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Cooperation without punishment
Balaraju Battu * & Talal Rahwan *

A fundamental question in social and biological sciences is whether self-governance is possible 
when individual and collective interests are in conflict. Free riding poses a major challenge to self-
governance, and a prominent solution to this challenge has been altruistic punishment. However, 
this solution is ineffective when counter-punishments are possible and when social interactions are 
noisy. We set out to address these shortcomings, motivated by the fact that most people behave 
like conditional cooperators—individuals willing to cooperate if a critical number of others do so. 
In our evolutionary model, the population contains heterogeneous conditional cooperators whose 
decisions depend on past cooperation levels. The population plays a repeated public goods game 
in a moderately noisy environment where individuals can occasionally commit mistakes in their 
cooperative decisions and in their imitation of the role models’ strategies. We show that, under 
moderate levels of noise, injecting a few altruists into the population triggers positive reciprocity 
among conditional cooperators, thereby providing a novel mechanism to establish stable cooperation. 
More broadly, our findings indicate that self-governance is possible while avoiding the detrimental 
effects of punishment, and suggest that society should focus on creating a critical amount of trust to 
harness the conditional nature of its members.

Is self-governance possible when collective and private interests are at odds? This has been a fundamental ques-
tion in social and biological  sciences1–6. Public good provision provides a context in which such conflict can be 
 studied7. Optimal public good provision requires all individuals to contribute maximally towards the common 
pool. However, the non-excludable nature of the common good incentivizes selfish individuals to free ride on 
the contribution of others, leading to an inefficient outcome. For decades, the challenge posed by free-riders has 
been the subject of intense  investigation3,4,8–21. To address this challenge, voluntary cooperation has been studied 
 experimentally22 and  theoretically23 using the public goods game (PGG). In a typical PGG, each individual is 
given an equal amount of endowment, along with the option to contribute voluntarily and anonymously to a 
common pool. After the contribution decisions are made, the collected endowment is enhanced and is divided 
equally among all individuals, irrespective of their contributions to the common pool. Essentially, a PGG is an 
n-person prisoners’ dilemma, and according to standard game theory, individuals choose their strategy under the 
assumption of rationality and common  knowledge24. This implies that individuals maximize their payoff by not 
contributing to the common pool, leading to the tragedy of the commons25. However, contrary to the predictions 
made by standard game theory, behavioural experiments on the PGG have shown that most people contribute 
to the common pool, and only a few individuals free  ride16,16,26,27. Yet, when the PGG is repeated over multiple 
rounds, contributions tend to decline with the number of rounds; this is due to a few individuals who free ride 
in the first round, thereby triggering further free riding in subsequent  rounds11,14,27. Most proposed solutions to 
this problem involve either pool  punishment28,29 or peer  punishment10,11,15,15,18,19,30–33. A prominent form of the 
latter is altruistic punishment, whereby individuals punish free-riders at a personal cost. It has been observed that 
people are often willing to engage in altruistic punishment, even when the cost to the punisher is  substantial14,15.

Unfortunately, numerous studies have shown that punishment-based mechanisms only solve the free-rider 
problem under restrictive  conditions34–38. Specifically, pool punishment is ineffective when the cost of maintain-
ing central authority outweighs the benefits of cooperation. Moreover, in scenarios where there are no free riders, 
community members may lack the incentive to contribute towards maintaining the central authority. Another 
limitation of pool punishment is information loss. In particular, when information is transmitted from the local 
commons all the way up the hierarchy, some information may be misinterpreted, potentially leading the central 
authority to undermine the sentiments of the local  community9,21,39. As for peer punishment, it is ineffective 
when the population is dominated by second-order free-riders, i.e., individuals who contribute to the public 
goods but do not punish free-riders40,41. As far as altruistic punishment is concerned, it is ineffective when the 
possibility arises for punishing the cooperators, e.g., due to  bribery42 or imperfect  information43. Moreover, this 
mechanism does not distinguish between those who free ride due to selfish interests and those who free ride 
only because others are doing  so44. Overall, punishment can override altruistic motives, leading individuals to 
free ride as soon as the opportunity arises to evade  punishment45–47.
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The literature on cooperation explores various mechanisms that do not rely on punishment. These include 
cognitive factors such as intuition and  deliberation48–50, as well as psychological factors, such as imitation of 
 emotions51,52, positive  interactions53,54, and  rewards55–58. Other mechanisms include the coevolution of  norms59,60, 
the coevolution of costs and  benefits61, and opting out from the public good game  altogether62–64. However, none 
of these mechanisms exploit positive reciprocity and the conditional nature of human cooperation. Conditional 
cooperators react to the actions of others in the population. For example, in collective risk dilemmas and public 
goods games, individuals’ non-binding pledges in the population can trigger conditional cooperation in subse-
quent  rounds17,65. However, even if social groups manage to successfully trigger conditional cooperation, they 
would still have to overcome the challenge of sustaining that cooperation. This challenge stems from the fact that 
a few selfish free-riders can always trigger negative reciprocity from the conditional cooperators, thereby spread-
ing the free riding behaviour across the population. This proliferation can be explained in terms of evolutionary 
biology, where payoff is equated with fitness, and relatively higher fitness agents—the free-riders—reproduce 
faster than  others66,67. It can also be explained in terms of cultural evolution, whereby individuals imitate the 
social behaviour of successful role models. Thus, to sustain cooperation, we need a mechanism to slow down 
the proliferation of free-riders.

