
1

Vol.:(0123456789)

Scientific Reports |         (2023) 13:1234  | https://doi.org/10.1038/s41598-023-28409-2

www.nature.com/scientificreports

Schooling behavior driven 
complexities in a fear‑induced 
prey–predator system 
with harvesting under deterministic 
and stochastic environments
Nazmul Sk  & Samares Pal *

The well‑being of humans is closely linked to the well‑being of species in any ecosystem, but the 
relationship between humans and nature has changed over time as societies have become more 
industrialized. In order to ensure the future of our ecosystems, we need to protect our planet’s 
biodiversity. In this work, a prey–predator model with fear dropping prey’s birth as well as death 
rates and nonlinear harvesting, is investigated. In addition, we consider that the consumption rate 
of predators, i.e., the functional response, is dependent on schooling behavior of both species. We 
have investigated the local stability of the equilibrium points and different types of bifurcations, 
such as transcritical, saddle‑node, Hopf and Bogdanov–Takens (BT). We find that consumption rate 
of predator, fear and harvesting effort give complex dynamics in the neighbourhood of BT‑points. 
Harvesting effort has both stabilizing and destabilizing effects. There is bistability between 
coexistence and predator‑free equilibrium points in the system. Further, we have studied the 
deterministic model in fluctuating environment. Simulation results of stochastic system includes time 
series solutions of one simulation run and corresponding phase portraits. Notably, several simulation 
runs are conducted to obtain time series solutions, histograms, and stationary distributions. Our 
findings exhibit that during stochastic processes, model species fluctuate around some average values 
of the deterministic steady‑state for lower environmental disturbances. However, higher values of 
environmental disturbances lead the species to extinction.

In order to shape the evolution of organisms, interspecies interactions are imperative. Over the last few decades, 
the scientific community has been studying prey–predator interactions extensively as one of the most exhibited 
examples of interspecies interactions. To understand the dynamics of prey–predator interactions on a global 
scale, numerous research studies have been  conducted1–6. The functional response describes the mechanism 
by which predators feed on prey in prey–predator interactions, which is a central component of population 
dynamics. Different types of functional responses were developed  in7–10. Functional responses from the Holling 
family are commonly used to describe prey–predator  interactions7. But, the Holling family does not consider 
predator interference in the response function, whereas some biologists claim that predator interference must 
be included in the response function, particularly when predators compete for food or search for  food8,9,11. The 
schooling behavior of predators and prey populations is explained by a functional response that is predator-
dependent, which is outlined by Cosner et al.10. This type of behavior can be observed in biological species, such 
as a school of tuna searching and contacting herds of prey before hunting  them12. Due to the assumption that 
predators were foraging collectively, the above functional response, unlike the others (e.g. ratio-dependent or 
Beddington-DeAngelis), increased with increasing predator density.

There are increasing numbers of evidences that predators impact their prey both directly (consumptive 
impacts) and indirectly (non-consumptive impacts). Directly, predators kill and consume their prey, but indi-
rectly they instil fear in the prey population, which leads to significant behavioral changes in them (prey) such 
as vigilance, social behavior, habitat, foraging activity, reproductive cycle, etc.3,13–15. Due to this, prey species 
compensate with mortality risk, affecting their growth and mortality rates. Different prey–predator systems 
have been empirically observed to demonstrate such  phenomena16,17. The cost of fear on prey reproduction is 

OPEN

Department of Mathematics, University of Kalyani, Kalyani 741235, India. *email: samaresp@yahoo.co.in

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-28409-2&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2023) 13:1234  | https://doi.org/10.1038/s41598-023-28409-2

www.nature.com/scientificreports/

the main consideration in prey–predator  models4,18. However, in reality, fear of predators can affect more than 
reproduction; it can also affect the death rates of prey  population5,19,20. There is no doubt that harvesting is an 
influential issue from both an ecological and economic standpoint as well as from a social perspective. Moreover, 
there is a possibility that predators and/or prey species can exploit the ecosystem when there is an abundance of 
food. As a result, it is necessary to harvest species. There have been a number of researchers who have explored 
this area extensively in recent  years21–23.

