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Intra‑person multi‑task learning 
method for chronic‑disease 
prediction
Gihyeon Kim 1, Heeryung Lim 2, Yunsoo Kim 3, Oran Kwon 3 & Jang‑Hwan Choi 2*

In the medical field, various clinical information has been accumulated to help clinicians provide 
personalized medicine and make better diagnoses. As chronic diseases share similar characteristics, 
it is possible to predict multiple chronic diseases using the accumulated data of each patient. 
Thus, we propose an intra‑person multi‑task learning framework that jointly predicts the status of 
correlated chronic diseases and improves the model performance. Because chronic diseases occur 
over a long period and are affected by various factors, we considered features related to each chronic 
disease and the temporal relationship of the time‑series data for accurate prediction. The study was 
carried out in three stages: (1) data preprocessing and feature selection using bidirectional recurrent 
imputation for time series (BRITS) and the least absolute shrinkage and selection operator (LASSO); 
(2) a convolutional neural network and long short‑term memory (CNN‑LSTM) for single‑task models; 
and (3) a novel intra‑person multi‑task learning CNN‑LSTM framework developed to predict multiple 
chronic diseases simultaneously. Our multi‑task learning method between correlated chronic diseases 
produced a more stable and accurate system than single‑task models and other baseline recurrent 
networks. Furthermore, the proposed model was tested using different time steps to illustrate its 
flexibility and generalization across multiple time steps.

A chronic disease is a disease or condition that usually lasts for a long time. Some of the most common types 
are cancer, diabetes, and hypertension. Type 2 diabetes is a continuing metabolic disorder characterized by high 
blood glucose caused by insulin resistance of cells due to pancreatic  dysfunction1. Hypertension is a condition 
in which blood flows through blood vessels at constant high pressure and is a major preventable risk factor for 
cardiovascular  disease2,3. The prediction of chronic diseases plays a crucial role in health informatics. Early 
detection of chronic diseases and effective treatment in their early stages can prevent further complications and 
have always been helpful to patients. In addition, the burden of chronic diseases is widely accepted as one of 
the primary healthcare challenges. Maintaining clinical databases is becoming an important task in the medi-
cal field that is steadily being carried  out4. Because clinical information about various disease-related features 
is collected for each patient, various diseases can be predicted together for a single person (intra-person) if the 
information is used correctly.

Various predictive models have been proposed recently to predict diseases using clinical time-series data. 
Several studies have used machine-learning models for early detection and prediction of chronic diseases based 
on an individual’s current condition, performing well in detecting  diabetes5 and  hypertension6,7. However, these 
methods cannot temporally relate time-series data, which is important for chronic diseases. Deep-learning tech-
niques have demonstrated promising results on various prediction tasks because they provide a more efficient 
learning mechanism than conventional machine-learning and classification methods such as SVM and logistic 
regression. Long short-term memory (LSTM) models have performed well in analyzing time-series clinical data 
to forecast various diseases because they leverage the temporal relationships of the disease states in patients over 
time and capture the progression of the  disease8–11. In Alakus et al.12, LSTM and convolutional neural networks 
with LSTM (CNN-LSTM) architectures successfully estimated the patients who were likely to be infected by 
COVID-19. The spatially and temporally deep CNN-LSTM architecture allowed it to be applied to various tasks 
involving sequential inputs and  outputs13,14. The correlation between multiple prediction tasks for each disease 
was not explored in these single-task models.
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Multi-task learning has been applied to leverage the relations between multiple tasks in various fields, such 
as the medical domain and natural language processing (NLP)15–18. Multi-task learning learns a set of related 
tasks concurrently to improve the overall performance of a deep-learning model. For instance, El-Sappagh et al.16 
applied multi-task learning to use multimodal data and to solve classification and regression tasks related to 
Alzheimer’s disease. In addition, various multi-task learning schemes have been developed to prevent a model 
from overfitting to a particular task and to train multiple tasks  successfully17,18. Chronic diseases share similar 
characteristics and are time series in nature. Consequently, considering chronic-disease data as a group of cor-
related diseases with a time-series structure is the intuitive solution for the chronic-disease prediction problem. 
Conventional multi-task learning methods may be a solution to this, but it has the disadvantage that the model 
may demonstrate confusion when performing the main task because all tasks are trained simultaneously with 
the same weights. Thus, we employed our multi-task learning strategy, periodic and central weighted learning 
(PCWL), to effectively learn multiple prediction tasks for different chronic diseases by periodically changing 
the focus while training a single model.

The main contributions of this paper are as follows:

• We first propose an intra-person multi-task deep-learning method that integrates multiple chronic-disease 
status prediction tasks, which can learn distinguishable features from an individual CNN layer and shared 
LSTM blocks.

• We introduce an effective multi-task learning strategy to train multiple prediction tasks and improve overall 
performance without overfitting an individual task during training in terms of accuracy, area under the curve 
(AUC), F1-score, and precision.

