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Logistic regression technique 
is comparable to complex machine 
learning algorithms in predicting 
cognitive impairment related 
to post intensive care syndrome
TingTing Wu 1,2,5, YueQing Wei 2,3,5, JingBing Wu 2,4, BiLan Yi 2,3 & Hong Li  1,2*

To evaluate the performance of machine learning (ML) models and to compare it with logistic 
regression (LR) technique in predicting cognitive impairment related to post intensive care syndrome 
(PICS-CI). We conducted a prospective observational study of ICU patients at two tertiary hospitals. 
A cohort of 2079 patients was screened, and finally 481 patients were included. Seven different ML 
models were considered, decision tree (DT), random forest (RF), XGBoost, neural network (NN), 
naïve bayes (NB), and support vector machine (SVM), and compared with logistic regression (LR). 
Discriminative ability was evaluated by area under the receiver operating characteristic curve (AUC), 
calibration belt plots, and Hosmer–Lemeshow test was used to assess calibration. Decision curve 
analysis was performed to quantify clinical utility. Duration of delirium, poor Richards–Campbell 
sleep questionnaire (RCSQ) score, advanced age, and sepsis were the most frequent and important 
candidates risk factors for PICS-CI. All ML models showed good performance (AUC range: 0.822–
0.906). NN model had the highest AUC (0.906 [95% CI 0.857–0.955]), which was slightly higher than, 
but not significantly different from that of LR (0.898 [95% CI 0.847–0.949]) (P > 0.05, Delong test). 
Given the overfitting and complexity of some ML models, the LR model was then used to develop a 
web-based risk calculator to aid decision-making (https://​model​871010.​shiny​apps.​io/​dynno​mapp/). 
In a low dimensional data, LR may yield as good performance as other complex ML models to predict 
cognitive impairment after ICU hospitalization.
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SVM	� Support vector machine
WBC	� White blood cell

Post-intensive care syndrome (PICS) is defined as development of new, or worsening of preexisting impairment 
in physical function, psychological disorder, or cognitive impairment that persists beyond ICU and hospital 
discharge1. Cognitive impairment related to PICS (PICS-CI) is one of the phenomena spanning from delirium 
to long-term cognitive impairment after discharge2, manifesting as memory loss, inattention, and/or executive 
dysfunction syndrome3. Neuroradiological and neuropathological studies in patients with PICS-CI have dem-
onstrated diffuse brain damage, including global and local patterns of atrophy, as well as cortical and subcortical 
lesions, specifically in the corpus callosum, the hippocampus, and the basal ganglia4. PICS-CI is a common and 
severe complication of ICU admission. There is considerable variability in the reported incidence of PICS-CI 
after critical illness (19–78.2%)5,6. In a study, 23.9% patients showed persistence of cognitive deficit 6 years after 
discharge, and only 45.7% returned to the workforce7. PICS-CI after ICU admission can be greatly taxing to 
patients and their families8. The condition affects people of all ages8 and is associated with increased mortality3. 
Moreover, it adversely affects the activities of daily living and the quality of life, and the recovery process is typi-
cally protracted and incomplete over several years after discharge, and carries enormous societal cost8.

The need to detect PICS-CI is increasingly recognized. Several studies have investigated the risk factors for 
PICS, particularly preventable ones, but have yielded discrepant results. Some studies have identified delirium 
as a strong risk factor6,9,10. In a few studies, delirium exhibited a dose–response relationship with PICS. Longer 
duration of delirium showed an independent association with poor cognitive function8, and repeated delirium 
exposure was associated with a greater risk of developing cognitive deficit compared to single delirium episode10. 
Older age has not yet been conclusively determined as an independent risk factor, as no age-dependent increase 
in the prevalence of cognitive deficit was observed after ICU admission8; however, other studies support the 
hypothesis of a higher risk at older ages11–13. Some ICU-related parameters such as longer ICU length of stay and 
mechanical ventilation showed a significant positive association with the occurrence of cognitive impairment13. 
However, a meta-analysis confirmed that delirium is the sole risk factor for cognitive impairment14. A recent 
meta-analysis revealed a paucity of rigorous cognitive function prediction models, and identified the need for 
further studies in this field15.

