplings shown in the right column of Fig. 2, while in the left column we show for comparison the 
results obtained with the original Gaussian couplings of the left column in Fig. 2.

A first observation which applies to all the figures is that, as we move from the top to the bottom row, thus 
the spatial extension of the coupling coefficients is reduced and the adiabaticity condition is not satisfied, the 
shortcut couplings outperform the original Gaussian couplings, since the power exiting the third waveguide 
(blue solid line) is higher. Only the results of the first rows are comparable, since in this case the adiabatic and 
shortcut couplings have slight differences, see the top row of Fig. 2. For the second to bottom rows, the supe-
riority of shortcut couplings is eminent, indicating that these couplings can be exploited when the adiabaticity 
condition is violated, i.e. for smaller k0 or shorter device length. A second overall observation is that for low 
input power P0Q/k0 < 0.1 the nonlinear effects do not significantly affect the performance of the device when 
the shortcut couplings are used and light is transferred to the third waveguide with high efficiency, confirming 
the robustness of the design method.

In Fig. 4, where Q1 = Q2 = 0 and Q3 = Q , thus the nonlinearity is present only in the third waveguide, we 
observe for the modified couplings (right column) and higher values of the input power that the performance 
is reduced as we move from the first to the second row, since the power quickly entering the third waveguide 
affects more the transfer. The situation is somehow improved for shorter overlap between the coupling coefficients 
(third and fourth rows), since now the transfer in accomplished faster and the power in the third waveguide 
has a smaller effect. A similar behavior is observed in Fig. 5, where the nonlinearity is present only in the first 
waveguide, Q1 = Q and Q2 = Q3 = 0 . Comparing Figs. 4 and 5 we notice that the efficiency achieved in the 
latter case is worse. The reason is that in this case the light inserted in the first waveguide immediately activates 
the nonlinearity in this waveguide, which affects the transfer from the beginning. In the case depicted in Fig. 4 
the nonlinearity is activated later in the process, when light enters the third waveguide.

In Fig. 6, obtained for Q1 = Q3 = 0 and Q2 = Q , we observe that when only the middle waveguide is non-
linear the transfer efficiency is not much affected by the input power, since during the propagation of light the 
middle waveguide is not excited enough for the nonlinear effects to take action, see the red dashed-dotted line 
in the right column of Fig. 3. Using the terminology of STIRAP, for this configuration the dark state remains 
an eigenstate of the system and the transfer of light takes place through it. However, as the coupling coefficients 
become narrower, the middle waveguide is excited more and more, see the right panels in Figs. 3(b,c,d), leading 
to a somehow degraded performance for higher input power, as depicted in the right column of Fig. 6.

In Fig. 7 where the first and third waveguides are nonlinear and the middle one is linear, Q1 = Q3 = Q and 
Q2 = 0 , we obtain in general a better performance than the cases where only the first or only the third waveguide 
is nonlinear, depicted in Figs. 4 and 5, respectively. For example, in Fig. 7c we observe that under the shortcut 
couplings, we get a good transfer efficiency Pout3 /P0 > 0.9 even for high values of the input power, with the 
nonlinearity significantly affecting the performance only for P0 > 0.9k0/Q . In Fig. 7d with the narrower cou-
plings, we obtain very high efficiency levels for P0 < 0.4k0/Q . The improved performance compared to the cases 
where only Q1 = Q or Q3 = Q can be understood using the corresponding three-level picture of the system. The 
simultaneous presence of nonlinearity in both the first and third waveguides essentially reduces the effective 
two-photon detuning δ = Q3|b̃3(z)|2 − Q1|b̃1(z)|2.

Figure 8 corresponds to the case where the nonlinearity is present in all three waveguides, Q1 = Q2 = Q3 = Q . 
The performance of the shortcut couplings for large spatial extension is analogous to the previous case where the 
middle waveguide is linear ( Q2 = 0 ), compare the right panels in Figs. 7a and 8a. The reason is that in this case 
only a small amount of light passes through the middle waveguide, see the red dashed-dotted line in the right 

Table 1.   Configuration of nonlinear coefficients in the triple waveguide and figure number where the 
corresponding results are displayed.

Configuration of nonlinear coefficients Figures

Q1 = Q2 = 0 and Q3 = Q  4

Q1 = Q and Q2 = Q3 = 0  5

Q1 = Q3 = 0 and Q2 = Q  6

Q1 = Q3 = Q and Q2 = 0  7

Q1 = Q2 = Q3 = Q  8
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panel of Fig. 3a. Only for very large input power P0 > k0/Q this similarity breaks down. As the spatial extension 
of the shortcut couplings is decreased and the fraction of light through the middle waveguide is increased, the 
performance is further degraded compared to Fig. 7, see the right panel in Fig. 8b. But, as we further narrow 
the spatial extension of the couplings, we observe an improvement in the transfer efficiency and an increase in 
the threshold over which the nonlinear effects become important, see Figs. 8c and d. For example, in Fig. 8d 