• Experimental results show that our proposed method can outperform single-task models and other recurrent 
network baselines, such as  LSTM19, GRU 20, and  RNN21. The optimal weights for each task were also explored.

The rest of this paper is structured as follows. The related works for predicting chronic disease status are dis-
cussed in Section “Related works”. Section “Materials and methods” mainly describes the dataset and preprocess-
ing, feature selection, the proposed multi-task prediction network and performance metrics. In Section “Results 
and discussion”, a series of results of our experiments are demonstrated. At last, Section “Conclusion”  concluded 
our study.

Related works
Relation between chronic diseases. Patients with chronic diseases usually develop more than one dis-
ease simultaneously. García-Olmos et al.22 tried to identify comorbidity patterns in patients with chronic dis-
eases by the number of comorbidities, age, and sex. Their results showed that 42% of the registered population 
had at least one chronic condition, and almost one-quarter of the population presented with multimorbidity. 
Four comorbidity patterns of 26 chronic health conditions were identified based on the level of the comorbidity 
burden. For instance, hypertension, lipid metabolism disorders, type 2 diabetes, and cardiac arrhythmia had 
an intermediate comorbidity rate. Teljeur et al.23 examined the nature of multimorbidity in a cohort of patients 
with type 2 diabetes. They demonstrated that 90% of patients had at least one additional chronic condition, with 
hypertension, heart disease, and arthritis having a high prevalence of multimorbidity. These studies support the 
correlation between multiple chronic diseases, but despite the prevalence of multimorbidity in the adult popula-
tion, an intra-person multi-task learning scheme has not yet been attempted.

Chronic‑disease prediction. Several machine-learning techniques have been applied for chronic-disease 
prediction. Wu et al.5 proposed a novel model for predicting type 2 diabetes mellitus (T2DM) that applied an 
improved k-means algorithm for unsupervised clustering and the logistic regression algorithm for supervised 
classification. A one-year risk prediction model for hypertension was developed using a machine-learning algo-
rithm, XGBoost, which generates an ensemble of classification  trees6. The study showed that diseases such as 
type 2 diabetes, lipid disorders, and cardiovascular diseases (CVDs) are driving or associated features of inci-
dent essential hypertension. In Heo et al.’s  study7, machine-learning-based hypertension prediction models were 
developed using logistic regression, naive Bayes, and decision trees.

Recently, various studies conducted in the medical domain have used recurrent neural networks to use the 
time relationships underlying the time-series data. LSTM networks have been used for classification tasks on 
clinical time-series data and outperformed other traditional classification methods, such as multilayer perceptron 
and ANNs. In Lipton et al.’s  study8, multilabel classification of 128 diagnoses was trained based on the multi-
variate time-series data of intensive care units. It was the first study to evaluate the performance of LSTMs in 
recognizing patterns in multivariate time-series data. A recurrent neural network (RNN) with LSTM architecture 
was used in Reddy et al.’s  study11 to predict the rehospitalization of lupus patients within 30 days by extracting 
the temporal relationships in the longitudinal electronic health record data. In addition, a combination of CNN 
and LSTM networks has been applied to leverage the spatial and temporal features for various  tasks12,16. Alakus 
et al.12 developed and compared six deep-learning models to predict COVID-19 infection using laboratory data. 
The CNN-LSTM model obtained the best validation results using the train-test split approach to generate clear 
results in clinical  applications24. The CNN-LSTM could extract both local and longitudinal features because the 
CNN functioned as an encoder and feature extractor and the LSTM acted as a decoder.

Multi‑task learning approach. Multi-task learning is the process of learning multiple related tasks simul-
taneously to improve the performance and generalizability of a  model25. This learning strategy has been success-
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fully developed and employed in various fields. Most studies are based on single-task models, which perform 
one clinical prediction task at a time. However, this approach does not reflect the reality of clinical decision-
making, in which multiple tasks are performed simultaneously by clinical  staff15,26. Therefore, Harutyunyan 
et al.15 proposed a multi-task framework that includes four different clinical prediction tasks using the MIMIC-
III dataset: in-hospital mortality, physiologic decompensation, length of stay, and phenotype classification. The 
four prediction tasks were jointly learned simultaneously, and the results showed that channel-wise LSTMs and 
multi-task training work as a regularizer for almost all tasks. The model consisted of different baseline models 
for each task, and the overall loss was the weighted sum of the task-specific losses. In El-Sappagh et al.’s  study16, 
a multimodal multi-task model based on a stacked CNN and bidirectional LSTM (BiLSTM) network was used 
to jointly learn a multiclass classification for Alzheimer’s disease and four cognitive-scores regression tasks. 
Deep features learned from each modality and the background data were fused by a set of shared dense layers, 
and task-specific learning was applied. Despite the attempt to use multi-task learning in the clinical field, most 
of the previous studies focused on the prediction of multiple tasks rather than the development of an effective 
multi-task learning strategy for time series data. Several multi-task learning strategies were developed for effec-
tive training and produced satisfactory results compared to single-task models and other multi-task variants. 
Yang et al.18 and Son et al.17 proposed a sequentially adaptive learning paradigm of multi-task learning weights 
for lung cancer prediction and multiple NLP tasks, respectively.

