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Deep learning can yield 
clinically useful right ventricular 
segmentations faster than fully 
manual analysis
Julius Åkesson 1,2*, Ellen Ostenfeld 1, Marcus Carlsson 1, Håkan Arheden 1 & Einar Heiberg 1

Right ventricular (RV) volumes are commonly obtained through time-consuming manual delineations 
of cardiac magnetic resonance (CMR) images. Deep learning-based methods can generate RV 
delineations, but few studies have assessed their ability to accelerate clinical practice. Therefore, we 
aimed to develop a clinical pipeline for deep learning-based RV delineations and validate its ability 
to reduce the manual delineation time. Quality-controlled delineations in short-axis CMR scans from 
1114 subjects were used for development. Time reduction was assessed by two observers using 50 
additional clinical scans. Automated delineations were subjectively rated as (A) sufficient for clinical 
use, or as needing (B) minor or (C) major corrections. Times were measured for manual corrections 
of delineations rated as B or C, and for fully manual delineations on all 50 scans. Fifty-eight % of 
automated delineations were rated as A, 42% as B, and none as C. The average time was 6 min for a 
fully manual delineation, 2 s for an automated delineation, and 2 min for a minor correction, yielding 
a time reduction of 87%. The deep learning-based pipeline could substantially reduce the time needed 
to manually obtain clinically applicable delineations, indicating ability to yield right ventricular 
assessments faster than fully manual analysis in clinical practice. However, these results may not 
generalize to clinics using other RV delineation guidelines.

Abbreviations
RV	� Right ventricle
CMR	� Cardiac magnetic resonance
RVEDV	� Right ventricular end-diastolic volume
RVESV	� Right ventricular end-systolic volume
EDV	� End-diastolic volume
ESV	� End-systolic volume
ED	� End diastole
ES	� End systole
EF	� Ejection fraction
CNN	� Convolutional neural network
2D	� 2-Dimensional
3D	� 3-Dimensional
SD	� Standard deviation
O1	� Observer 1
O2	� Observer 2
CVS	� Clinical validation set
TS	� Test set

Right ventricular (RV) delineations are of high clinical importance for providing prognostic markers such as end-
diastolic volume (EDV), end-systolic volume (ESV) and RV ejection fraction (EF)1. However, both manual and 
automated delineations can be challenging since the RV is characterized by indistinct borders, trabeculations2, 
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and a general complex shape variability3. Consequently, manual delineations may vary largely between observers 
and be time-consuming to obtain4.

Automated and semi-automated methods for RV-specific segmentation5–9 as well as full cardiac 
segmentation10–15 have recently been largely based on Convolutional Neural Networks (CNNs), but studies 
reporting on the clinical benefit of such methods are scarce16, 17.

The optimal automated RV delineation method produces RV delineations of clinically useful quality faster 
than manual delineations. We define clinically useful delineations as those that can be used clinically to determine 
volumes without any manual intervention. Albeit there is a wide range of existing CNN-based methods for RV 
segmentation, there is to our knowledge no previous study that has fully validated the aspect of clinical time 
reduction. Delineation times between an observer and a deep learning-based commercial cardiac segmentation 
software have been compared17, but the time for performing corrections of inadequate delineations has not 
previously been taken into account, even though RV delineations by contemporary deep learning methods still 
need to be verified by expert observers1.

Therefore, the aim of this study was to develop a CNN-based RV segmentation pipeline and to ensure its clini-
cal applicability by validating its ability to reduce the time for obtaining delineations of clinically adequate quality.

Methods
We included previously delineated RV data from Skåne University Hospital, Lund, Sweden and from a wide range 
of medical research projects carried out by the Lund Cardiac MR Group, Lund University, Lund, Sweden. The 
dataset collected for developing and evaluating the pipeline was denoted as the main dataset, and the dataset 
collected for the validation of the pipeline’s clinical benefits as the clinical validation set (CVS). Figure 1 shows 
an overview of the data inclusion and curation process. Complete data anonymization was carried out before 
inclusion using Segment18. Throughout the study, the quality of delineations was assessed by two observers (O1 
and O2, both certified at CMR level 3).