Our novel alternative to punishment builds on the reciprocal nature of the trust—the fact that people recipro-
cate voluntary  trust68—as well as the conditional nature of human cooperation—the fact that negative reciprocity 
can be switched to positive reciprocity given sufficient cooperation  levels44,69–71. More specifically, it has been 
observed that most people reciprocate trust when the initial act of trust is taken  voluntarily68, e.g., as is the case 
with successful business organizations who foster a culture of trust by placing trust in  others72–74. Moreover, 
it has also been observed that, in repeated public goods games, most people behave like conditional coopera-
tors—individuals willing to cooperate if a critical number of others do so—and only a few individuals tend to be 
altruists (i.e., unconditional cooperators) or free-riders16,17,27,75,76. Based on this observation, instead of penalizing 
the selfish tendencies of the minority—as is the case with punishment—our proposed mechanism involves plac-
ing a few altruists in the population, thereby harnessing the conditional nature of the majority. We hypothesize 
that, in the presence of a few altruists, initial trust can be created, thereby triggering positive reciprocity among 
conditional cooperators. The idea of influencing a population, not via punishment but rather via the actions of 
a few individuals, has been discussed in the literature, albeit not in the context of cooperation. More specifically, 
it has been shown that a population’s opinion can be influenced by a few “stubborn individuals”77, and social 
norms can be changed by a few deviants or cultural  leaders78–80.

Using an evolutionary agent-based model, we show that, in the presence of altruists and moderately noisy 
social interactions, it is possible for a population of conditional cooperators to establish and sustain high levels 
of cooperation. The altruists trigger positive reciprocity, and the combination of altruists and moderate levels 
of noise provides an environment under which social learning is not only influenced by payoff-biased transmis-
sion—the tendency to copy the most successful individual—but also influenced by conformist-biased transmis-
sion—the tendency to imitate the most frequent behaviour in the population—thereby establishing and sustaining 
cooperation. Importantly, unlike punishment, our mechanism can sustain cooperation under a wide range of 
noise in social interactions, whereby agents can occasionally commit mistakes in their conditional cooperative 
decisions and their adaptation of the social behaviour of role models. More broadly, we show that stable coop-
eration can be established, not by punishment or reward, but rather by creating initial trust in the population, 
thereby exploiting the conditional nature of human cooperation.

Model
Our evolutionary agent-based model involves multiple generations. In each generation, the agents play a PGG, 
after which they update their strategies. Next, we explain this model in more detail.

Population type. The population consists of N agents, with a small fraction consisting of altruists (i.e., 
agents who cooperate unconditionally), and the rest consisting of conditional cooperators (i.e., agents who are 
willing to cooperate if others do so); this resembles behavioural regularities observed  elsewhere17,81. More spe-
cifically, each agent, i, is born into the population with a conditional cooperative criterion, CCCi ∈ {0, . . . ,N} , 
which specifies the agent’s conditional rule, i.e., the minimum number of cooperation decisions required for i 
to cooperate. For example, if CCCi = m , then i may cooperate in the current round if and only if the number of 
agents who cooperated in the previous round is ≥ m . Now, for any altruist j, we have CCCj = 0 . On the other 
hand, for any conditional cooperator k, we have CCCk ∼ {0, . . . ,N} . Clearly, if CCCk = 0 then k always cooper-
ates, and if CCCk = N then k always free rides. Crucially, however, even if CCCk = 0 , it does not make k an altru-
ists. More specifically, given an altruist j and a conditional cooperator k such that CCCj = CCCk = 0 , although 
the two agents would cooperate unconditionally in the current generation, they would still differ in the way they 
update their strategies after each generation, as we will see in the coming section on updating the population.

Conditional cooperative decisions. In any given round, the cooperative decision of agent i depends on 
CCCi as well as the number of agents who contributed in the previous round, denoted by NC . More specifically, 
in the current round, i contributes to the common pool with a probability:

where β ≥ 0 represents the noise level, i.e., the uncertainties in making a conditional decision. As β approaches 
infinity, the noise level approaches 0, in which case agent i has perfect information about NC , and its decision 

(1)pi =

{

1 if CCCi = 0
1

1+exp (−(NC−CCCi)β)
otherwise
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depends solely on its conditional rule, i.e., it contributes if and only if (NC − CCCi) > 0 . When either β = 0 or 
(NC − CCCi) = 0 , the agent decides whether to contribute by tossing a coin. The rationale behind this design 
decision is as follows. When the former condition is met, i.e., when β = 0 , all information is lost, implying that 
the agent is unable to access any information about NC . In contrast, when the latter condition is met, i.e., when 
(NC − CCCi) = 0 , the agent is confused about whether or not to cooperate. For intermediate values, i.e., when 
0 < (NC − CCCi)β < 1 , the agent contributes to the public good with probability 0.5 < pi < (e/(e + 1)) . We 
can infer that, given the same level of cooperation in the previous round, agents with larger CCCi values are less 
likely to contribute than those with smaller values. Placing a certain percentage of altruists in the population 
would increase NC , thereby triggering positive reciprocity from the conditional cooperators. The combination 
of CCC values of the agents and β mimics the behavioural regularities observed in repeated public goods games 
 elsewhere17,81.

The public goods game. All the agents play a public goods game in each generation. At the beginning of 
the PGG, each agent is given an equal endowment, e. Then, following Eq. (1), agent i’s contribution to the public 
good is ci ∈ {0, u} where 0 < u ≤ e ; we refer to u as the contribution cost. After all the individuals make their 
contributing decisions, the payoff of agent i would be:

where h > 1 is the enhancing factor of the collective good. From this equation, one can see that the free riding 
yields higher payoffs than contributing to the public good.