Materials and methods
Data. Dataset. The Korean Genome and Epidemiology Study (KoGES)27 is an ongoing, prospective, large-
cohort study conducted by the Korean government that started in 2001 (Fig. 1). All procedures performed in 
the study were in accordance with the ethical standards of the institutional research committee, and individual 
informed consent was acquired from the participants when the data were collected. It includes a biannual ex-
amination of lifestyle, biochemical profiles, and environmental factors related to the onset of common chronic 
diseases in Korean adults. We used the community-based cohort, a KoGES 16-year follow-up study of men and 
women aged 40–69 years living in Ansan, an urban city, and Anseong, a rural city. Detailed information on the 
study procedure has been described  previously28. Of the original 10,030 participants, 3995 subjects remained 
enrolled after the eighth round of follow-up. In addition, subjects who had already been diagnosed with a disease 
or determined to have a disease at the baseline or first follow-up were excluded for diabetes or hypertension. This 
resulted in 3379 and 2159 subjects were enrolled in the diabetes and hypertension status prediction tasks, respec-
tively. Diabetes mellitus was identified from a history of diagnosis, treatment, or insulin medication or according 
to the American Diabetes Association  guidelines29: (1) a fasting glucose concentration ≥ 126 mg/dL, (2) a 2-h 
post glucose level ≥ 200 mg/dL in an oral glucose tolerance test, or (3) an HbA1C level ≥ 6.5%. Hypertension was 
defined based on a history of diagnosis, treatment, or antihypertensive medication or a current systolic pres-
sure ≥ 140 mmHg or diastolic pressure ≥ 90 mmHg. The incidence rate for the eighth time step was 16.43% and 
32.61% for diabetes and hypertension, respectively. In this study, only continuous variables were used in the data 
source. The study protocol was approved by the Institutional Review Board of Ewha Womans University (IRB 
No. 202106-0017-01). All experiments were performed in accordance with relevant guidelines and regulations. 
All participants provided written informed consent prior to enrollment, and their records were anonymously 
made prior to author’s access.

Dataset preprocessing. The KoGES data, like typical multivariate time-series data in health care, is missing 
some values that can cause inaccurate prediction results. To address this problem, we used bidirectional recur-
rent imputation for time series (BRITS)30 to fill in the missing values for our multivariate time-series data. The 
missing values are regarded as variables in the bidirectional RNN graph that can be effectively updated during 
backpropagation. BRITS jointly performs two tasks in one neural graph, the imputation and classification tasks, 
to alleviate the error-propagation problem from imputation to classification. Our dataset performed better than 
the PhysioNet Challenge 2012  dataset31, a healthcare dataset that was tested for the BRITS algorithm, outputting 
a lower mean absolute error (MAE) and mean relative error (MRE). We trained BRITS using an Adam optimizer 
with a learning rate of 1e−3 and batch size 64. This algorithm was used to prepare the model inputs before and 
after feature extraction.

Feature selection (LASSO). The effective removal of irrelevant variables is crucial for good prediction perfor-
mance and reliability of the model. To select the optimal set of features related to diabetes and hypertension, 

Figure 1.  Flow diagram of baseline recruitment and follow-up for KoGES. Each time step was investigated 
at 2-year intervals, and each cell of the figure consists of the total number of patients in the original dataset at 
each time step (N) and the incidence rate (%) of 3379 and 2159 patients with diabetes and hypertension used as 
model inputs.
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we used the least absolute shrinkage and selection operator (LASSO)32 regression. This algorithm uses the L1 
absolute value penalty function to compress the coefficients of weakly correlated variables to 0 and retain more 
strongly relevant variables. As LASSO performs both feature selection and normalization, it improves the pre-
diction accuracy while eliminating  redundancy33. The penalty coefficient α was set as the significant number of 
digits that range from 1e−3 to 100 (α ∈ {n*ek|1 ≤ n ≤ 9, − 4 ≤ k ≤ 2}) and optimized based on grid search through 
fivefold cross-validation. The larger the penalty coefficient is, the greater the degree of sparseness and the greater 
the penalty intensity  are34. Features with missing values of 80% or more in at least one time step were removed. 
Feature selection was performed after the missing values were processed through BRITS on features excluding 
those used in the diagnostic criteria for each disease. For diabetes and hypertension, the coefficient of 0.2 was 
selected as the optimal parameter, and 48 and 51 features were extracted from 56 and 54 features, respectively. 
Finally, the significant features for each time step are stacked to form the input of the prediction model. For 
instance, the model input for diabetes prediction is a three-dimensional tensor having a shape of [3379, 7, 48]. 
Because our proposed model consists of different task types for each batch through a balanced batch sampler, 
data of different sizes can be used together.