Stochasticity (i.e., variation in the model parameters due to random effects) in the population models 
improves the accuracy, realism, and utility of the models. Generally, population dynamics are affected by two 
types of  stochasticity24,25. They are (i) Demographic stochasticity: random variation in the number of births and 
deaths in a population caused by the discrete nature of individuals. (ii) Environmental stochasticity: variability 
on the environmental conditions such as temperature, humidity, pH, rainfall, etc. It is obvious that survival and 
reproduction tend to be affected by environmental conditions. Environmental stochasticity applies to both small 
and large populations, whereas Demographic stochasticity negligible in case of large populations. Additionally, it 
is desirable to measure the variability of outcomes within a conservation or restoration  framework26. To expose 
the actual dynamics of a population model within open environment, environmental stochasticity should always 
be considered as it is impossible to keep environmental conditions constant over time. Incorporation of envi-
ronmental fluctuations or demographic stochasticity into the modeling approach are important components. In 
several existing  literature27, author has shown that continuous fluctuation of environmental conditions can lead 
to random fluctuation in the important model parameters to a greater or lesser extent. They are mainly birth 
rates, death rates, carrying capacity, competition coefficients and all other parameters involved in the dynamical 
system. It has been established that environmental noise has a significant effect on deterministic systems when 
random disturbances are  introduced22,28–31. Noise from the environment adversely affects almost all ecosystems. 
Thus, prey–predator models cannot ignore the shifting environmental effects, whereas stochastic models can 
accurately predict dynamics when the environment  changes22. Belabbas et al.32 investigated a new approach 
of a stochastic prey–predator model with protection zone for the prey and found rich dynamics of the system.

Following the above discussions, we were motivated to visit the state as discussed here. There are hardly 
any studies considering predator-dependent functional response describing both predatory and prey schooling 
 behaviors10,33. Additionally, a limited number of literatures address the issue of fear effect affecting the death of 
prey  population5,34,35. Here, we intend to explore the deep insights of a prey–predator model with Cosner-type 
functional  response10, fear that affects the growth and death of prey population, and nonlinear harvesting of 
the predator population. To the best of our knowledge, none yet studied the combined effects of double fear, 
nonlinear harvesting on Cosner-type functional response to fill the gap in extant research. Additionally, we 
incorporate white  noise36,37 due to the perturbation of environmental conditions. Our second objective is to 
determine how environmental noise affects the dynamics of the system. Moreover, a numerical comparison 
between deterministic and stochastic models is made.

Deterministic model
In a region under consideration, let at any instant t > 0 , x and y represent the prey and predator population densi-
ties, respectively. The rate of change of each model species density at time t is made on the following assumptions: 

1. Prey population grow logistically in the absence of predator with birth rate r, which is affected by the fear 
( f1 ) of predator (when predators are around).

2. There is a reduction in the rate of prey density change due to three types of death, namely, natural death with 
the rate d1 , fear related  death5 with the level of fear f2 and over crowding death with the rate d2.

3. Also, the rate of change of prey density decreases due to predation of predator population following a 
predator-dependent functional response describing both predatory and prey schooling  behaviors10. Response 
function is expressed in functional form describing as ζ(x, y) = cxy

1+chxy , where c denotes the rate of consump-
tion and h represents handling time of predator for one prey.

4. Predator population survive in the system by consuming prey population only. They grow with conversion 
efficiency c1 of prey biomass into predator biomass.

5. Predator population harvested from the system which reduces its rate of density. We consider a nonlinear 
harvesting term (Michaelis-Menten type) given by, H(y) =

qEy

p1E + p2y
 . Here, parameters q and E, respec-

tively, represent the catchability rate and harvesting effort. It is easy to observe that H →
q
p1
y as E → ∞ for 

a fixed value of y. Also, H →
q
p2
E as y → ∞ for a fixed value of E. Therefore, at higher effort levels, p1 is 

proportional to the stock level-catch rate ratio and at higher levels of stock, p2 is proportional to the effort 
level-catch rate ratio.

6. Lastly, we assume that the predator population experience natural as well as over crowding related death 
with the rates d3 and d4 , respectively.

Keeping all these above assumptions in mind, we formulate the following prey–predator model:

(1)

dx

dt
=

rx

1+ f1y
− (1+ f2y)d1x − d2x

2 −
cxy2

1+ chxy
,

dy

dt
=

c1cxy
2

1+ chxy
− d3y − d4y

2 −
qEy

p1E + p2y
.
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System (1) is to be analyzed with the initial conditions x(0), y(0) > 0 . All the model parameters are assumed 
to be positive constants and their hypothetical values that we used for numerical calculations are as follows:

In Table 1, we have provided system’s equilibria, sufficient conditions of their existence and stability. Math-
ematically, it is difficult to determine the existence of coexistence (interior) equilibrium point(s) by the given 
nullclines. So, we visualize it numerically (see Fig. 1). It is apparent from the figure that on increasing the value 
of E, number of coexistence equilibrium points reduces and after a certain range there is no coexistence equi-
librium point.