Updating the population. Every conditional cooperator i updates its CCCi value after each generation, 
i.e., after each round of the PGG. The update is done using a pair-wise comparison  process82. First, i is matched 
with another randomly-selected agent j. Then, if j happens to be a role model of i (i.e., if πj > πi in the previous 
generation), then i adapts j’s strategy (i.e., it sets CCCi = CCCj ) with a probability qi which is proportional to the 
payoff difference between i and j. More formally:

In this process, high-fit agents can reproduce two offspring, depending on β , while equal-fit agents reproduce one 
offspring. In terms of cultural evolution, agents potentially imitate the social behaviour of successful individuals 
or role models. Here, as β approaches 0, agent i becomes unable to access information about the payoff of j, and 
thus decides whether to switches to j’s strategy by tossing a coin. Note that when 0 < β < 2 , agent i’s imitation 
of j’s strategy depends not only on the relative payoff (i.e., fitness) of j, but also on β (i.e., the noise level). Under 
such levels of noise, if the payoff difference is small (e.g., less than 2), then agent i occasionally does not imitate 
its role model (i.e., does not set CCCi to be equal to CCCj ). Another reason for i not to imitate its role model is 
mutation. More specifically, after each generation, a small fraction of conditional cooperators undergo muta-
tions in the reproduction process, meaning that they miscopy the conditional cooperative strategy of their role 
 models67. For more details on mutation parameters, see the Simulations section.

So far, we discussed how conditional cooperators update their social behaviour after each generation. Next, 
we turn our attention to the altruists in the population. To this end, we introduce a parameter, w, specifying 
the degree of “stubbornness” of altruists, i.e., the probability with which they do not imitate their role models. 
With this parameter, the case in which the altruists are stubborn (e.g., cultural leaders or freedom fighters) can 
be modeled by setting w = 1 . On the other hand, the case in which the altruists may imitate their role models 
can be modeled by setting w < 1 . In the latter case, the altruists undergo a selection process similar to that of 
conditional cooperators with probability (1− w).

Simulations
In the simulations, the population size is N = 100 . A certain percentage of the population consists of altruists, 
while every other agent i is a conditional cooperator whose CCCi value is drawn from {0, . . . ,N} uniformly at 
random. All agents play a repeated PGG with an initial endowment e = 10 units given to each agent in each 
round. Every conditional cooperator i determines its contribution following Eq. (1), receives its payoff following 
Eq. (2) and, after each generation, updates it strategy (i.e., CCCi ) following Eq. (3) with 5% mutations, implying 
that 5% of conditional cooperators miscopy their role model’s strategy. These mutations are created by adding 
to the updated CCCi a random value drawn from a Gaussian distribution with mean = 0 and s.d. = 5 (max = 
50; min = −50). If the mutated CCCi is greater than N, it is rounded off to N; if the mutated CCCi is negative, it 
is rounded off to 0. Note that if a conditional cooparator i happens to have CCCi = 0 due to mutation, it does 
not make i an altruist; it just means that i will cooperate in the next round regardless of how many others do so. 
However, i would still undergo the selection process after the current generation, unlike altruists who would 
only undergo this process with probability (1− w).

Simulations are carried out with the contribution cost u = 0.5 and the enhancing factor h = 1.5 , while varying 
the percentage of altruists α ∈ {10%, 20%, . . . , 50%} , the noise level β ∈ {0, 0.1, . . . , 1, 2,∞} , and the probabil-
ity with which altruists do not imitate their role models, w ∈ {0.1, 0.2, . . . , 0.6, 1} . For example, given w = 0.6 , 
every altruist cooperates in the first generation, and then, after each generation, undergoes the selection process 
with probability (1− 0.6) . The simulations were carried out for each experimental condition (i.e., fixed set of 

(2)πi = (e − ci)+
h

N

N
∑

i=1

ci

(3)qi =
1

1+ exp
(

−
(

πj − πi
)

β
)
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parameters: N, e, u, h, α , β , w) for 20,000 generations, and were repeated 30 times to compute the average behav-
iour of the population dynamics. We focused on three outcome measures: (i) the evolution of cooperation levels 
across generations; (ii) the asymptotic behaviour of the evolution of cooperation; (iii) the distribution of the CCCi 
values in the 20,000th generation. The cooperation level in each generation was measured as the percentage of 
agents who contributed to the common pool.

Results
For all experiments that involve altruists, we set the cooperation level in the first generation to be equal to the 
percentage of altruists in the population. Moreover, for all results presented in this section, the contribution 
cost is u = 0.5 , the enhancing factor is h = 1.5 , and the population size is N = 100 . As we will show later on in 
this section, these parameters allow us to reproduce the broad trend observed in PGG  experiments2. For details 
about the Matlab code required to run the simulations and produce all figures, see the Supplementary Material.

Let us first analyze what happens in a repeated public goods game when the noise level is β = 0.5 and when 
every agent i is a conditional cooperator whose CCCi value is drawn from {0, . . . ,N} uniformly at random. Start-
ing with different percentages of cooperation decisions in the initial generation, Fig. 1a shows the evolution of 
cooperation over the first 20 generations. As can be seen, regardless of the initial cooperation level, cooperation 
declines over 20 generations, resembling behavioural regularities observed in repeated public goods  games2. 
On the other hand, the presence of a few free-riders in the initial generation triggers free riding in subsequent 
generations. This is because agents behave like conditional cooperators and imitate their role models’ strategies 
after each generation.