Single‑task models. Convolutional neural network. In the single-task models, a separate CNN subnet-
work is used for each task. A 1D convolution is applied separately along the time dimension for every input vec-
tor and used to learn univariate time-series data. It expands every univariate time series to feature maps, which 
are abstract and informative features suitable for LSTM  prediction16. Each value of the feature map is then fed 
into a nonlinear activation function, a rectified linear unit (ReLU). Following the activation function, dropout 
is applied to prevent overfitting.

Through feature selection, we discovered that most of the features were identified as common between diabe-
tes and hypertension prediction. For instance, the features used as diagnostic criteria for diabetes were extracted 
as significant features for hypertension and vice versa. This also supports the fact that diabetes and hypertension, 
which are typical chronic diseases, are closely related. Thus, we determined that it was more appropriate for the 
proposed model to use both significant features for diabetes and hypertension, respectively. For both tasks, we 
applied one CNN layer of 50 filters with a 1 × 1 filter size to separately transform the time series of multiple ten-
sors into a new feature space with the same dimension to give nonlinearity. This operation maintained the time 
step by applying one kernel to only one time step. Note that this operation can be used as an input layer for any 
neural architecture that simultaneously takes different time-series features as an input. Following the CNN layer, 
ReLU activation was applied to give nonlinearity, and dropout was used to prevent the model from overfitting. A 
1 × 1 convolutional layer of 50 filters was used to minimize the computational cost and reduce the risk of losing 
information from the selected features.

Baseline models. LSTM, GRU, RNN. To leverage the temporal correlation in the time-series data, three com-
monly used model structures for dealing with time-series data were tested: the RNN, the gated recurrent unit 
(GRU), and the LSTM. These models can find temporal patterns in longitudinal data. An RNN is a sequential 
network that takes a predefined sequence as input. The output of a previous step is fed as input to the current 
step using the feedback network in a hidden state. Although an RNN works well with moderately sized data, it 
suffers from short-term memory and vanishing gradient problems as the number of data samples increases in 
 size32. To solve this problem, LSTM was proposed to learn long-term and short-term dependencies in sequential 
data through memory cells. The LSTM cell’s gated and feedback architecture uses existing autocorrelation in the 
time series. The GRU is a variant of the LSTM, as it shares the gated architecture that controls sequential infor-
mation in the cell. However, unlike LSTM, a GRU expands the information flow inside the gating unit without 
a separate memory cell.

The baseline models share the same architecture consisting of four stacked LSTM blocks, one fully connected 
layer, and a sigmoid layer for binary classification. Each LSTM block in the single-task model is structured with 
an LSTM layer, Tanh activation, and a dropout with a probability of 0.3. The output from the lower LSTM layer is 
forwarded to the upper layer. The CNN block performs a preprocessing step to learn local features and matches 
the feature dimensions of two tasks. The output of the CNN is then refined through the LSTM subnetwork to 
learn temporal relationships. To minimize data imbalance problems, a weighted random sampler was used to 
assign class weights inversely proportionally to the class frequencies. To compare the performance of single-task 
models, the stacked LSTM architecture of every model used the same output layer units of 50, 10, 10, and 10.

Multi‑task learning with PWL and CWL. Multi-task learning is a method that simultaneously learns 
related tasks in one model and improves the overall performance of several tasks. Through multi-task learn-
ing, a task with a relatively large amount of data can assist the learning of other tasks that lack labeled data and 
reduce the risk of  overfitting17. We applied a multi-task learning scheme inspired  by17,18 for our proposed model 
for effective training of the central task. Our proposed scheme PCWL consists of two stages: periodic weighted 
learning (PWL) and central weighted learning (CWL). PWL alternates the dominance of tasks throughout the 
training by changing the focus task every 20 iterations and multiplying the loss of auxiliary task by a relatively 
smaller number than the weight of the focus task. The cycle for changing the focus task was tested with 10, 20, 
and 40 iterations, and 20 iterations showed the most stable performance with the highest accuracy and AUC. 
CWL is applied in the final stages to improve the central task’s performance further by suppressing the loss func-
tions on auxiliary tasks and thereby focusing on the central task.

In this paper, multi-task learning was applied to learn the diabetes and hypertension prediction tasks simulta-
neously. The central task refers to the task targeted to improve performance, and the remaining task is an auxiliary 
task. Therefore, the hypertension task is an auxiliary task when the diabetes prediction task is the central task. 
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Moreover, a task focused on each iteration is denoted as the focus task. All tasks have fixed initial weights, and the 
weights for each task are adjusted during training. For each epoch, the PWL and CWL stages are applied alter-
nately, and the model is aware of the type of prediction task. In the PWL stage, all tasks are dominantly trained 
with equal opportunity. Moreover, the focus task is sequentially selected every 20 iterations and is trained with 
a high weight, whereas the auxiliary task weights are multiplied by 0.1. Following the PWL stage, CWL is used 
to concentrate on the central task. In the CWL stage, the central task is intensively learned by multiplying the 
weight of the auxiliary task by 0.1 for every iteration. For both stages, the computed loss values of each task are 
multiplied by the adjusted task weights, and the overall loss is calculated as the weighted sum of the task-specific 
losses. Figure 2 shows an example of applying PWL and CWL to the diabetes and hypertension prediction task. 
In this example, the diabetes prediction task is the central task, and the initial weights are set to [3:1]. Our model 
exploits parameter sharing in the shared layers for multi-task learning, as illustrated in Fig. 2. This multi-task 
learning scheme works as a regularizer and prevents the model from overfitting to a specific  task33.