Machine learning (ML) has been regarded as an indispensable tool for revealing complex questions in the 
field of medicine16. In critical care settings, ML applications have been leveraged to create predictive and prog-
nostic models using supervised learning algorithms17. Complex ML algorithms (e.g., RF, NN, XGboost) have 
been claimed to present superior predictive discrimination compared to logistic regression technique18–24; nev-
ertheless, the advantage of state of the art ML models over the conventional generalized linear models remains 
controversial25–28. For instance, two systematic reviews found no significant difference in performance between 
logistic regression and ML in clinical prediction modelling25,28.

To the best of our knowledge, no studies have developed and compared performance of multiple ML mod-
els for prognostic modeling in the context of PICS-CI. Therefore, the purpose of this study was to (1) identify 
significant risk factors for PICS-CI; (2) develop multiple ML models and compare these with traditional LR; (3) 
generate a visualization web-based calculator risk prediction model with the greatest possible accuracy.

Materials and methods
Study setting and design.  We conducted a prospective observational study of ICU patients admitted 
between January and October 2019 at two tertiary hospitals in Fuzhou city, China, including general ICU, medi-
cal ICU, surgical ICU, cardiac ICU, and emergency ICU.

Study population.  Patients who qualified the following criteria were included in the study: (1) age > 18 years 
and < 80 years; (2) ICU length of stay > 48 h. Patients who qualified any of the following criteria were excluded: 
(1) nervous system diseases such as cerebral infarction, cerebral hemorrhage, meningitis, intracranial infection, 
craniocerebral injury, Parkinson’s, and brain tumor; (2) post-cardiopulmonary resuscitation or cardiac arrest; 
(3) pulmonary encephalopathy, hepatic encephalopathy, diabetic hyperosmolar coma, unexplained coma, and 
other diseases that may affect cognitive function; (4) patients with mental disorder, dementia/pre-dementia, or 
intellectual disability; (5) history of pesticide poisoning, drug poisoning, chronic alcohol abuse (consumption 
of alcohol for > 5 years, daily ethanol intake ≥ 80 g, calculation formula: ethanol volume (g) = consumed volume 
(mL) × ethanol concentration × 0.8); (6) Abuse of drugs such as hypnotics and anesthetics; (7) hearing impair-
ment or visual impairment and inability to complete the cognitive assessment; (8) accepted pharmacological or 
non-pharmacological cognitive interventions; unwilling or unable to cooperate with assessment (e.g., due to 
tracheotomy).

Procedure and data collection.  After approval of the study protocol by the ethics institutional review 
board, which comply with Declaration of Helsinki, 3 researchers in each of the 5 ICUs underwent standardized 
training for data collection. The study nurse explained the purpose of the study to eligible patients and obtained 
written informed consent from those who agreed to participate, according to Declaration of Helsinki.

Two methods (on-spot assessment and review of medical records) were used for data collection. The collected 
data were classified into 5 categories (a total of 35 variables), including demographics, disease-related features, 
treatment-related features, laboratory test features, and sleep quality. Sleep quality was assessed daily during 
the period of stay in the ICU. Screening for cognitive impairment was conducted by researcher after patient 
was discharged and returned to the general ward. Other factors were measured and recorded in the electronic 
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medical record (EMR) by medical staff, and we extracted and confirmed the information with the patient. The 
data collection process is shown as follows.

Demographics.  Demographic information was obtained from the EMR including age, sex (male or female), 
educational level (illiterate, primary school, junior high school, high school or secondary vocational school, col-
lege school or above), occupation (physical labor/nonphysical labor), body mass index, and history of alcohol 
consumption.

Disease‑related features.  The disease-related parameters were extracted from the ICU discharge diagnosis from 
EMR, including diagnosis (sepsis, hypertension, diabetes, chronic cardiorespiratory disease, chronic renal dis-
ease, respiratory failure, etc.). We classified it as acute disease, acute exacerbation of chronic disease, cardiac 
surgery, and non-cardiac surgery. We also calculated the Charlson Comorbidity Index (CCI) to evaluate the 
severity of complications, and the Acute Physiology and Chronic Health Status Score (Acute Physiology and 
Chronic Health Evaluation II, APACHE II).