Let us now consider what happens under the same experimental conditions, but when altruists are introduced 
into the population and continue to cooperate unconditionally across generations; this experimental condition 
can be obtained by setting w = 1 . We will analyze the evolution of cooperation given different percentages of 
altruists, α . Since the population dynamics stabilize after a few hundred generations, we will focus on the evolu-
tion of cooperation during the first 500 generations; later on, we will analyze asymptotes drawn for the last 5,000 
generations out of 20,000. As can be seen in Fig. 1b, for every α ∈ {10%, 20%, 30%, 40%, 50%} , the population 
establishes a cooperation level greater than α within a few generations. While this in itself is not surprising, the 
degree to which cooperation increases is indeed noteworthy, especially when it reaches a level > 2α . For instance, 

Figure 1.  The evolution of conditional cooperation. The x-axis represents the generation, the y-axis represents 
the cooperation level, and each color-coded trajectory depicts the evolutionary dynamics of cooperation under 
different experimental conditions, given β = 0.5 . a, Evolution of cooperation in the absence of altruists, given 
different percentages of cooperation decisions made in the first generation. b, Evolution of cooperation given 
different percentages of altruists present across generations when w = 1.
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starting with α = 20% , the population eventually reaches a cooperation level of about 65% . Similarly, starting 
with α = 30% , the cooperation level eventually reaches 80% . This is because the altruists are able to create a 
critical level of cooperation that exceeds the threshold of most conditional cooperators, while the presence of 
moderate levels of noise (i.e., β = 0.5 ) slows down the proliferation of free-riders.

Next, we analyze how the evolution of cooperation is affected by the noise level β . Recall that a smaller value 
of β corresponds to a greater level of noise. As such, when β → ∞ , noise is minimized, implying that agent 
i always imitates its role model’s strategy, and always determines whether to cooperate based solely on CCCi 
and NC . On the other hand, when β → 0 , noise is maximized, implying that the agents’ decisions, be it about 
cooperation or about imitation, are determined entirely based on a coin toss. By varying the noise level between 
these two extremes, we control the degree to which the agent’s decisions are based on random chance; see Eq. (1) 
and Eq. (3) for more details. With this in mind, given different percentages of altruists and different levels of 
noise, Fig. 2a shows the asymptotic cooperation levels in the last 5,000 generations out of a total of 20,000 (error 
bars were omitted since they were extremely small). As shown in this figure, decreasing the noise level (i.e., 
increasing β ) results in lower levels of cooperation, regardless of the percentage of altruists. The only exception 
is when noise is maximized (i.e., when β = 0 ), in which case the cooperation level equals α + (N − α)/2 . This 
is because, in the absence of information about social interactions, the altruists always cooperate, while other 
agents contribute to the common pool by tossing a coin. On the other extreme, when noise is minimized (i.e., 
when β = ∞ ), the cooperation level equals the percentage of altruists. In other words, apart from the altruists, 
all agents end up free riding, since they have perfect information about the payoff advantage of their role models 
who are mostly free-riders.

Next, we analyze what happens when we relax the assumption that the altruists are stubborn, i.e., when we 
set w < 1 instead of w = 1 . As shown in Fig. 2b, cooperation levels drop slightly when setting w = 0.5 instead 
of w = 1 , e.g., given α = 30% and β = 0.3 , cooperation levels drop from 86 to 77%. This drop is due to the fact 
that altruists are no longer stubborn, but rather change their social behaviour with certain probability after each 
generation. As a result, the number of conditional cooperators increases, and these agents often imitate their role 
model’s behaviour, leading to the observed drop in cooperation levels. Nevertheless, these results demonstrate 
that cooperation can still be established even when w = 0.5 , i.e., even if every altruist undergoes the selection 
process with 50% probability. This crucial result indicates that the altruists need not be stubborn across genera-
tions for cooperation to be established in a population of conditional cooperators.

Figure 2.  Asymptotic cooperation levels. a, The x-axis represents the percentage of altruists, the y-axis 
represents the average cooperation level over the last 5000 generations out of 20,000 with w = 1 , with each color 
corresponding to a different level of noise, β . b, The same as (a) but for w = 0.5 instead of w = 1 . c, The same as 
(a) but while varying w (x-axis) and fixing α = 30%.
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Having discussed the cooperation levels, let us now discuss the distribution of the conditional cooperative 
strategies, i.e., the CCC values. Starting with a population in which every conditional cooperator i is born with 
CCCi ∼ {0, . . . ,N} , Fig. 3a compares the distribution of the CCC values in the 20,000th generation in two dif-
ferent situations. The first is where α = 30% , β = 0.5 and w = 1 (a situation that yields high cooperation levels, 
as we have seen in Fig. 2a), and the second is where α = 30% , β = ∞ and w = 1 (a situation that yields low 
cooperation levels). In the first situation, nearly 80% of agents adopt a CCC value equal to 0, while in the second 
situation, nearly 25% do so, with the majority of the population adopting CCC values greater than 50. Figure 3b 
shows what happens when w = 0.5 instead of w = 1 . In this case, the broad trend remains unchanged; when 
β = 0.5 most CCC values equal zero, and when β = ∞ most CCC values are greater than 50. Finally, given a 
noise level β = 0.5 , Fig. 3c and d show how the distribution of CCC values is affected by decreasing the percent-
age of altruists from 30% to 10% . As shown in these figures, regardless of the value of w, the percentage of agent 
who adopt a CCC value equal to 0 drops significantly when α changes from 30% to 10% . This demonstrates that 
a critical amount of altruism is needed to influence the majority of conditional cooperators.