Proposed deep‑learning model. A schematic overview of the proposed network design is shown in 
Fig. 3. The proposed model introduces the concept of intra-person multi-task learning to predict the onset of 
typical chronic diseases, namely diabetes and hypertension, based on multivariate time-series data. Note that 
intra-person multi-task learning refers to a method in which a multi-tasking technique simultaneously learns 
several tasks in the shared layers of the model. First, data tracked over seven time steps for diabetes and hyper-
tension are fed into the multi-task learning model. Learning local and temporal features is based on the CNN 
and shared LSTM subnetworks. As shown in Fig. 3, the model needs to prepare the time-series data consisting 
of significant features for both diseases. For time-series data, the features included data for seven time steps with 
two-year intervals, and the labels are based on whether the disease occurred in the eighth phase. Features signifi-
cant for each disease are extracted by applying lasso regression to time-series data in which data preprocessing 
has been performed. Subsequently, deep features are concurrently learned using a stacked CNN-LSTM model. 
The CNN layer is applied for each task, and the stacked LSTM is shared by both tasks during training. Following 
the LSTM layers, the features learned from the shared layers are passed to task-specific layers for deeper feature 
learning. A task-specific layer consists of one fully connected layer and sigmoid activation to predict the occur-
rence of each disease at the eighth time step and to perform classification tasks.

Performance metrics. For all algorithms, we split the diabetes and hypertension dataset of 3379 and 2159 
cases into stratified datasets of 60% for training, 20% for validation, and 20% for testing. Stratification randomly 
distributes instances so that all datasets have similar ratios of different classes. The model was trained using the 
training set and optimized based on the validation set performance. The final scores are reported on the test set, 
which was unseen during model training. All experiments were repeated 10 times to prevent bias, and the final 
performance metrics were obtained by averaging the results. The performance was measured by the accuracy, 
AUC, F1-score, precision, and recall metrics. All models were trained with the Adam optimizer with a learning 
rate of 0.001 to minimize the weighted sum of task-specific losses. A sigmoid activation function with binary 
cross-entropy loss was used for both the diabetes and hypertension prediction classification tasks. The batch size 
and number of epochs were set to 32 and 300, respectively, for all experiments. To prevent overfitting, a dropout 
rate of 0.3 was applied after the CNN layer and every LSTM block. We used grid search to find the optimal layer 
units and model architecture. The proposed models were implemented using PyTorch as the back end.

Figure 2.  Example of multi-task learning applied with a periodic and central weighted learning (PCWL) 
scheme when the initial weight is fixed at [3:1]. In this example, diabetes and hypertension refer to each 
prediction task, and the central task is the diabetes prediction task. In the PWL stage, the focus task is changed 
every 20 iterations to give equal opportunity during training, and the weight of the auxiliary task is multiplied by 
0.1. In the CWL stage, the central task is fixed as the focus task, and the weight of the auxiliary task is multiplied 
by 0.1. The red number and letters indicate the loss weight and type of the focus task, respectively.



6

Vol:.(1234567890)

Scientific Reports |         (2023) 13:1069  | https://doi.org/10.1038/s41598-023-28383-9

www.nature.com/scientificreports/

Moreover, six different multi-task learning models (N-time-step models) were developed based on the clinical 
information accumulated for seven time steps. For instance, the two-time-step model predicts the eighth time 
step based on the last four years of progression. Then, we chose the best time-step model based on the prediction 
performance. Through these time-step models, we analyzed the evolution of the predictive performance over 
seven time steps and examined the stability and generality of our proposed model. The result of the N-time-step 
models was analyzed only for multi-task learning models with initial weights that performed best for each task.

Results and discussion
Chronic diseases were predicted using various sources of clinical information, and they shared some features 
in common. Through LASSO feature selection, 48 and 51 features were selected for diabetes and hypertension 
prediction tasks, respectively, and 43 features were in common (Table 1). Detailed results and feature descriptions 
are described in Supplementary Table S1 online. All features except age were selected from the anthropometric 
and biochemistry measurements. Therefore, five and eight features were specifically selected for diabetes and 
hypertension, respectively. Among these features, those used in the diagnostic criteria of one disease and there-
fore removed in the feature extraction process were specifically extracted for the other disease.