Treatment‑related features.  The treatment-related factors were summarized after discharge from the ICU, 
which were daily assessed and recorded in the EMR by medical staff, including duration of mechanical ventila-
tion, cumulative doses of sedatives (propofol and midazolam), and cumulative doses of analgesics (sufentanil 
and remifentanil), duration of ICU stay, delirium, and duration of delirium.

Delirium was assessed using the Confusion Assessment Method for Intensive Care Unit questionnaire (CAM-
ICU)29 during ICU hospitalization. Delirium assessments were conducted twice daily (before 10 AM and after 8 
PM) by the charge nurse. Before each delirium assessment, the Richmond Agitation and Sedation Scale (RASS)3 
was used to assess the level of consciousness; patients with scores of − 4 or − 5 were not tested for delirium; 
delirium was assessed only when RASS score was below − 3. CAM-ICU delirium was deemed positive when 
there was an acute change in mental status from baseline with difficulty in focusing attention in combination 
with altered level of consciousness or disorganized thinking. Duration of delirium referred to the number of 
days on which delirium was observed.

Laboratory test features.  The laboratory data were derived from EMR after ICU discharge, including oxygena-
tion index PaO2/FiO2 (minimum), procalcitonin (maximum), glucose (minimum and maximum), WBC count 
(minimum and maximum), and lactate (maximum).

Sleep quality.  Nocturnal sleep quality was evaluated daily by charge nurse at 9 AM using Richards-Campbell 
Sleep Questionnaire (RCSQ)30 that comprises of five items: sleep depth, sleep latency, awakenings, returning to 
sleep, and sleep quality. Each item was rated on a 100-mm visual analog scale. Participants with a score of 1–25 
were considered to have poor sleep quality; score of 26–50 indicated poor sleep; score of 51–75 indicated good 
sleep; and score of 76–100 indicated very good sleep.

Outcome measurement.  Cognitive status was measured using Montreal Cognitive Assessment (MoCA) scores 
by researcher within 7 days after the transfer of the patient out of the ICU. MoCA is a brief but reliable test 
for evaluation of visuospatial/executive visuospatial/executive function, naming, memory, attention, language, 
abstraction, delayed recall and orientation, with a total score of 0–30 (the higher the score, the better is the func-
tion)31. Changsha version of MoCA-CS is a Chinese version of the original (English) version of MoCA that is 
adapted to Chinese culture, language, and demographic characteristics31. Use of 25/26 as the optimal cutoff value 
(≥ 26 points: normal cognitive function; ≤ 25 points: cognitive impairment) was associated with sensitivity of 
0.96 and specificity of 0.83 in Chinese older people. MoCA has been recommended for screening of PICS-related 
cognitive impairment by the Society of Critical Care Medicine consensus32.

Statistical analysis.  All statistical analyses were conducted using R version 4.1.2 (R Foundation for Statisti-
cal Computing, Vienna, Austria). Categorical variables are presented as frequency (percentage). Normally dis-
tributed continuous variables are presented as mean ± standard deviation and non-normally distributed contin-
uous variables are presented as median (interquartile range). Comparisons between PICS and non-PICS group 
were performed using the t test, Mann–Whitney U-test, Fisher’s exact test, or Chi squared test, as appropriate. P 
values < 0.05 were considered indicative of statistical significance.

Data preparation.  The flow chart of the probability analysis is shown in Fig. 1. We adopted the imputation and 
discretization methods to clean data and to deal with noise, missing values, and outliers. To ensure the facticity 
and reliability of the prediction model, we discarded one variable with 23.91% missing data, namely the maxi-
mum value of CRP; the missing values for 5 other variables were < 10%, therefore, multiple imputation using the 
mice package was performed.

Feature selection.  Feature selection is used to improve model performance and retrieve more clinically appli-
cable compact models. We normalized the data and target values locked at 0–1. A total of 35 candidate features 
describing PICS-CI risk were collected in this study. We used least absolute shrinkage and selection operator 
(LASSO) regression as a variable selection mechanism for the algorithms that were unable to select features for 
themselves, such as XGBoost, neural network (NN), naïve Bayes (NB), and support vector machine (SVM); 
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however, for models such as logistic regression (LR), decision tree (DT), random forest (RF), we used their own 
algorithms for feature selection.