Main dataset.  The main dataset was assembled by combining short-axis CMR examinations from clinical 
scans collected between 2019 and 2020 (81%) with short-axis CMR data from previous research projects col-
lected between 2004 and 2020 (19%)19–21.

Eighty percent of the subjects in the main dataset were acquired using scanners from Siemens, nineteen 
percent from Philips and the remaining from General Electric. Twenty-four percent of the research study scans 
were from healthy volunteers (normal individuals and athletes), and the remaining scans were from patients. 
Additional characteristics of the main dataset can be found in Supplementary Methods S1.

Each included CMR examination consisted of a time resolved collection of short-axis images paired with 
delineations of the RV endocardium in either or both the end-diastolic (ED) and end-systolic (ES) timeframes. 

Figure 1.   The data inclusion and data curation process. The refinement refers to the process of removing 
subjects with inadequate delineations in some timeframe.



3

Vol.:(0123456789)

Scientific Reports |         (2023) 13:1216  | https://doi.org/10.1038/s41598-023-28348-y

www.nature.com/scientificreports/

For the main dataset, all delineations were performed by experienced physicians or MD-PhD students. In the 
latter case, the quality and agreement with consensus guidelines22 of the delineations were verified by experi-
enced physicians.

Before inclusion, all delineations were subject to a quality control performed by one of the observers, to 
guarantee adequate concordance with the consensus guidelines22 and hence suitability for inclusion. Subjects 
with complex congenital heart defects (e.g. situs inversus, transposition of the great arteries, and univentricular 
hearts) were excluded. Subjects that only had RV delineations in non-short-axis images were excluded. The qual-
ity control reduced the initial 2490 examinations to 1693 examinations, corresponding to 1434 unique subjects. 
A single subject could have had several examinations.

The main dataset (n = 1434) was partitioned into a training set (n = 1114) and a test set (n = 320). Some exami-
nations had delineations that were approved only in one of the two timeframes (ED or ES) during the quality 
control. From these examinations, the timeframes with approved delineations were used for the training set. For 
the test set, only examinations with delineations approved during the quality control in both ED and ES were 
included. Due to this, 104 subjects were excluded, leaving 216 subjects in the refined test set (TS).

To assess generalizability, the trained pipeline was applied to the Automatic Cardiac Diagnosis Challenge 
(ACDC) testing dataset and externally validated using the online challenge evaluation platform23. This dataset 
consists of short-axis CMR images of 10 healthy and 40 pathological subjects23. To further validate the segmen-
tation precision of the pipeline, a scan-rescan assessment was performed using CMR images of 10 additional 
healthy subjects from two different scanning occasions. For 3 of the subjects, the rescans were performed using 
different scanners.

Pipeline.  A flowchart of the pipeline developed for this study can be seen in Fig. 2. The required input to the 
pipeline was a stack of short-axis images in one timeframe and its pixel spacing (the distance between pixels, 
in mm). The input timeframe was pre-processed by slice-wise re-sampling to the median pixel spacing of the 
training set (1.07 × 1.07 mm) through bilinear interpolation. After pre-processing, three subsequent CNNs were 
applied to the timeframe. The purpose of the two first CNNs was to handle the size variability of clinical CMR 
images and robustly pre-process the input data, making the third CNN (the segmentation CNN) implementable 
in a clinical setting. Details on each used CNN architecture are provided in Supplementary Methods S2.

The first CNN (the slice selection network) selected each slice of the input timeframe that contained a cross-
section of the RV, through binary classification. The first and last selected slice were used to mark the boundaries 
of the RV in the slice direction. This was done in concordance with the method used by Berggren et al.24.

Each slice within the selected bounds of the RV was inserted into the second CNN (the RV center point 
detection network) that generated the coordinates of the center point of the RV cross-section in each slice. The 
RV center points were used to crop (or zero-pad) each slice to 256 × 256 pixels, giving all slices the same field of 
view and a centered RV. Each such slice was then subject to Z-score intensity normalization and inserted into the 
third CNN (the segmentation network) that generated a binary mask for each slice, where the cross-section of the 
RV endocardium was the foreground. Each generated segmentation mask was then inversely padded or cropped 

Figure 2.   A flowchart of the pipeline. An input timeframe is pre-processed and inserted into a slice selection 
network that selects slices containing RV cross-sections. The RV center point is then detected in each selected 
slice by the RV center point detection network and used to crop (or pad) each slice around the RV before 
insertion into the segmentation network. This yields a segmentation of the RV, that is then inversely padded or 
cropped to match the original slice size.
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back to the original size of the input image, using the RV center point for positioning. As a post-processing step, 
only the largest connected component in each mask was taken as the RV and other components were removed.