Before combining the two prediction tasks, we tested the performance of each task alone and reported the 
average results. Three types of typical recurrent networks were tested as the baseline models for time-series 
data prediction. Table 2 shows the average results over seven time steps for three recurrent networks. LSTM 

Figure 3.  Schematic of the model architecture. A total of 48 and 51 clinical features were selected for diabetes 
and hypertension, respectively, with 43 features appearing to be commonly shared. First, the features of two 
different tasks were matched to the same dimension through the 1D convolution layer. Subsequently, the 
periodic weighted learning (PWL) and central weighted learning (CWL) schemes were applied on the shared 
long short-term memory (LSTM) blocks for multi-task learning. Lastly, the fully connected layer and sigmoid 
activation were used for the final prediction of the status of diseases. The input of the model has a data format in 
the form of [number of patients, time steps, features].

Table 1.  Summary of selected features for diabetes and hypertension. A total of 48 and 51 features were 
selected for diabetes and hypertension, respectively, and 43 features were in common. The detailed description 
of the characteristics can be found in Supplementary Table S1 online. BP systolic blood pressure, DBP diastolic 
blood pressure.

Characteristic

Diabetes only (5) Protein, Sit-Left arm DBP, SBP, Sit-Right arm DBP, SBP

Common (43)

Age, ALT (SGPT), AST (SGOT), Fat-free mass, Body fat, Intracellular fluid, Body muscle mass, Body fat rate, 
BMI, Lie-DBP (1st), Lie-SBP (2nd), Sit-Left tactile SBP, Sit- Right tactile SBP, BUN, Creatinine, C-Reactive 
protein, Glucose (1-h OGTT), Hemoglobin, Hematocrit, HDL-Cholesterol, Height, Hip circumference (Pt, 2nd, 
3rd), Insulin (fasting, 1-h OGTT, 2-h OGTT), Obesity degree, Urine (16), Platelet, Lie-pulse rate (1st), Blood-
R.B.C, Subscapular (2nd, 3rd), Suprailiac (1st, 2nd, 3rd), Total cholesterol, Triglyceride, Waist circumference (1st), 
Blood-W.B.C, Weight

Hypertension only (8) Mineral, Extracellular fluid, Lie-DBP (2nd), Fasting blood glucose, Glucose (2-h OGTT), Subscapular (1st), Waist 
circumference (2nd, 3rd)
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was selected as the baseline model for both tasks because it had better AUC and recall metrics than the other 
recurrent networks, GRU and RNN. The hypertension prediction results are not as good as for diabetes, which 
can be considered natural as it concerns fewer samples with more balance between the labels. Initially, we used 
data augmentation techniques considering the labels of each time step to handle the label imbalance problem. 
However, this method did not work as expected because it showed an unstable loss in the baseline models.

To evaluate the performance and effectiveness of our proposed multi-task CNN-LSTM method, we tested 
and compared many schemes with different settings, including different model architectures and initial weights. 
Table 3 shows the results obtained from the single- and multi-task models for the prediction of the two chronic 
diseases, diabetes and hypertension. Before we applied multi-task learning, a single-task CNN-LSTM was tested 
to check the performance when the feature space of both tasks was set to the same dimension of 50. In diabetes 
prediction, the application of a CNN layer resulted in a slight decrease for most of the metrics. For hyperten-
sion prediction, there was a significant decrease in standard deviation and increase in accuracy, F1-score, and 
precision, 3.59%, 1.12%, 3.4%, respectively. The multi-task CNN-LSTM was tested using five sets of weights 
([1:1], [3:1], [6:1], [9:1], [12:1], and [15:1]) to determine the optimal weight for each task. Overall, the multi-task 
CNN-LSTM achieved the best results. The results show that multi-task learning reduces the risk of overfitting 
and contributes to creating a more general and stable model than single-task models.

The diabetes prediction task performed best for all metrics when the weight of 1 was applied, with an average 
accuracy of 88.06 ± 1.31%, AUC of 93.89 ± 0.17%, F1-score of 68.46 ± 1.47%, precision of 61.01 ± 4.68%, and recall 
of 78.64 ± 4.29%. Due to the significant imbalance in the diabetes dataset, increases in the AUC and F1 metrics 
have an important meaning. For hypertension, we selected a weight of 15 as the best initial weight because it 
produced the best AUC and F1-score metrics. It had an average accuracy of 74.05 ± 2.18%, AUC of 84.08 ± 0.66%, 
F1-score of 65.83 ± 1.59%, precision of 58.36 ± 4.17%, and recall of 76.95 ± 9.49%. Thus, it was confirmed that 
the initial weights we chose for the final model also followed the tendency of the initial weights according to 
the data size mentioned in a previous  paper17. Because the hypertension task had a small data size, it performed 
better when a larger weight was applied than with diabetes. In addition, the hypertension task performance had 
a higher variance, and the weight application method was more effective.

Table 2.  Comparison with baseline recurrent network models. The model with the best score for each disease 
is highlighted in bold.