Discussion
In this study, we set out to answer a fundamental question: Can cooperation be established without external 
enforcement when individual and collective interests are in conflict? If so, under what conditions? We showed 
that cooperation is not established either when the population consists of conditional cooperators only Fig. 1a 
or when it consists of both conditional cooperators and altruists but in the absence of noise (Fig. 2a). This shows 
that, perhaps counterintuitively, injecting altruists into a population of conditional cooperators is not sufficient 
to establish stable cooperation. On the other hand, in the presence of moderate noise levels, the combination 
of a few altruists and conditional cooperators can establish and sustain high levels of cooperation Fig. 1b, and 
increasing the number of altruists would result in an increase in cooperation levels (Fig. 2a). Crucially, this find-
ing holds even when some of the altruists change their social behaviour across generations (Fig. 2b). Finally, 
we examined the extreme case where noise is maximized, showing that cooperation dynamics in this case are 
entirely driven by both noise and altruists (Fig. 2a).

Figure 3.  Distribution of the conditional cooperative criterion (CCC) values. Every altruists is born into the 
initial population with a conditional cooperative criterion CCCi = 0 , while every conditional cooperator k is 
born with CCCi ∼ {0, . . . ,N} . The figure depicts the distribution of all CCC values in the 20,000th generation 
for different percentages of altruists ( α ), different levels of noise ( β ), and different values of w. a, Results 
when α = 30% , β ∈ {0.5,∞} , and w = 1 . b, The same as (a) but for w = 0.5 instead of w = 1 . c Results when 
α ∈ {10%, 30%} , β = 0.5 , and w = 1 . d, The same as (c) but for w = 0.5 instead of w = 1.
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Let us now discuss why, in the presence of a few altruists and a moderate level of noise, cooperation can be 
established and sustained. To start with, the altruists’ actions trigger cooperation by the conditional cooperators. 
Before discussing how this cooperation is sustained, recall that each agent in our model is randomly paired with 
another agent, after which it updates its strategy following Eq. (3). In the presence of altruists, agents are less 
likely to be paired with role models, i.e., with agents who free ride. Moreover, in the presence of noise, agents are 
less likely to imitate the role models’ strategies, since they have imperfect information about the payoff of their 
role model, and are thus less likely to recognize the advantage of copying their strategy. Consequently, as we have 
shown in Fig. 3, the population becomes increasingly dominated by agents with low CCC values which, in turn, 
makes the agents more likely to imitate positive reciprocators. Under these conditions, the agents’ social learn-
ing is influenced not only by the role models’ payoffs, but also by the frequency of the behaviour observed in the 
population, suggesting that both payoff-biased transmission and conformist-biased transmission are influencing 
social learning. As a result, the proliferation of free-riders slows down, thereby sustaining the cooperation that 
was triggered by the altruists. Finally, let us explain why cooperation is not established in the absence of noise. 
This is simply because the agents in this case would always imitate their role models’ social behaviour, leading to 
the proliferation of free riding. Having said that, it should be noted that our mechanism required a considerable 
number of altruists for it to work. For example, under certain levels of noise, it may require 20% or even 30% of 
the population to be altruists.

Next, we discuss what happens when a free-riding mutant (i.e., an agent i such that CCCi = N ) is born into a 
population where altruists are present and noise levels are moderate. In this case, agent i does not proliferate in 
the population due to the above reasons, i.e., because individuals rarely match with i, and when they do, they are 
less likely to imitate i. Note that, when noise levels are low, individuals are likely to recognize the superior fitness 
of i and hence imitate i, ultimately leading to the proliferation of free-riders. On the other hand, when noise 
levels are high, individuals’ cooperation decisions and imitations become essentially random, thereby limiting 
the influence that i has on the stability of cooperation.

Our proposed mechanism is novel compared to the punishment-based alternative. More specifically, the 
core idea behind punishment is to reduce the free-riders’ payoffs, thereby preventing them from reproducing at 
a faster rate than the cooperators. However, such mechanisms suffer from a number of limitations. First, they 
reduce the overall social  good2,3,6. Second, they are sensitive to errors that involve either punishing cooperators 
or not punishing free-riders23,30. Third, they are ineffective when counter-punishments are possible, i.e., when the 
free-riders are able to retaliate against the  punishers3. Fourth, their effectiveness is reduced when the population 
is dominated by either free-riders or second-order free-riders41. Fifth, pool punishment relies on perfect monitor-
ing, which is impractical or infeasible in many  cases21. Instead of punishing free-riders, an alternative mechanism 
is to reward  cooperators53. However, it has been argued that rewards are insufficient to sustain  cooperation83.

Our model has several merits. First, it avoids the limitations of punishment-based mechanism. Second, 
it avoids the common assumption that agents are rational and  selfish84. Third, it allows the population to be 
influenced by conformist-biased transmission—a form of social learning often observed in human  societies85. 
Fourth, our model relies on three assumptions that often hold in the real world: (i) the majority of the popula-
tion are conditional cooperators, as commonly observed in the  field17,76; (ii) cooperative dynamics are stabilized 
by social noise as observed  elsewhere86,87; (iii) a few individuals (the altruists) can influence the majority (the 
conditional cooperators), as is the case with cultural leaders who trigger tipping-point phenomena observed 
in social  dynamics77–80. Despite its advantages, the proposed mechanism may not work in small groups, where 
individuals are more likely to access perfect information about the payoffs of their role models, and are thus more 
likely to imitate the social behaviour of negative reciprocators or free-riders, thereby leading to free riding. Finally, 
although the model helps us understand the conditions under which cooperation can be established without 
external enforcement, it does not specify the conditions under which conditional cooperation evolves endog-
enously; this latter point is certainly worth exploring in future research. Another promising future direction is to 
explore the case where individuals are embedded in a spatial network, which is often the case in the real world.