Model development.  The dataset was randomly split into two sets: the training set (70% participants) and the 
testing set (30% participants). Seven ensemble ML algorithms were employed to predict the probability of PICS-
CI. These seven state-of-the-art algorithms were LR, DT, RF, XGBoost, neural network (NN), naïve Bayes (NB), 
and support vector machine (SVM). To select the optimal hyperparameters, the framework of the caret package 
was used. The conventional LR model was selected as a benchmark to compare with ML techniques. The LR 
model was conducted using significant variables identified by backward stepwise analysis with Chi-squared test. 
Then, we chose an entry probability of < 0.05 by the stepwise selection method, and the glmnet function from the 
glmnet package was used.

Model validation.  To cope with the overfitting and inherent instability, a fivefold cross-validation procedure 
was applied in the training set. Subsequently, the performance of the final model was assessed, with the optimal 
cutoff identified by the maximum Youden index, both on the training set and the testing set.

Model evaluation.  The performance was assessed in three domains. First, discrimination was quantified using 
the area under the receiver operating curve using the ci.auc function of the pROC package. AUC > 0.5 indicated 
better predictive values; the closer the AUC value was to 1, the better the model performance. The differences 
between two ROC curves were assessed using the DeLong’s test. More extensive metrics were generated for 
each model including accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value 
(NPV), and F1 score. Second, calibration curves were plotted to assess the calibration of the PICS-CI, accompa-
nied with the Hosmer–Lemeshow test (a significant test statistic implies that the model does not calibrate per-
fectly), in order to examine the concordance between the calculated (using model) and observed probabilities 
of insufficient response. Third, decision curve analysis was performed to assess the benefits of clinical use. After 
comparing the seven models, the most accurate model was then used to construct a web-based risk calculator 
by shiny package in the R language.

Figure 1.   Flow chart of the probability analysis. LR logistic regression, DT decision tree, RF random forest, 
NN neural network, NB naïve bayes, SVM support vector machine, AUC​ area under the receiver operating 
characteristic curve, NPV negative predictive value, PPV positive predictive value.
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Ethics statement.  The study protocol was approved by the Fujian Provincial Hospital Institutional Review 
Board ([No:2016-07-001), and the purpose of the study was explained to eligible patients and obtained written 
informed consent from those who agreed to participate.

Results
Patient characteristics.  Among the 2079 patients admitted to ICUs at the two tertiary hospitals within the 
study reference period, 1064 patients qualified the study-selection criteria. Of these 583 patients were excluded 
due to various reasons (hospitalization < 48 h, discharge against medical advice, death, or inability to communi-
cate due to tracheotomy), as shown in Fig. 2. Thus, a total of 481 patients were finally included; of these, 230 were 
diagnosed as PICS-CI while 251 had normal cognitive function. The patient characteristics are summarized in 
Table 1.

Important variables selected for predicting PICS‑CI.  Figure 3 depicts the four kinds of important 
features that were generated by LASSO, multivariate LR, DT, and RF, respectively. XGBoost, NN, NB, and SVM 
models were developed based on the different combination of the features that were selected by LASSO, while 
the LR, DT, and RF models were developed by candidate features selected by their own algorithms. Features that 
were important for all algorithms were duration of delirium, RCSQ, age, and sepsis.

Discrimination of ML models for predicting PICS‑CI.  In the testing set, ML models showed similar 
discrimination: NN (AUC: 0.906 [95% CI 0.857–0.955]), LR (AUC: 0.898 [95% CI 0.847–0.949]), SVM (AUC: 
0.895 [95% CI 0.843–0.947)], NB (AUC: 0.877 [95% CI 0.822–0.932]), XGBoost (AUC: 0.866 [95% CI 0.807–
0.925]), RF (AUC: 0.865 [95% CI 0.807–0.922]), DT (AUC: 0.822 [95% CI 0.752–0.892]), shown in Fig. 4. The 
Delong test showed that only DT model had significant difference (significantly lower AUC) when compared 
with LR technique (P < 0.05), whereas, other ML models showed no significant difference in the discrimination 
ability (P > 0.05). In terms of confusion matrix, LR showed the highest sensitivity of 0.899, but lowest specificity 
of 0.750; other ML models produced opposite results, i.e., poor sensitivity (0.594–0.783) but excellent specificity 
(0.895–1.00), shown in Table 2.