Task Methods Ace AUC F1 Precision Recall

Diabetes

LSTM 85.37 ± 2.16 93.57 ± 0.51 65.61 ± 2.11 54.18 ± 5.45 84.41 ± 5.78

GRU 88.62 ± 1.1 92.87 ± 0.38 68.26 ± 1.68 63.45 ± 4.35 74.41 ± 4.62

RNN 88.46 92.35 67.22 62.99 72.07

Hypertension

LSTM 71.36 ± 7.18 83.75 ± 0.75 65.35 ± 3.33 55.85 ±7.59 81.63 ± 10.2

GRU 75.44 ± 2.41 82.7 ± 0.6 65.76 ± 0.86 61.22 ± 5.29 72.4 ± 8.27

RNN 67.82 62.58 4.14 75 2.13

Table 3.  Performance of single-task LSTM, convolutional neural network (CNN)-LSTM, and multi-task 
CNN-LSTM for the diabetes and hypertension prediction tasks. We set the initial task weights of the central 
and auxiliary tasks to [1:1], [3:1], [6:1], [9:1], [12:1], and [15:1]. Best performance values are in bold.

Task Methods Acc AUC F1 Precision Recall

Diabetes

LSTM 85.37 ± 2.16 93.57 ± 0.51 65.61 ± 2.11 54.18 ± 5.45 84.41 ± 5.78

CNN-LSTM 85.03 ± 4.11 93.47 ± 0.41 64.99 ± 4.14 54.45 ± 7.92 82.79 ± 6.57

Multi-task CNN-LSTM

1:1 88.06 ± 1.31 93.89 ± 0.17 68.46 ± 1.47 61.01 ± 4.68 78.64 ± 4.29

3:1 87.14 ± 1.72 93.65 ± 0.36 67.39 ± 2.06 58.39 ± 5.09 80.45 ± 4.23

6:1 87.05 ± 1.28 93.74 ± 0.22 67.32 ± 1.67 57.87 ± 3.99 80.99 ± 3.88

9:1 86.80 ± 2.25 93.49 ± 0.37 67.06 ± 2.49 57.62 ± 5.20 81.17 ± 5.39

12:1 86.71 ± 1.91 93.65 ± 0.33 66.94 ± 1.61 57.46 ± 5.53 81.44 ± 6.36

15:1 87.64 ± 1.79 93.8 ± 0.25 67.81 ± 2.53 59.98 ± 5.77 78.73 ± 3.63

Hypertension

LSTM 71.36 ± 7.18 83.75 ± 0.75 65.35 ± 3.33 55.85 ± 7.59 81.63 ± 10.2

CNN-LSTM 74.95 ± 1.65 83.07 ± 0.76 66.47 ± 1.66 59.25 ± 2.78 76.16 ± 5.69

Multi-task CNN-LSTM

1:1 75.13 ± 4.13 83.60 ± 0.65 66.44 ± 1.43 60.65 ± 6.18 74.96 ± 7.64

3:1 74.26 ± 4.88 83.32 ± 0.93 65.22 ± 1.87 60.53 ± 8.22 73.83 ± 11.94

6:1 74.69 ± 3.45 83.56 ± 0.76 66.29 ± 1.88 59.42 ± 5.12 76.38 ± 7.17

9:1 75.87 ± 3.39 83.39 ± 0.50 65.80 ± 2.42 63.27 ± 8.45 71.56 ± 11.93

12: 1 75.09 ± 2.07 83.54 ± 0.74 65.90 ± 0.94 60.16 ± 4.55 73.82 ± 6.60

15: 1 74.05 ± 2.18 84.08 ± 0.66 65.83 ± 1.59 58.36 ± 4.17 76.95 ± 9.49
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Furthermore, Table 4 shows the results of the multi-task experiments we used to evaluate the effectiveness 
of our PWL and CWL strategy. The multi-task baseline was not applied with any adaptive weight policy, and 
the multi-task models with either PWL or CWL used the best initial weights for each task, which were [1:1] and 
[15:1] for diabetes and hypertension, respectively. The results show that all metric scores increased except the 
F1-score for the hypertension prediction when our multi-task learning strategy was applied. In particular, the 
results showed the best area under the curve (AUC) and recall, which are important evaluation metrics in clini-
cal prediction tasks, when both strategies were applied. For diabetes prediction, the multi-task learning strategy 
showed improvement over the single-task model on all metrics except recall.

Through Table 5 and Fig. 4, we can see the performance evolution of the multi-task CNN-LSTM models 
over time steps when the best initial weights were applied for each task. In diabetes prediction, it is clear that 
performance increased monotonically over time for almost all metrics. Nevertheless, the accuracy, F1-score, and 
precision metrics had peak performances in the five-time-step model. Although the best overall performance was 
obtained from the seven-time-step model, it is desirable to achieve good prediction with the lowest number of 
progression years. Thus, we considered the five-time-step model the most suitable for predicting diabetes, with 
accuracy of 89.79%, AUC of 93.62%, F1-score of 70.12%, precision of 67.5%, and recall of 72.97%. In hyperten-
sion prediction, an increase in accuracy, AUC, and F1-score is seen over time. As it is also desirable to leverage 
the least number of years that produces good performance, we selected the five-time-step model as the best, with 
accuracy of 71.06%, AUC of 83.81%, F1-score of 64.78%, precision of 53.73%, and recall of 81.56%.