Transcritical bifurcation. From Table 1, it is clear that the equilibrium E0 is stable if r < d1 , which is oppo-
site to the existence condition of E1 . That is, equilibrium E0 is stable whenever the equilibrium E1 does not exist, 
and hence these two equilibria are related via transcritical bifurcation. Using Sotomayor  theorem38, we can easily 
prove that model system (1) experiences transcritical bifurcation at the trivial equilibrium point E0 as the growth 
rate of prey crosses a critical value r[TB] = d1.

We visualize the transcritical bifurcation graphically in Fig. 2. It is clear from the figure that when the value 
of r is less than d1 = 0.1 , the equilibrium point E0 only exists and it is stable. If we increase the value of r 
( r > rTB = d1 = 0.1 ) then E0 becomes unstable and the equilibrium point E1 exists and becomes stable.

(2)
r = 3.1, f1 = 1, f2 = 0.4, d1 = 0.1, d2 = 0.08, c = 0.11, h = 0.1, c1 = 0.5, d3 = 0.1,

d4 = 0.06, q = 0.65, E = 0.5, p1 = 0.5, p2 = 0.65.

Table 1.  Sufficient conditions for the existence and stability of different equilibrium points of system (1).

Equilibria Condition of existence Stability condition

E0 = (0, 0, 0) Always exist r < d1

E1 =

(

r − d1

d2
, 0

)

r > d1 r > d1

E∗ = (x∗ , y∗)
x∗ and y∗ are the positive solution(s) of the nullclines 

r
1+f1y

− (1+ f2y)d1 − d2x −
cy2

1+chxy = 0 and c1cxy
1+chxy − d3 − d4y −

qE
p1E+p2y

= 0.
B1 > 0, B0 > 0, B1 = −(b11 + b22) , B0 = b11b22 − b12b21, [bij]2×2 = JE∗

Figure 1.  Nullclines for different values of E. Other parameters are same as in (2).

Figure 2.  Transcritical bifurcation with respect to r. Rest of the parameters are same as in (2).
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Hopf bifurcation. One of the most common dynamics in interacting population dynamics is oscillating 
behavior, which implies that there is a Hopf bifurcation. By local changes in equilibrium properties, Hopf bifur-
cation describes when a periodic solution appears or disappears. In this section, we study the Hopf bifurcation 
through the coexistence equilibrium E∗ with respect to the model parameter E. Discussion for the existence of 
Hopf bifurcation is as follows:

As it is easy to follow, we verify Hopf bifurcation numerically. We have considered the parameters value same 
as in (2) except c = 0.1 and E. At E = E[HB] = 0.1196559641 , the trace of the Jacobian matrix at 
E∗(2.618402886, 2.352228027) is zero and determinant, Det(JE∗ ) = 0.4474794791 > 0 . The value of 
d(Tr(JE∗ ))

dE

∣

∣

∣

E=E[HB]
= −0.02965188514 �= 0 . Therefore, the transversality condition for Hopf bifurcation is also 

satisfied at E = E[HB] . Thus, these results confirm that the system (1) experiences a Hopf  bifurcation2 around 
E∗(2.618402886, 2.352228027).

Moreover, we obtain Lyapunov number L1 = −0.04728284756π < 0 at E[HB] = 0.1196559641 . This implies 
that system (1) goes through a supercritical Hopf bifurcation at E∗(2.618402886, 2.352228027).

Saddle‑node bifurcation. Sotomayor’s theorem says that saddle-node bifurcation may occur at coincident 
equilibrium points depending on threshold value of the bifurcation parameters. Since the analytical result is dif-
ficult to follow, we verify the existence of saddle-node bifurcation of system (1) numerically for given set of 
parameters value (2) except c = 0.15 and E. At E = E[SN] = 2.6670276565 , system (1) has a coincident equilib-
rium E∗(12.07536421, 1.327137944) . The corresponding Jacobian matrix 

JE∗(E = E[SN]) =

(

−0.9247512109 − 10.89563235

0.08585790896 1.011635174

)

 has one zero eigenvalue. For the matrices JE∗ and JTE∗ , the 

eigenvectors V and W associated with the zero eigenvalue can be found as follows: 
V = [−7.625518027 0.6469271584]T and W = [−0.06805575397 − 0.7326946399]T . This yields,

Based on Sotomayor’s  theorem38, we can conclude that system (1) experiences a saddle-node bifurcation at the 
equilibrium point E∗ when the parameter E crosses the critical value E = E[SN] = 2.6670276565.