In summary, we demonstrated that a population of conditional cooperators (without altruists) does not 
establish cooperation (Fig. 1a). Furthermore, we demonstrated that, even with the injection of altruists, stable 
cooperation is still not always established—a counterintuitive finding, especially since one would imagine that 
conditional cooperators would (by definition) cooperate in the presence of altruists (see Fig 2a when noise level 
is low). Finally, we identified a condition under which altruists can trigger and sustain cooperation; this condi-
tion is the presence of moderate noise levels in social interactions, which are commonly observed in the real 
world 82. Our findings suggest that, in order to facilitate self-governance, societies should focus on creating a 
critical amount of trust to harness the conditional nature of its members. More broadly, we show that it is indeed 
possible to establish cooperation without punishment.

Data availability
All data, as well as the Matlab code required to run the simulations and produce the plots, are provided in http:// 
doi. org/ 10. 5281/ zenodo. 74427 67this link.

Code availability
The code used to run the simulations and produce the figures is freely available in the Supplementary Material.

Received: 14 November 2022; Accepted: 17 January 2023

http://doi.org/10.5281/zenodo.7442767
http://doi.org/10.5281/zenodo.7442767


8

Vol:.(1234567890)

Scientific Reports |         (2023) 13:1213  | https://doi.org/10.1038/s41598-023-28372-y

www.nature.com/scientificreports/

References
 1. Fehr, E. & Rockenbach, B. Detrimental effects of sanctions on human altruism. Nature 422, 137–140 (2003).
 2. Herrmann, B., Thoni, C. & Gachter, S. Antisocial punishment across societies. Science 319, 1362–1367 (2008).
 3. Nikiforakis, N. Punishment and counter-punishment in public good games: Can we really govern ourselves?. J. Public Econ. 92, 

91–112 (2008).
 4. Olson, M. The logic of collective action [1965]. Contemporary Sociological Theory124 (2012).
 5. Ostrom, E. Collective action and the evolution of social norms. J. Econ. Perspect. 14, 137–158 (2000).
 6. Rand, D. G. & Nowak, M. A. The evolution of antisocial punishment in optional public goods games. Nat. Commun. 2, 1–7 (2011).
 7. Roth, A. E. & Kagel, J. H. The Handbook of Experimental Economics Vol. 1 (Princeton University Press, Princeton, 1995).
 8. Dawes, R. M. Social dilemmas. Annu. Rev. Psychol. 31, 169–193 (1980).
 9. Dietz, T., Ostrom, E. & Stern, P. C. The struggle to govern the commons. Science 302, 1907–1912 (2003).
 10. Falk, A., Fehr, E. & Fischbacher, U. On the nature of fair behavior. Econ. Inq. 41, 20–26 (2003).
 11. Fehr, E. & Fischbacher, U. The nature of human altruism. Nature 425, 785–791 (2003).
 12. Fehr, E. & Fischbacher, U. Social norms and human cooperation. Trends Cogn. Sci. 8, 185–190 (2004).
 13. Fehr, E. & Gächter, S. Fairness and retaliation: The economics of reciprocity. J. Econ. Perspect. 14, 159–181 (2000).
 14. Fehr, E. & Gächter, S. Cooperation and punishment in public goods experiments. Am. Econ. Rev. 90, 980–994 (2000).
 15. Fehr, E. & Gächter, S. Altruistic punishment in humans. Nature 415, 137–140 (2002).
 16. Fischbacher, U., Gächter, S. & Fehr, E. Are people conditionally cooperative? evidence from a public goods experiment. Econ. Lett. 

71, 397–404 (2001).
 17. Frey, B. S. & Stutzer, A. Economics and Psychology: A Promising New Cross-Disciplinary Field (MIT Press, Cambridge and London, 

2007).
 18. Gintis, H., Bowles, S., Boyd, R. & Fehr, E. Explaining altruistic behavior in humans. Evol. Hum. Behav. 24, 153–172 (2003).
 19. Gintis, H., Henrich, J., Bowles, S., Boyd, R. & Fehr, E. Strong reciprocity and the roots of human morality. Soc. Justice Res. 21, 

241–253 (2008).
 20. Henrich, J. et al. In search of homo economicus: Behavioral experiments in 15 small-scale societies. Am. Econ. Rev. 91, 73–78 

(2001).
 21. Ostrom, E. Governing the Commons: The Evolution of Institutions for Collective Action (Cambridge University Press, 1990).
 22. Ledyard, J. Public Goods: A Survey of Experimental Research. In The Handbook of Experimental Economics (Princeton University 

Press, Princeton, 1995).
 23. Sigmund, K. The calculus of selfishness. In The Calculus of Selfishness (Princeton Series in Theoretical and Computational Biology). 

(Princeton University Press, 2010).
 24. Camerer, C. F. & Fehr, E. When does“ economic man’’ dominate social behavior?. Science 311, 47–52 (2006).
 25. Hardin, G. The tragedy of the commons: The population problem has no technical solution; it requires a fundamental extension 

in morality. Science 162, 1243–1248 (1968).
 26. Frey, B. S. & Torgler, B. Tax morale and conditional cooperation. J. Comp. Econ. 35, 136–159 (2007).
 27. Keser, C. & Van Winden, F. Conditional cooperation and voluntary contributions to public goods. Scand. J. Econ. 102, 23–39 

(2000).
 28. Baldassarri, D. & Grossman, G. Centralized sanctioning and legitimate authority promote cooperation in humans. Proc. Natl. 