The experiments using this model were conducted on diabetes and hypertension, the most representative 
diseases among chronic diseases in which clinical information was tracked up to the seventh time step. The results 
show that the multi-task technique helps reduce the standard deviation for almost all metrics compared to the 
single-task baseline models, thereby stabilizing the model. In addition, the proposed model can be generalized, 
as it can customize the initial weights and leverage all the significant features based on each task.

Table 4.  Multi-task experiments of the PWL and CWL strategy. We set the initial task weights of the multi-
task models to [1:1] and [15:1], for diabetes and hypertension prediction task, respectively. Best performance 
values are in bold.

Task PWL CWL Acc AUC F1 Precision Recall

Hypertension

Single-task model 74.95 ± 1.65 83.07 ± 0.76 66.47 ± 1.66 59.25 ± 2.78 76.16 ± 5.69

0 X 75.46 ± 4.13 83.38 ± 1.04 66.3 ± 1.92 61.83 ± 7.8 73.76 ± 9.73

X 0 72.8 ± 6.15 83.23 ± 1.27 64.58 ± 2.81 58.22 ± 7.47 75.46 ± 11.85

0 0 74.05 ± 2.18 84.08 ± 0.66 65.83 ± 1.59 58.36 ± 4.17 76.95 ± 9.49

Diabetes

Single-task model 85.03 ± 4.11 93.47 ± 0.41 64.99 ± 4.14 54.45 ± 7.92 82.79 ± 6.57

0 X 88.18 ± 1.15 93.94 ± 0.28 68.93 ± 1.78 60.91 ± 3.46 79.64 ± 2.33

X 0 87.63 ± 1.39 93.67 ± 0.23 67.79 ± 1.24 59.83 ± 4.57 79.01 ± 5.46

0 0 88.06 ± 1.31 93.89 ± 0.17 68.46 ± 1.47 61.01 ± 4.68 78.64 ± 4.29

Table 5.  Performance of the proposed multi-task CNN-LSTM model for the diabetes and hypertension 
prediction tasks based on different time steps. Overall, the performance tended to decrease gradually as 
we used smaller numbers of time steps. For both tasks, using five time steps allowed the model to maintain 
performance with the least number of time steps. Using four time steps, the model performance degraded for 
some metrics: in the diabetes prediction task, the F1-score and precision metrics degraded, and there was a 
decrease in recall for the hypertension prediction task. Best performance values are in bold.

Task Time steps Acc AUC F1 Precision Recall

Diabetes

7 88.06 ± 1.31 93.89 ± 0.17 68.46 ± 1.47 61.01 ± 4.68 78.64 ± 4.29

6 87.63 ± 1.27 93.57 ± 0.31 67.57 ± 1.30 59.85 ± 4.44 78.28 ± 4.76

5 89.79 93.62 70.12 67.5 72.97

4 87.13 93.22 67.65 57.59 81.98

3 85.94 93.38 66.43 54.65 84.68

2 83.72 93.2 63.57 50.26 86.48

Hypertension

7 74.05 ± 2.18 84.08 ± 0.66 65.83 ± 1.59 58.36 ± 4.17 76.95 ± 9.49

6 76.41 ± 3.27 83.36 ± 0.58 66.96 ± 1.40 62.90 ± 6.68 72.97 ± 6.98

5 71.06 83.81 64.78 53.73 81.56

4 75.92 81.56 62.31 63.7 60.99

3 75.69 80.99 63.91 62 65.95

2 69.44 78.46 60.47 52.33 71.63
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Conclusion
In this paper, we propose an intra-person multi-task deep-learning model consisting of CNN and LSTM blocks 
to learn diabetes and hypertension status simultaneously. The CNN was used to extract local features from indi-
vidual time series for each task, and the LSTM blocks were used to model the temporal variations and extract 
temporal features. The final multi-task CNN-LSTM model shares the LSTM blocks to apply multi-task learning 
with the optimal initial weights for each task. Through multi-task learning, the model can thoroughly learn all 
tasks while concentrating on the central task, thereby improving the overall performance. Experimental results 
of the proposed model demonstrated the effectiveness of multi-task learning in chronic-disease prediction using 
time-series data.

The proposed model can be applied to various predictive tasks in other medical domains because the model 
shows enhanced performance in time-series data with small data sizes. This approach shows that multiple chronic 
diseases can be predicted through various clinical information tracked from one patient because features selected 
as significant for one disease may also help predict other diseases. Further studies can investigate not only repre-
sentative chronic diseases but also other diseases that can be learned concurrently to identify new relationships 
between diseases and improve the predictive performance of various diseases.

Data availability
The KoGES dataset used in this study has been anonymized and is open to the public by the Korea National 
Institute of Health (https:// nih. go. kr/ conte nts. es? mid= a5040 10104 00).
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