Bogdanov–Takens bifurcation. A number of one-dimensional bifurcations such as transcritical, Hopf 
and saddle-node have been studied in earlier segments. Each of these bifurcations belongs to one parametric 
bifurcation. In the present segment, we will discuss two parametric bifurcation, i.e., of codimension two bifurca-
tion. Bogdanov–Takens bifurcation (BT) is a such type of bifurcation. When Hopf and saddle-node bifurcation 
curves collide, a bifurcation of this type occurs at the vicinity of colliding point. In this case, the critical values 
of two bifurcation parameters give zero eigenvalues of multiplicity two in the Jacobian matrix of the system.

One can used Kuznetsov’s39 technique to achieve the standard form of BT-bifurcation. Due to model com-
plexity, we did not find any explicit expression of BT-bifurcation. So, we verify it numerically, which is discussed 
below.

System (1) undergoes BT-bifurcation for the set of parameters given in (2) except c and E. 
We consider c and E as bifurcation parameters and observe that saddle-node and Hopf bifurca-
tion curves collide with each other at (E, c) = (1.42829255, 0.105462715) =

(

E
[BT1], c[BT1]

)

 and  
(E, c) = (7.345497850, 0.2137076372) =

(

E
[BT2], c[BT2]

)

 , and the instantaneous equilibrium points are 
(11.12253608, 1.485272279) and (13.778434, 1.13304881), respectively. Therefore, system (1) undergoes through 
two BT-bifurcation points: one for E∗ = (11.122536, 1.4852723) at 

(

E[BT1], c[BT1]
)

= (1.42829255, 0.105462715) 
and another for E∗ = (13.778434, 1.13304881) at 

(

E[BT2], c[BT2]
)

= (7.345, 0.213).

Numerical results of the deterministic system (1). To explore the rich dynamics of the system (1), we 
perform extensive numerical simulations in this section. For numerical simulations, we choose a set of biologi-
cally feasible hypothetical parameter values as given in (2).

A system may exhibit rich dynamical behavior if its dynamics are investigated in different bi-parameter 
spaces. So, here we plot two bi-parametric bifurcations (Figs. 3a, 5a). In Fig. 3a, we plot saddle-node, Hopf and 
Bogdanov–Takens bifurcations in E − c plane, which divide the entire region into six different regions ( R1 − R6 ) of 
different dynamical behaviors. Complete phase portraits are drawn for every region in order to understand their 
dynamics transparently, Fig. 3b–i. It is apparent from Fig. 3a that the saddle-node curve divides the whole region 
into two parts. Among these two parts one part is region R1 , which has no interior equilibrium point (see Fig. 3b) 
and other part is sum of rest regions ( R2 − R6 ), that contain two interior equilibrium points (see Fig. 3c–i). Next, 
for lower and higher values of E, there exist Hopf bifurcation curves, which divide two portions of the region 
into two subregions that are ( R2/R3 ) and ( R5/R6 ). In one side of the Hopf curve, one of the two interiors is stable 
spiral and other one is saddle, Fig. 3c,i (correspond to the regions R2 & R6 , respectively). On the other hand, as 
the value of E and c crosses Hopf curve, stable spiral point becomes unstable spiral (stable limit cycle) and saddle 
one remain same, Fig. 3d,h (correspond to the regions R3 & R5 , respectively). Similar as Hopf curve, there exist 
two Homoclinic curves for lower and higher values of E, which divide a subregion into two another subregions 
( R3/R4 ) and ( R4/R5 ). As the values of (E, c) closest to the Homoclinic curve system gives larger amplitude-limit 
cycle and on the curve it gives maximum amplitude-limit cycle, Fig. 3e,g. Further, if the values of (E, c) crosses the 
Homoclinic curve, stable limit cycle destroys and the equilibrium point becomes unstable (see Fig. 3f corresponds 
to the region R4 ). Also, it is clear from Fig. 3a that there exist two BT-points ( BT1 = (1.428292550, 0.1054627152) 

WTFE

(

E∗,E[SN]
)

= 0.1130463331 �= 0; WTD2F
(

E∗,E[SN]
)

(V ,V) = −0.3491755781 �= 0.
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and BT2 = (7.345497850, 0.2137076372) ), where aforementioned three bifurcation curves meet with each other. 
Therefore, the neighbourhood of BT-points exhibits complex dynamics of the system.