Calibration of ML models for predicting PICS‑CI.  Hosmer and Lemeshow Test-goodness of fit demon-
strated that LR, RF, NN, and SVM models have good agreement between the predicted probability and observed 
incidence of PICS-CI (P > 0.05); nevertheless, unacceptable calibration was observed for DT, XBGoost, and NB 
models (P < 0.05) (Fig. 5).

Clinical use of ML models for predicting PICS‑CI.  The decision curve analysis for predicting PICS-CI 
is presented in Fig. 6. Most of the ML models of LR, RF, XGBoost, NN, and SVM showed a higher net benefit 

Figure 2.   Flowchart of participants.
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Table 1.   Characteristics of the study population.

Features

PICS-CI

χ2/Z P value
No
n = 251

Yes
n = 230

Continuous variable, [N (%)]

 Sex Male 170 (67.7) 153 (66.5) 0.079 0.778

 Marital status

Married 230 (91.6) 215 (93.5) 2.432 0.272

Widowed 4 (1.6) 6 (2.6)

Others 17 (6.8) 9 (3.9)

 Education

Less than 6 years 80 (31.9) 111 (48.3) 14.844 0.001

6 to 12 years 149 (59.3) 109 (47.4)

More than 12 years 22 (8.8) 10 (4.3)

 Smoking 63 (25.1) 51 (77.8) 0.568 0.451

 Sepsis 20 (8.0) 39 (17.0) 9.01 0.003

 Diagnosis

Infectious disease 20 (8.0) 29 (12.6) 8.25 0.220

Respiratory diseases 43 (17.1) 33 (14.3)

Kidney disease 7 (2.8) 5 (2.2)

Traumatic disease 20 (8.0) 13 (5.7)

Digestive system diseases 55 (21.9) 43 (18.7)

Cardiovascular diseases 89 (35.5) 98 (42.6)

Others 17 (6.7) 9 (3.9)

 T ≥ 38 °C 111 (44.2) 122 (53.0) 3.739 0.053

Categorical variable, [M(IQR)]

 Age, year 56.0 (22.0) 63.0 (18.0)  − 5.11 0.00

 Height 168.0 (13.0) 167.0 (11.3)  − 1.83 0.07

 Weight 64.0 (13.0) 63.0 (14.0)  − 0.79 0.43

 APACHEII 14.0 (8.0) 16.0 (10.0)  − 2.65 0.01

 SOFA 5.0 (5.0) 6.0 (5.0)  − 2.73 0.01

 CCI 2.0 (3.0) 2.0 (2.0)  − 1.33 0.18

 ICU length of stay, day 7.0 (8.0) 8.0 (10.3)  − 2.60 0.01

 Duration of mechanical ventilation, hours 0.0 (18.0) 45.0 (120.0)  − 7.46 0.00

 Sedative

  Propofol dose, g 0.0 (1.0) 1.4 (4.6)  − 7.25 0.00

  Midazolam dose, mg 0.0 (20.0) 20.00 (260.0)  − 5.94 0.00

 Analgesic

  Remifentanil dose, mg 0.0 (2.0) 1.0 (9.0)  − 4.36 0.00

  Sufentanil dose, mg 0.0 (300.0) 200.0 (600.0)  − 4.69 0.00

 Norepinephrine 2.0 (30.0) 8.0 (66.0)  − 4.12 0.00

 Dopareine 0.0 (20.0) 0.0 (20.0)  − 3.36 0.00

 Dobutamine 0.0 (0.0) 0.0 (0.0)  − 4.18 0.00

 Duration of delirium, days 0.0 (0.0) 3.0 (6.0)  − 13.77 0.00

  0 254 (69.4) 112 (30.6)  − 7.48 0.00

  < 3 5 (21.7) 18 (78.3)

  3–7 4 (6.8) 55 (93.2)

  > 7 3 (9.1) 30 (90.9)