Overview of CNN training and pipeline evaluation.  The three CNNs were trained separately using 
differently pre-processed versions of the training set with different ground truth definitions that matched the 
respective subtask of the given CNN (see Supplementary Methods S3). For all three CNN types, hyperparameter 
optimization was carried out using grid search five-fold cross validation on the training set. The optimized sets 
of hyperparameters were then used to train the final models on the full training set. Training details can be found 
in Supplementary Methods S3.

A performance evaluation of the final pipeline was carried out on the refined test set (TS). Although quality 
was controlled by a level 3 CMR reader, some of the delineations in TS were performed by non-level 3 readers. 
Therefore, the TS delineations were not used for validating the clinical benefits of the pipeline, but only for initial 
pipeline evaluation. The results from this can be found in Supplementary Results S4.

Validation of clinical benefit using the clinical validation set (CVS).  The clinical validation set 
(CVS) was collected from fifty consecutive and unselected short-axis CMR examinations from clinical scans at 
Skåne University Hospital. Each examination was from a unique subject. The observers were blinded to all clini-
cal and diagnostic information.

Automated delineations in ED and ES for all subjects of the CVS and TS were first generated using the 
pipeline. To define whether the delineations were of clinically adequate quality, O1 (expert core-lab reader25, 26) 
performed a visual rating of the overall quality of the automated delineations in both ED and ES for each subject 
according to a three-level modified Likert scale of decreasing delineation quality as A (sufficient for clinical use), 
B (needing minor corrections) or C (needing major corrections) for both the CVS and TS. Level A delineations 
were sufficiently close to fulfilling the consensus guidelines to likely not affect diagnosis. Level B and C deline-
ations both deviated from the consensus guidelines enough to likely affect diagnosis but required two different 
levels of effort for correction. Examples of these ratings can be found in Supplementary Videos S6,S7,S8 and 
Supplementary Methods S5.

An assessment of the time consumption for obtaining delineations of clinically adequate quality was con-
ducted on the CVS by O1 and O2. To do this, the delineation runtimes for the pipeline on an NVIDIA Quadro 
T1000 GPU were measured. Then, O1 and O2 performed timed, manual corrections of the automated deline-
ations that had been rated as B or C. In Segment18, the generated contours are displayed using spline points, 
which allows for fine adjustments to be made to specific parts of the delineation. Lastly, the two observers each 
performed timed, manual delineations without prior automated delineations and according to the consensus 
guidelines22, for all subjects in the CVS. Reference volumes were computed as the mean volumes between observ-
ers. All measured times were for delineating both the ED and ES timeframes.

Statistics.  Normality of distributions were assessed through the Anderson–Darling test. Bias was assessed 
according to Bland–Altman analysis27 for both volume and ejection fraction (EF), and Spearman’s rank cor-
relation coefficients (r) were used for comparative analyses. Relative bias was expressed as percentages of mean 
reference volumes. Two-sided Wilcoxon signed rank tests were used for the comparison between delineation 
times. Two-sample F-tests were used for determining the significance of differences in variabilities (variances). 
A two-sided p value lower than 0.05 was considered statistically significant. Segmentation performances were 
evaluated using Dice score (Sørensen-Dice coefficient28) and Hausdorff distance. MATLAB R2019a or R2021a 
(Natick, Massachusetts: The MathWorks Inc., 2019 and 2021) were used for all statistical analyses.

Ethics declarations.  The usage of data from clinical routine was waived by the Swedish Ethical Review 
Authority (Dnr 2021-03583). The usage of research study data was approved by the Regional Ethical Committee 
in Lund (EPN Dnr 621/2004, 2010/114, 2010/248, 2011/777, 2010/55, 741/2004 and 269/2005). All methods 
were performed in accordance with the Declaration of Helsinki and the guidelines and regulations set forth by 
the Swedish Ethical Review Authority.