It is observed that the system preserves bistability for the regions R2 , R3 , R5 and R6 . For a fixed set of param-
eter values, depending on the initial population size the trajectories initiating inside the green regions converge 
to the stable interior (stable limit cycle) whereas the trajectories initiating in the red regions converge to the 
predator-free equilibrium point, Fig. 4. In Fig. 5a, we plot another bi-parametric bifurcation in f1 − q plane, which 
is divided into four subregions ( R1 − R4 ) of different dynamics by different bifurcation curves. Phase portraits of 
every region are plotted (see Fig. 5b–f). We observe that there is no interior for diagonally higher values of both 
of the parameters f1 and q whereas two interiors exist when the values of f1 and/or q are lower, Fig. 5a. Detailed 
discussions of the figure are same as previous one (Fig. 3).

Next, to observe the effect of important model parameters explicitly, we plot one parameter bifurcation dia-
grams while other parameters are fixed, Fig. 6. It is clear form Fig. 6a,d,e that for lower values of the parameters r, 
c and c1 , there is no interior. As the value of these parameters surpasses saddle-node bifurcation point there exist 
two interior one of which always remain saddle and another one switches its stability (stable spiral ⇒ unstable 
spiral) through Hopf bifurcation point. Therefore, up to a certain range of these parameters have destabilizing 
effect. On the other hand, for lower values of the parameters f1 , f2 and E there exist two interior one of them is 
always saddle and another one switches its stability (unstable spiral ⇒ stable spiral) through Hopf bifurcation 

Figure 3.  In the figures, (a) Bifurcation diagram of system (1) in E − c plane. Rest are full phase portraits in 
regions (b) R1 , (c) R2 , (d) R3 , (e) on HC, (f) R4 , (g) on HC, (h) R5 and (i) R6 . Parameters are at the same values as 
in (2) except c and E.

Figure 4.  Regions of attraction of the equilibria E∗ (green regions) and E1 (red regions) for the regions (a) R2, 
(b) R3, and (c) on HC.
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point (see Fig. 6b,c,f). But, when the value of these parameters crosses saddle-node bifurcation point, no interior 
equilibrium point exists. Note that up to a certain range of these parameters, f1 and f2 have stabilizing effect 
whereas E has both destabilizing as well as stabilizing effects.

Interpretation of the deterministic results in the context of biology. For the deterministic system, 
we mainly investigate different types of bifurcation results. They are Transcritical, Hopf, Saddle-node and Bogda-
nov–Takens. In the context of a biological system, a bifurcation occurs when a small smooth change made to the 
parameter values (the bifurcation parameters) of a system causes a sudden ’qualitative’ or topological change in 
the behavior of the system. Bifurcations mainly describe changes in the stability and/or existence of fixed points 
(equilibrium points) and the bifurcation parameters act as a control parameter. Changes in the control param-
eter eventually changed the qualitative behavior of the system. Above mentioned bifurcations of the considered 
system (1) were found for the model parameters r, f1 , f2 , c, c1 , q and E. Therefore, all these ecological parameters 
(i.e., growth rate of prey, fear, capture rate, harvesting effort) act as control parameters of the proposed system. 
In Transcritical bifurcation, there is a critical value of the bifurcation parameter from which two equilibrium 
points exchange their stability. Moreover, on the one side of the critical value one of the two equilibrium points 

Figure 5.  Bifurcation diagram of system (1) in (a) f1 − q plane and the corresponding full phase portraits of 
different subregions. Phase portraits in regions (b) R1 , (c) R2 , (d) on HC, (e) R3 and (f) R4 . Parameters are at the 
same values as in (2) except a = 1 , c = 0.2 , c1 = 0.8 , E = 2.5 , f1 and q.