Acad. Sci. 108, 11023–11027 (2011).
 29. Henrich, J. Cooperation, punishment, and the evolution of human institutions. Science 312, 60–61 (2006).
 30. Boyd, R., Gintis, H., Bowles, S. & Richerson, P. J. The evolution of altruistic punishment. Proc. Natl. Acad. Sci. 100, 3531–3535 

(2003).
 31. De Quervain, D. J. et al. The neural basis of altruistic punishment. Science 305, 1254–1258 (2004).
 32. De Weerd, H. & Verbrugge, R. Evolution of altruistic punishment in heterogeneous populations. J. Theor. Biol. 290, 88–103 (2011).
 33. Fowler, J. H. Altruistic punishment and the origin of cooperation. Proc. Natl. Acad. Sci. 102, 7047–7049 (2005).
 34. Szolnoki, A. & Perc, M. Effectiveness of conditional punishment for the evolution of public cooperation. J. Theor. Biol. 325, 34–41 

(2013).
 35. Ohdaira, T. Evolution of cooperation by the introduction of the probabilistic peer-punishment based on the difference of payoff. 

Sci. Rep. 6, 1–9 (2016).
 36. Ohdaira, T. Characteristics of the evolution of cooperation by the probabilistic peer-punishment based on the difference of payoff. 

Chaos, Solitons Fractals 95, 77–83 (2017).
 37. Ohdaira, T. A remarkable effect of the combination of probabilistic peer-punishment and coevolutionary mechanism on the 

evolution of cooperation. Sci. Rep. 7, 1–9 (2017).
 38. Ohdaira, T. The probabilistic pool punishment proportional to the difference of payoff outperforms previous pool and peer pun-

ishment. Sci. Rep. 12, 1–8 (2022).
 39. Sarkar, R. Decentralised forest governance in central himalayas: A re-evaluation of outcomes. Econ. Pol. Wkly 43, 54–61 (2008).
 40. Hilbe, C., Traulsen, A., Röhl, T. & Milinski, M. Democratic decisions establish stable authorities that overcome the paradox of 

second-order punishment. Proc. Natl. Acad. Sci. 111, 752–756 (2014).
 41. Panchanathan, K. & Boyd, R. Indirect reciprocity can stabilize cooperation without the second-order free rider problem. Nature 

432, 499–502 (2004).
 42. Liu, L., Chen, X. & Szolnoki, A. Evolutionary dynamics of cooperation in a population with probabilistic corrupt enforcers and 

violators. Math. Models Methods Appl. Sci. 29, 2127–2149 (2019).
 43. Salahshour, M., Oberhauser, V. & Smerlak, M. The cost of noise: Stochastic punishment falls short of sustaining cooperation in 

social dilemma experiments. PLoS ONE 17, e0263028 (2022).
 44. Battu, B. Evolution of altruistic punishments among heterogeneous conditional cooperators. Sci. Rep. 11, 1–12 (2021).
 45. Bowles, S. Policies designed for self-interested citizens may undermine“ the moral sentiments’’: Evidence from economic experi-

ments. Science 320, 1605–1609 (2008).
 46. Fehr, E. & Falk, A. Psychological foundations of incentives. Eur. Econ. Rev. 46, 687–724 (2002).
 47. Fehr, E. & Fischbacher, U. Why social preferences matter-the impact of non-selfish motives on competition, cooperation and 

incentives. Econ. J. 112, C1–C33 (2002).
 48. Fudenberg, D., Rand, D. G. & Dreber, A. Slow to anger and fast to forgive: Cooperation in an uncertain world. Am. Econ. Rev. 102, 

720–49 (2012).
 49. Bear, A. & Rand, D. G. Intuition, deliberation, and the evolution of cooperation. Proc. Natl. Acad. Sci. 113, 936–941 (2016).
 50. Mosleh, M. & Rand, D. G. Population structure promotes the evolution of intuitive cooperation and inhibits deliberation. Sci. Rep. 

8, 1–8 (2018).
 51. Szolnoki, A., Xie, N.-G., Wang, C. & Perc, M. Imitating emotions instead of strategies in spatial games elevates social welfare. EPL 

(Europhys. Lett.) 96, 38002 (2011).
 52. Szolnoki, A., Xie, N.-G., Ye, Y. & Perc, M. Evolution of emotions on networks leads to the evolution of cooperation in social dilem-

mas. Phys. Rev. E 87, 042805 (2013).



9

Vol.:(0123456789)

Scientific Reports |         (2023) 13:1213  | https://doi.org/10.1038/s41598-023-28372-y

www.nature.com/scientificreports/

 53. Rand, D. G., Dreber, A., Ellingsen, T., Fudenberg, D. & Nowak, M. A. Positive interactions promote public cooperation. Science 
325, 1272–1275 (2009).

 54. Shirado, H. & Christakis, N. A. Network engineering using autonomous agents increases cooperation in human groups. Iscience 
23, 101438 (2020).

 55. Szolnoki, A. & Perc, M. Reward and cooperation in the spatial public goods game. EPL (Europhys. Lett.) 92, 38003 (2010).
 56. Szolnoki, A. & Perc, M. Evolutionary advantages of adaptive rewarding. New J. Phys. 14, 093016 (2012).
 57. Szolnoki, A. & Perc, M. Correlation of positive and negative reciprocity fails to confer an evolutionary advantage: Phase transitions 

to elementary strategies. Phys. Rev. X 3, 041021 (2013).
 58. Ohdaira, T. Cooperation evolves by the payoff-difference-based probabilistic reward. Eur. Phys. J. B 94, 1–8 (2021).
 59. Traxler, C. & Spichtig, M. Social norms and the indirect evolution of conditional cooperation. J. Econ. 102, 237–262 (2011).
 60. Gavrilets, S. & Richerson, P. J. Collective action and the evolution of social norm internalization. Proc. Natl. Acad. Sci. 114, 

6068–6073 (2017).
 61. Ohdaira, T. Coevolution between the cost of decision and the strategy contributes to the evolution of cooperation. Sci. Rep. 9, 1–9 

(2019).
 62. Hauert, C., Traulsen, A., Brandt, H., Nowak, M. A. & Sigmund, K. Via freedom to coercion: The emergence of costly punishment. 