Figure 4.   Normalized output power Pout
i

/P0 = Pi(Z)/P0 at each waveguide as a function of the normalized 
input power P0Q/k0 when Q1 = 0,Q2 = 0,Q3 = Q , for the Gaussian (left column) and modified shortcut (right 
column) couplings displayed in the left and right columns of Fig. 2, respectively.
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we observe a very high efficiency up to P0 = 0.3k0/Q , while also for P0 > 0.9k0/Q the performance is better 
compared to the case with larger spatial extent of the coupling coefficients, Fig. 8a. This behavior is similar to 
that observed in the right column of Fig. 4. It is due to the fact that narrower spatial extent of the couplings 
implies that the transition of light between the waveguides takes place in a smaller distance, so even for large 
values of the input power there is not enough excitation for the nonlinear coefficients to significantly affect the 

Figure 5.   Normalized output power Pout
i

/P0 = Pi(Z)/P0 at each waveguide as a function of the normalized 
input power P0Q/k0 when Q1 = Q,Q2 = 0,Q3 = 0 , for the Gaussian (left column) and modified shortcut (right 
column) couplings displayed in the left and right columns of Fig. 2, respectively.
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performance. For example, in the right panel of Fig. 3d, the spatial range over which the power in all the three 
waveguides has significant value, is very narrow.

That last observation we made, that if the spatial extent of the coupling coefficients becomes narrow enough 
so the transfer of light between waveguides with the modified couplings takes place at a short enough distance, 
then the nonlinearity affects the performance less and less, is also demonstrated in Fig. 9. There we display the 

Figure 6.   Normalized output power Pout
i

/P0 = Pi(Z)/P0 at each waveguide as a function of the normalized 
input power P0Q/k0 when Q1 = 0,Q2 = Q,Q3 = 0 , for the Gaussian (left column) and modified shortcut (right 
column) couplings displayed in the left and right columns of Fig. 2, respectively.
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normalized power exiting the waveguides as a function of the normalized input power, for the very narrow 
shortcut couplings shown in Fig. 10 and for additional configurations of linear and nonlinear waveguides. As 
we previously noticed, the best efficiency is achieved for the symmetric configurations Q1 = Q3 = Q,Q2 = 0 , 

Figure 7.   Normalized output power Pout
i

/P0 = Pi(Z)/P0 at each waveguide as a function of the normalized 
input power P0Q/k0 when Q1 = Q,Q2 = 0,Q3 = Q , for the Gaussian (left column) and modified shortcut 
(right column) couplings displayed in the left and right columns of Fig. 2, respectively.
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Q1 = Q2 = Q3 = Q , and Q1 = Q3 = 0,Q2 = Q . The worst performance for higher input powers is obtained for 
the non-symmetric configurations Q1 = Q,Q2 = Q3 = 0 and Q1 = Q2 = Q,Q3 = 0 , where the nonlinearity is 
present in the first (input) waveguide. A final interesting remark regarding the narrow modified couplings of 
Fig. 10 is that their maximum value slightly exceeds the maximum value k0 of the Gaussian couplings; further 

Figure 8.   Normalized output power Pout
i

/P0 = Pi(Z)/P0 at each waveguide as a function of the normalized 
input power P0Q/k0 when Q1 = Q,Q2 = Q,Q3 = Q , for the Gaussian (left column) and modified shortcut 
(right column) couplings displayed in the left and right columns of Fig. 2, respectively.
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decrease in the spatial extent of these coefficients results in even higher values, something that sets a lower limit 
on the device size reduction which can be achieved with shortcuts to adiabaticity.

Conclusion
In conclusion, we used shortcuts to adiabaticity to design the variable couplings in a three-waveguide directional 
coupler which may contain nonlinear elements, in order to accomplish efficient light transfer between the outer 
waveguides for shorter device lengths, despite the presence of nonlinearity. We derived the shortcut couplings 
for the ideal case where all the waveguides are linear, for which a perfect transfer is guaranteed in theory, but 

Figure 9.   Normalized output power Pout
i

/P0 = Pi(Z)/P0 at each waveguide as a function of the normalized 
input power P0Q/k0 for various configurations and the narrow modified shortcut couplings displayed in the 
right panel of Fig. 10.
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we tested them for various combinations of linear and nonlinear waveguides in the device. We showed with 
numerical simulations that, in most configurations, high levels of transfer efficiency can be maintained even for 
large values of the input power, and for shorter lengths than those of conventional adiabatic devices. We also 
found that efficiency is improved for shortcut couplings with less spatial extent, since in this case the nonlinear-
ity acts during a shorter range. The best performance was obtained for the symmetric configurations where the 
nonlinearity is present only in the middle or only in the two outer waveguides. The reason is that in the first case 
the dark state is still an eigenstate of the system, while in the second case the effective two-photon detuning is 
reduced. The worst performance for increasing input power was observed for the nonsymmetric configurations 
where the nonlinearity is present in the first (input) waveguide, thus it is immediately activated and undermines 
the transfer. The present work is expected to find application in research fields like optoelectronic computing and 
ultrafast light switching, where the fast and controlled light transmission inside a set of waveguides is a crucial 
task. Additionally, the reduction in the device size may be exploited for incorporating them in integrated optical 
systems, where a high density of waveguides is required.
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All data generated or analysed during this study are included in this published article.
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