Figure 6.  Bifurcation diagrams of system (1) with respect to (a) r, (b) f1 , (c) f2 , (d) c, (e) c1 and (f) E. Rest of the 
parameters are at the same values as in (2) except in (a) c = 0.1 , E = 0.3 ; (b) c = 0.15 , E = 0.06 ; (c) c = 0.08 , 
E = 0.7 ; (d) E = 0.6 ; (e) c = 0.1 , E = 0.6 ; (f) c = 0.0782.
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exist while on the other side both equilibrium points exist. Therefore, we have a critical value of an ecological 
parameter from which species persistency and stability can be described. In case of Hopf bifurcation, there is a 
critical value of a parameter from which densities of model species either fluctuate from fixed stable densities 
or vice versa. In the case of Saddle-node bifurcation, coexistence equilibrium points exist or diminish in pair by 
varying bifurcation parameter i.e., from the critical value of the bifurcation parameter coexistence equilibrium 
points exists or diminish in pair. Lastly, BT-bifurcation, the point where saddle-node curve and Hopf curve meet 
is known as BT-point. Thus, all these phenomena occur around the BT-point, i.e., near the BT-point complex 
dynamics (like species persistency, stability, extinction) occurs. Thus, studying the bifurcation in prey–preda-
tor systems has great importance from environmental perspective. In order to maintain an ecological balance 
between prey and predator populations, identification of bifurcation parameters plays a crucial role in determin-
ing an effective control strategy.

Stochastic model
There is no doubt that the system (1) is derived based on the assumption that all the input variables follow 
deterministic laws and are deterministic functions of time. However, in mathematical modeling of ecosystems, 
the deterministic system has its limitations since it cannot capture the influence of random environmental fluc-
tuations in its  parameters31. In order to study the effects of environmental fluctuations on the entire ecosystem, 
it is reasonable to introduce the noise term into the deterministic model. Mao et al.40 demonstrated that one or 
more system parameter(s) can be perturbed stochastically with white noise term to derive stochastic system. Note 
that the approach to formulate the stochastic model based upon existing deterministic model is not  unique41,42. 
Introducing multiplicative noise terms into the growth equations of both prey and predator populations, we 
formulate the following stochastic model.

where σi (i = 1, 2) represent the intensity of environmental fluctuations and Bi(t) are standard Brownian motions.
Throughout the analysis, we take (�,F ,P) as a complete probability space with a filtration {Ft}t∈R+ satis-

fying the conventional condition, namely right continuity and increasing, whereas F0 consists of all P −void 
 sets40. Any solution of system (3) subjected to the positive initial condition is an Itô  process43. Without any loss 
of generality we assume σ1, σ2 > 0.

Numerical results of stochastic system (3). In this section, we simulate the stochastic model (3) to 
explore the dynamics of different noise intensities.

In Fig. 7, we plot deterministic and stochastic time series solutions and their corresponding phase portraits. 
Random perturbations in the model parameters (i.e., environmental noise) destroy the stability of deterministic 
equilibrium and lead to weak stochastic stability known as stationary distributions. According to Fig. 7a, in 
the absence of environmental noise, model variables approach to their equilibrium values, and in the presence 
of environmental noise, stationary distributions are observed. Our results indicate that when noise intensity 
is relatively low, the stochastic system still maintains some stability. Now, if we increase the value of σ1 to 0.6 
from 0.01, then after some initial transients predator population extinct. However, it is important to note that 
in this case the prey species is not fluctuating around the deterministic steady-state rather it fluctuate above its 
equilibrium value (obviously, it happen due to predator extinction) (see Fig. 7b). Next, we choose σ1 = 2.5 and 
σ2 = .01 , in this case both the model species go to extinction, Fig. 7c. Moreover, it is clear from the figure that 
prey species goes to extinction first, before predators. However, the model species approach to their equilibrium 
values in the absence of environmental noise. It is important to note that in all of these instances of species extinc-
tion, extinction time may vary from simulation to simulation, but extinction is confirmed in every simulation. 
Lastly, we fixed our deterministic system in oscillatory state and see the effect of environmental disturbances. 
We observe that lower strength of environmental noise propel the species to fluctuate around the limit cycle (see 
Fig. 7d). However, higher strength of disturbances (i.e., environmental noise) ultimately lead predator population 
to extinction after some initial transient dynamics (see Fig. 7e). In this case, fluctuations of prey density occur 
above the deterministic density.