Science 316, 1905–1907 (2007).
 63. Hauert, C., De Monte, S., Hofbauer, J. & Sigmund, K. Volunteering as red queen mechanism for cooperation in public goods games. 

Science 296, 1129–1132 (2002).
 64. Hauert, C., De Monte, S., Hofbauer, J. & Sigmund, K. Replicator dynamics for optional public good games. J. Theor. Biol. 218, 

187–194 (2002).
 65. Tavoni, A., Dannenberg, A., Kallis, G. & Löschel, A. Inequality, communication, and the avoidance of disastrous climate change 

in a public goods game. Proc. Natl. Acad. Sci. 108, 11825–11829 (2011).
 66. Nowak, M. A. & Sigmund, K. Evolutionary dynamics of biological games. Science 303, 793–799 (2004).
 67. Bowles, S. & Gintis, H. A cooperative species: Human reciprocity and its evolution. In A Cooperative Species (Princeton University 

Press, 2011).
 68. McCabe, K. A., Rigdon, M. L. & Smith, V. L. Positive reciprocity and intentions in trust games. J. Econ. Behav. Organ. 52, 267–275 

(2003).
 69. Battu, B., Pammi, V. & Srinivasan, N. Evolution of cooperation with heterogeneous conditional cooperators. Sci. Rep. 8, 1–7 (2018).
 70. Battu, B. & Srinivasan, N. Evolution of conditional cooperation in public good games. Royal Soc. Open Sci. 7, 191567 (2020).
 71. Schmelz, K. & Bowles, S. Overcoming covid-19 vaccination resistance when alternative policies affect the dynamics of conformism, 

social norms, and crowding out. Proc. Natl. Acad. Sci. 118, e2104912118 (2021).
 72. Blair, M. M. & Stout, L. A. Trust, trustworthiness, and the behavioral foundations of corporate law. Univ. Pa. Law Rev. 149, 

1735–1810 (2001).
 73. Gambetta, D., Gambetta, D. et al. Can we Trust Trust. In Gambetta, D., Ed., Trust: Making and Breaking Cooperative Relations13, 

213–237 (2000).
 74. Fehr, E. Behavioral foundations of corporate culture (University of Zurich, Public Paper, 2018).
 75. Frey, B. S. & Meier, S. Social comparisons and pro-social behavior: Testing“ conditional cooperation’’ in a field experiment. Am. 

Econ. Rev. 94, 1717–1722 (2004).
 76. Rustagi, D., Engel, S. & Kosfeld, M. Conditional cooperation and costly monitoring explain success in forest commons manage-

ment. Science 330, 961–965 (2010).
 77. Turner, M. A. & Smaldino, P. E. Stubborn extremism as a potential pathway to group polarization. In the 42nd Annual Virtual 

Meeting of the Cognitive Science (2020).
 78. Centola, D., Becker, J., Brackbill, D. & Baronchelli, A. Experimental evidence for tipping points in social convention. Science 360, 

1116–1119 (2018).
 79. Efferson, C., Vogt, S. & Fehr, E. The promise and the peril of using social influence to reverse harmful traditions. Nat. Hum. Behav. 

4, 55–68 (2020).
 80. Iacopini, I., Petri, G., Baronchelli, A. & Barrat, A. Group interactions modulate critical mass dynamics in social convention. Com-

mun. Phys. 5, 1–10 (2022).
 81. Kocher, M. G., Cherry, T., Kroll, S., Netzer, R. J. & Sutter, M. Conditional cooperation on three continents. Econ. Lett. 101, 175–178 

(2008).
 82. Hauert, C. & Szabó, G. Game theory and physics. Am. J. Phys. 73, 405–414 (2005).
 83. Gächter, S., Kölle, F. & Quercia, S. Reciprocity and the tragedies of maintaining and providing the commons. Nat. Hum. Behav. 1, 

650–656 (2017).
 84. Nowak, M. A. Five rules for the evolution of cooperation. Science 314, 1560–1563 (2006).
 85. Nakahashi, W., Wakano, J. Y. & Henrich, J. Adaptive social learning strategies in temporally and spatially varying environments. 

Hum. Nat. 23, 386–418 (2012).
 86. Perc, M. et al. Statistical physics of human cooperation. Phys. Rep. 687, 1–51 (2017).
 87. Szabó, G. & Fath, G. Evolutionary games on graphs. Phys. Rep. 446, 97–216 (2007).

Acknowledgements
I thank Vijaya Nadella for helping with the manuscript.

Author contributions
B.B. conceived and designed the study. B.B. programmed the simulation and analyzed the data. T.R. and B.B. 
discussed the results and wrote the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 023- 28372-y.

Correspondence and requests for materials should be addressed to B.B. or T.R.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1038/s41598-023-28372-y
https://doi.org/10.1038/s41598-023-28372-y
www.nature.com/reprints


10

Vol:.(1234567890)

Scientific Reports |         (2023) 13:1213  | https://doi.org/10.1038/s41598-023-28372-y

www.nature.com/scientificreports/

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2023

http://creativecommons.org/licenses/by/4.0/

	Cooperation without punishment
	Model
	Population type. 
	Conditional cooperative decisions. 
	The public goods game. 
	Updating the population. 

	Simulations
	Results
	Discussion
	References
	Acknowledgements