 RCSQ-sleep depth 65.0 (20.0) 55.0 (20.0)  − 7.48 0.00

 RCSQ-sleep latency 66.0 (20.0) 55.0 (20.0)  − 7.36 0.00

 RCSQ-awakenings 70.0 (15.0) 60.0 (15.0)  − 6.75 0.00

 RCSQ-returning to sleep 70.0 (15.0) 60.0 (15.0)  − 8.71 0.00

 RCSQ-sleep quality 70.0 (15.0) 60.0 (15.0)  − 8.19 0.00

 RCSQ-average 69.0 (16.0) 56.1 (13.3)  − 8.67 0.00

 RCSQ-noise 60.0 (15.0) 55.0 (10.0)  − 6.58 0.00

 Glucose, mmol

  Minimum value 5.2 (1.7) 5.4 (1.7)  − 1.33 0.18

  Maximum value 14.1 (7.3) 15.9 (7.9)  − 3.76 0.00

 PCT maximum value, ng/ml 1.8 (8.7) 4.3 (15.7)  − 3.48 0.00

 WBC maximum value, count 15.3 (8.0) 16.9 (8.2)  − 2.63 0.01

 Lac, mmol 2.9 (5.8) 3.9 (8.5)  − 2.50 0.01

 PaO2/FiO2 170.0 (113.0) 152.2 (118.0)  − 3.01 0.00
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compared to both treat all (grey line) and treat none (black line) with a wide range of reasonable thresholds prob-
ability; however, the benefit of DT and NB models was comparatively lower, as depicted in Fig. 6.

Web‑based risk calculator of LR technique.  Considering the performance and complexity of most ML 
models, we regarded LR as an accurate and pragmatic model, and given the number of variables included in the 
final LR model, a simple web-based risk calculator (rather than a score chart or nomogram) was developed and 
housed at the website: https://​model​871010.​shiny​apps.​io/​dynno​mapp/. The website offers a visual representa-
tion of the predicted probability of PICS-CI and its 95% prediction interval based on the variables’ input (Fig. 7).

Figure 3.   Importance of the candidate features. (A) Feature selection by LASSO, (B) feature selection by logistic 
regression, (C) feature selection by decision tree, (D) feature selection by random forest.

Figure 4.   AUC of machine learning models predicting PICS-CI of testing set.

https://model871010.shinyapps.io/dynnomapp/
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Discussion
In the present study, we explored and compared the applicability of seven ML methods to predict the risk of 
PICS-CI in a low dimensional data. LR models exhibited accuracy and similar discrimination, good calibration 
and clinical utility among the seven ML models. Given the risk of overfitting and the lack of interpretability of 
some ML models, a simplified web risk calculator based on LR was proposed, which is convenient to implement 
in routine practice. Therefore, traditional regression models should continue to play a key role in disease risk 
prediction if and when low-dimensional data are used.

To the best of our knowledge, this was the first study to develop and compare ML models to predict the risk 
of PICS-CI. Our analysis indicated that the performance of complex ML models is not consistently better than 
traditional LR models in predicting PICS-CI events. Indeed, some models had lower performance, such as the 
DT model which significantly underperformed the LR model (P < 0.05 for Delong test). One potential reason 
why ML classification algorithms did not outperform traditional LR models in our study may be that PICS-CI 
is an easily predictable behavior, and all the models were performing similarly well (AUC range: 0.822–0.906). 
It is also possible that we have collected sensitive variables predicting PICS-CI, and these variable domains can 
improve the prediction of appropriate PICS-CI. In fact, the added value of large datasets and the increase in 
algorithmic complexity may be negligible if the relevant features are not included33.