To be more transparent of the effect of stochasticity, 200 simulations are plotted in Fig. 8 as time series solu-
tions. It can be easily observed that all the solution trajectories fluctuate around the deterministic steady-state due 
to environmental disturbances, Fig. 8b. Histogram plots of 1000 simulation runs also show that these fluctuations 
are observed at the stationary distributions, where prey population is distributed within the range (9, 11) and 
predator population within the range (1.75, 2) (see Fig. 8c).

Population fluctuation due to environmental noise is also reflected in the stationary distributions. Therefore, 
for better presentation and understanding the stochastic effect on population dynamics, stationary distributions 
of different noise intensities are attained. The result of stationary distributions obtained from 500 simulations 
at t = 100 , which is presented in Fig. 9. We observe that the population distributions occur in wider range as 
the noise intensity increases. Whenever the strength of environmental disturbances is low, prey population are 
distributed within (2.6, 3.1) and it is estimated that the predator population are within the range of (2.35, 2.55). 
In the next case they are within (0, 8) and (1.5, 4), respectively for moderate strength of noise. Lastly, for higher 
strength they are within (0, 12) and (1,5), respectively. In these cases, there are no extinction scenarios associ-
ated with these parameters, since they do not satisfy the conditions of extinction. Thus, we conclude from these 

(3)
dx =

[

rx

1+ f1y
− (1+ f2y)d1x − d2x

2 −
cxy2

1+ chxy

]

dt + σ1xdB1(t),

dy =

[

c1cxy
2

1+ chxy
− d3y − d4y

2 −
qEy

p1E + p2y

]

dt + σ2ydB2(t),
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results that the strength of environmental noise determines the amplitude of oscillation and average value of 
populations at all future times.

Interpretation of the stochastic results in the context of biology. Maximum models assume a 
deterministic, unchanging environment, whereas real environments are uncertain and stochastic.  Elton44 
observed that the ”chief cause of fluctuations in animal numbers is the instability of the environment. The climate 

Figure 7.  Time series solutions of systems (1) and (3) and corresponding phase portraits for different values of 
σ1 and σ2 . Parameters are at the same values as in (2) except in (a–c) c = 0.08 , E = 0.06 and in (d,e) c = 0.077 , 
E = 0.4.
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Figure 8.  (a) Time series solutions of systems (1) and (3); (b) solution trajectories of x and y for 200 
simulations; (c) relative frequency density of prey and predator populations for 1000 simulations. Parameters are 
at the same values as in (2) except c = 0.027 , E = 0.06 and σ1 = σ2 = 0.01.

Figure 9.  Stationary distributions of prey (x) and predator (y) populations around deterministic steady-state for 
different values of σ1 and σ2 . Parameters are at the same values as in (2) except c = 0.08 , E = 0.06.
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in most countries is always varying. . . .” Therefore, stochastic models are preferred over deterministic ones. From 
numerical results we observe that if the intensity of environmental noise is small, prey and predator populations 
will survive for a long time. Therefore, intensities of environmental noise are conducive to the survival of the 
population. Also, it is evident that there is an important role of environmental noises for the persistence of prey 
and predator populations weekly as well as strongly. We notice that the prey population can persist for low inten-
sity of noise, higher growth rate of prey, lower level of both fears and consumption rate. The predator population 
can persist for higher values of conversion efficiency of predator and lower values of catching capability and low 
intensity of noise on predator population. Population extinction is a serious issue from an ecological perspective. 
It is observed that high intensity of noise plays an crucial role in extinction of the species. The extinction of prey 
species drive predator species towards extinction as they depend on prey species only. Further, under a circum-
stances when the environmental disturbance for prey is low while for predator is high, only predator popula-
tion extinct. Furthermore, at the simulation time, we notice that increasing intensity of noise decreases average 
extinction time. More importantly, chaotic variation in the population size due to environmental fluctuations 
have serious implication, it reduces species  extinction45. These findings are consistent with the reality which 
imply that in any natural ecosystem, environmental fluctuations have significant influences on the persistence 
and extinction of interacting species. As a result, a conservationist may be able to take a variety of measures to 
prevent species extinctions by identifying different routes to extinction.

Discussion and conclusion
We propose a prey–predator model where schooling behaviour of both prey and predator are considered by a 
predator-dependent functional response. Predator-induced fear is assumed to affect the birth as well as death 
rates of the prey population. In order to conserve resources and manage the social environment, predator popu-
lation are harvested. The complete investigation or discussion of the system is mainly devoted to the important 
ecological factors, namely, the fear factors, consumption rate of predator (which depend on schooling behavior 
of the species) and harvesting. Firstly, we study the dynamics of the deterministic system and then stochastic 
system. Both these systems were studied in detail. For deterministic system, we have established the existence and 
stability conditions of the equilibrium points. Different types of bifurcations are also numerically investigated, 
including transcritical, saddle-node, Hopf, and Bogdanov–Takens bifurcations. We have plotted two parameter 
bifurcation diagrams in which the aforementioned bifurcation curves are plotted which divide the whole region 
into subregions of different dynamics. Complex dynamics are observed around the BT-points for harvesting 
effort, fear, and predator consumption rate. We find that growth rate of prey, consumption rate of predator and 
conversion efficiency of prey biomass into predator biomass have destabilizing effects. In contrast, fear affecting 
growth and death of prey has stabilizing effects. The harvesting effort, however, has both stabilizing and desta-
bilizing effects. Further, for lower values of predator consumption and higher values of harvesting effort, there 
is no interior (coexistence) equilibrium point. A BT-point has been observed around a low harvesting effort 
and moderate consumption rate, exhibiting complex dynamical behavior around it (BT-point). Therefore, these 
parameter values compensate with each other to exhibit complex biological dynamics. Moreover, moderate val-
ues of both fear affecting prey’s growth and catching capability enrich the system with rich biological dynamics 
around the BT-point. The predator population is at risk of extinction due to higher harvesting effort and lower 
consumption rates. Higher levels of both fear and catching capability also eliminate predator populations from 
ecosystems. Both species, however, coexist and switch between stability for lower and higher levels of harvesting 
effort. Prey and predator populations always live in harmony at lower values of catching capability, regardless of 
the value of fear dropping prey’s birth. As the amount of fear increases, coexisting species change their stability 
from unstable spiral to stable spiral.

Furthermore, we incorporate multiplicative noise terms in the deterministic system to understand the dynam-
ics in the presence of environmental driving forces. We can obtain that there exists a unique positive global 
solution for the stochastic model and determined the conditions under which a species is likely to persist or 
fail. We did not include formal mathematical analysis of these results. According to our numerical findings, 
species survival is closely linked to the intensity of environmental fluctuations. Recently, Rogers et al.46 showed 
that “Chaos is not rare in natural ecosystems”. Therefore, chaotic nature in the population densities due to envi-
ronmental fluctuations is an important result. Biologically, chaotic variation in the population size have serious 
implication: it has the ability to reduce species  extinction45. Moreover, we can obtain parametric conditions 
mathematically under which stationary distributions exist in the stochastic system. According to simulation 
results, these parametric restrictions will not hold for large-amplitude environmental noise. Consequently, it can 
destabilize the system, and, in that case, no stationary distribution can be  found32,47. As a result of the existence 
of stationary distributions, there can be some degree of stochastic stability. In terms of biology, this indicates 
that both prey and predator populations coexist on a long-term basis, leading to the conclusion that the system 
is permanent. Based on numerical results of the stochastic system, we have demonstrated that for lower levels of 
noise, stationary distributions are attained, while high levels of noise lead to species extinction. It is possible to 
observe that there are two different scenarios of extinction: the first case is the both populations extinct; second 
case is the only prey population persist while predator extinct. From an ecological viewpoint, comparing the 
stochastic results with corresponding deterministic result, we observe two interesting facts. For low intensity 
of environmental fluctuations both prey and predator populations coexist in the long run, i.e., the system is 
permanent. Another fact is that none of the important ecological factor (growth rate of prey, fear, harvesting, 
consumption rate of predator) can avoid the extinction of model species when the nature exhibits large amount 
of environmental fluctuations. Although, all these important ecological factors have significant impact on species 
persistence and extinction in constant environment (i.e., deterministic environment). Following  articles48–50, we 
can also define stochastic Hopf  bifurcation48,50 and dynamic  bifurcation49 as similar phenomena also happen 



11

Vol.:(0123456789)

Scientific Reports |         (2023) 13:1234  | https://doi.org/10.1038/s41598-023-28409-2

www.nature.com/scientificreports/

in the considered system. Study of bifurcations in the stochastic framework is an interesting topic. In the near 
future, we will discuss this topic in more detail.

Human or animal involvement.  The current study did not involve any animal or human experiments.

Data availability
All data generated or analyzed during this study are included in this article. The softwares used in this study are 
Maple (version-2019) and MATLAB (version-R2019a).
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