We identified a potentially modifiable or unchangeable risk factor for post-ICU cognitive impairment. We 
found that duration of delirium, poor RCSQ, advanced age, and sepsis were the most frequent and important 
candidates. In the present study, for each additional day of delirium, the risk of PICS-CI was increased by 2.64 
times. Several prior studies have yielded consistent results. In a single-center prospective study of 409 ICU 
patients, compared with no delirium experience, the occurrence of PICS-CI increased by 36.849 times with 
a wide 95% CI when the duration of delirium was greater than 8 days34. A meta-analysis even suggested that 
delirium is likely to be the sole risk factor for PICS-CI14. We used RCSQ to measure patient perception of sleep 
quality, including sleep depth, sleep latency, awakenings, returning to sleep, and sleep quality35. We found that 
patient self-reported sleep quality was also associated with PICS-CI. One possibility is that sleep deprivation and 
delirium share many common symptoms; both these factors are likely to have a bidirectional effect and may cre-
ate a potential vicious cycle in critically-ill patients36. Sleep fragmentation has also been shown to be associated 
with worse cognitive performance in hospital at 7 days of ICU discharge37. However, Yao et al. found that the 
RCSQ is not effective in predicting PICS-CI; this may be due to the fact that they just assessed sleep abnormali-
ties occurring in critically-ill patients within 3 days after ICU discharge34. In our study, advanced age was found 
to be a risk factor for PICS-CI. This result should be interpreted with caution, because cognitive function is an 
age-dependent syndrome. In addition, we did not measure the cognitive function prior to ICU admission, so it is 
difficult to determine that it was acquired after critical illness. Sepsis-related encephalopathy is characterized by 
pathological behavior ranging from delirium to coma, and may lead to long-term cognitive impairment38, affect-
ing up to 50% of patients during the course of sepsis39. The pathogenesis is due to a dysregulated host response 
and the absence of direct central nervous system infection, resulting in residual diffuse brain dysfunction40.

Second, the inherent flexibility and scope for automation make ML well suited to handling complex high-
dimensional data (i.e., with many variables or features, perhaps more than 50 predictors) that would be chal-
lenging for conventional approaches26,33. The flexibility of ML algorithms is manifested in their ability to capture 
complex nonlinear and interactive effects41, which may be a common feature of high-dimensional data. In the 
present study, we used a limited set of clinical predictors (n = 35) which may have contributed to the comparable 
performance of ML and traditional method. In a study using large data set (n = 11,022) with low dimensional 

Table 2.   The performance of machine learning models. LR logistic regression, DT decision tree, RF random 
forest, NN neural network, NB naïve bayes, SVM support vector machines, NPV negative predictive value, PPV 
positive predictive value. *The AUC of DT model was significantly different from that of LR algorithm (Delong 
test), while others not.

Type Cut off Specificity Sensitivity Accuracy NPV PPV Precision Recall F1 score AUC (95%CI)

Training set

LR 0.453 0.880 0.752 0.819 0.794 0.852 0.852 0.752 0.799 0.896 (0.863–0.928)

DT 0.550 0.926 0.758 0.845 0.806 0.904 0.904 0.758 0.824 0.878 (0.840–0.915)

RF 0.391 0.903 0.969 0.936 0.969 0.902 0.902 0.969 0.934 0.979 (0.968–0.991)

XGBoost 0.403 0.874 0.857 0.866 0.869 0.863 0.863 0.857 0.860 0.935 (0.910–0.960)

NN 0.510 0.920 0.752 0.839 0.801 0.896 0.896 0.752 0.818 0.905 (0.874–0.936)

NB 0.037 0.811 0.776 0.795 0.798 0.791 0.791 0.776 0.784 0.862 (0.823–0.901)

SVM 0.370 0.817 0.820 0.819 0.831 0.805 0.805 0.820 0.812 0.901 (0.869–0.933)

Testing set

LR 0.369 0.750 0.899 0.821 0.891 0.765 0.765 0.899 0.827 0.898 (0.847–0.949)

DT 0.926 1.000 0.594 0.807 0.731 1.000 1.000 0.594 0.746 0.822 (0.752–0.892)*

RF 0.545 0.934 0.638 0.793 0.740 0.898 0.898 0.638 0.746 0.865 (0.807–0.922)

XGBoost 0.587 0.961 0.638 0.807 0.745 0.936 0.936 0.638 0.759 0.866 (0.807–0.925)

NN 0.551 0.895 0.783 0.841 0.819 0.871 0.871 0.783 0.824 0.906 (0.857–0.955)

NB 0.307 0.934 0.681 0.814 0.763 0.904 0.904 0.681 0.777 0.877 (0.822–0.932)

SVM 0.480 0.908 0.754 0.835 0.802 0.881 0.881 0.754 0.813 0.895 (0.843–0.947)
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Figure 5.   Calibration curve and HL-test result of machine learning models of testing set. (A) for logistic 
regression, (B) for decision tree, (C) for random forest, (D) for XGBoost, (E) for neural network, (F) for naïve 
bayes, (G) for support vector machine.
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data (only 11 variables), ML methods were not found to improve prognostic prediction as well26. As suggested by 
previous studies, when the clinical data is low-dimensional data (often with limited data set, a small number of 
clinical predictors, few nonlinear and interactive effects), LR is an easy-to-use and appropriate model for disease 
risk prediction28. The ability of ML to process high-dimensional data should not distract from the often-greater 
benefits of traditional LR.

Finally, despite the good discriminatory power of some ML models, for instance, DT (AUC: 0.822 [95% CI 
0.752–0.892]), XGBoost (AUC: 0.866 [95% CI 0.807–0.925]), and NB (AUC: 0.877 [95% CI 0.822–0.932]), these 
models may not end up being used, because these clearly underperformed in terms of calibration (P < 0.05). This 
indicates that overfitting is a common problem arising in small data sets42. In contrast, DT, XGBoost, and NB 
methods have exhibited better performance in other studies43–45, which however did not assess calibration. A 
recent systematic review28 did not find an incremental value of flexible ML techniques over traditional statisti-
cal methods in relatively small data sets (median sample size: 1250); moreover, calibration was not addressed 
in 79% of ML studies. Calibration evaluation is a critical step before implementing predictive models in clinical 
practice. Moreover, reporting guidelines for building predictive models using ML methods recommend report-
ing calibration46.

Given the lack of interpretability of some ML models, we therefore presented a web-based risk calculator 
based on LR model, which could allow for a more precise predicted probability compared to a points-based 

Figure 5.   (continued)
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Figure 6.   Decision curve analysis of machine learning models of testing set. The y-axis measures the net 
benefit. DCA shows the clinical usefulness of the machine learning models, according to a continuum of 
potential thresholds for PICS-CI risk (x-axis) and the net benefit of using the prediction model to stratify 
patients according to risk (y-axis). Transverse line represents the assumption that no patients have PICS-CI; 
oblique line represents the assumption that all patients have PICS-CI; dotted line represents the PICS-CI 
model). (A) For logistic regression, (B) for decision tree, (C) for random forest, (D) for XGBoost, (E) for neural 
network, (F) for naïve bayes, (G) for support vector machine.
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scoring system. For example, a 72-year-old critically ill patient complicated with delirium for 3 days and having 
fair sleep quality (RCSQ-returning to sleep = 60), no sepsis, no propofol, and minimum value of PO2/FiO2 in 
daily assessment, would have an 87% risk of PICS-CI. However, in another patient with similar characteristics, 
except having no delirium, the observed probability would reduce to 49%.

Some limitations of our study should be acknowledged. First, we considered only a limited number of vari-
ables for predicting PICS-CI. We restricted our analyses to predictive modeling with known or potential risk 
factors. This may limit the generalizability of our conclusion to data sets with more variables. Second, though the 
several ML models demonstrated perfect performance in internal validity, further research should use a prospec-
tive external validation to check for web-based risk calculator for routine clinical use. Third, the present study 
was unable to measure cognitive function prior to ICU admission which may have possibly contributed to over-
estimation of the incidence of ICU-acquired cognitive impairment. Of note, we excluded patients aged ≥ 80 years 
and those with nervous system disease as in these patients, the cognitive impairment may be due to physiology 
or the disease itself rather than ICU stay. Finally, we only investigated short-term cognitive impairment during 
hospitalization and did not conduct a long-term follow-up after discharge.

Figure 6.   (continued)
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Conclusion
Our results indicate that the risk of early cognitive impairment post ICU hospitalization can be parsimoniously 
assessed by several ML prediction models. Indeed, in a low-dimensional and simple limited data setting, complex 
ML algorithms performed no better than traditional LR model for prediction of PICS-CI. We hope that LR model 
with its accompanying web-based risk calculator will facilitate prevention and early recognition of PICS-CI.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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