Results
For the clinical validation set (CVS), the mean ± standard deviation (SD) of reference volumes of EDV were 
190.5 ± 62.8 ml and of ESV 94.0 ± 41.0 ml. For O1, EDV was 188.8 ± 61.1 ml, ESV 98.9 ± 40.8 ml, and EF 48 ± 11%. 
For O2, EDV was 192.3 ± 65.3 ml, ESV 89.0 ± 41.8 ml, and EF 54 ± 11%. Performance evaluations of the full 
pipeline carried out on the refined test set (TS) are presented in Supplementary Results S4.

For the CVS, the mean (± SD) volumetric Dice scores between the pipeline and delineations by O1 were 
0.91 ± 0.02 for ED and 0.87 ± 0.04 for ES, and for delineations by O2 the Dice scores were 0.91 ± 0.02 for ED and 
0.88 ± 0.03 for ES. The mean (± SD) volumetric Hausdorff distances between the pipeline and delineations by O1 
were 8.47 ± 1.32 for ED and 7.71 ± 0.96 for ES, and for delineations by O2 the Hausdorff distances were 8.11 ± 1.36 
for ED and 7.30 ± 1.22 for ES. Between O1 and O2, the Dice scores were 0.91 ± 0.03 for ED and 0.86 ± 0.04 for 
ES, and the Hausdorff distances were 8.53 ± 1.29 for ED and 7.66 ± 1.26 for ES.

The absolute and relative bias between the pipeline and the reference volumes was − 6.0 ± 10.0 ml (− 3 ± 5%) 
for EDV, − 1.0 ± 5.8 ml (− 1 ± 6%) for ESV, and 1 ± 4% for EF, and the r value was 0.99 (p < 0.0001, n = 50) for 
both timeframes (Fig. 3).

The absolute and relative bias between the pipeline and O1 was − 7.7 ± 12.6 ml (− 4 ± 7%) for EDV, 4.0 ± 7.5 ml 
(4 ± 8%) for ESV, and 4 ± 5% for EF. Bias between the pipeline and O2 was − 4.2 ± 12.1 ml (− 2 ± 6%) for EDV, 
− 5.9 ± 7.9 ml (− 6 ± 8%) for ESV, and − 2 ± 5% for EF. Bias between observers was − 3.5 ± 14.4 ml (− 2 ± 8%) for 
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EDV, 9.9 ± 10.0 ml (11 ± 11%) for ESV, and − 6 ± 6% for EF, and the pipeline-observer limits of agreement were 
somewhat narrower than the inter-observer limits of agreement for both ED and ES, with r ≥ 0.95 in both time-
frames (Fig. 4). However, the pipeline-observer variability was only significantly different from the inter-observer 
variability for O1 in ES (p = 4.00e−02, n = 50).

For the ACDC testing set, the Dice scores were 0.87 ± 0.09 for ED and 0.80 ± 0.10 for ES, and the Hausdorff 
distances were 20.18 ± 19.34 for ED and 23.10 ± 16.79 for ES. The absolute and relative bias between the pipeline 
and the ACDC reference volumes was 6.6 ± 27.2 ml (4 ± 16%) for EDV, − 2.7 ± 15.5 ml (− 3 ± 16%) for ESV, and 
5 ± 11% for EF, and the correlation r value was 0.77 for EF as well as 0.85 for EDV and 0.95 for ESV (p < 0.0001, 
n = 50) (Supplementary Fig. S3). For the scan-rescan assessment, the bias between scan and rescan volumes 
was 6.7 ± 22.8 ml (3 ± 10%) for EDV, 4.8 ± 13.0 ml (4 ± 12%) for ESV, and 0 ± 7% for EF (Supplementary Fig. S4).

For the ratings of the automated delineations on the CVS, the rating A (sufficient for clinical use) dominated, 
comprising 58% of all subjects. The remaining automated delineations were rated as B (needing minor adjust-
ments), and none were assessed to be in need of major corrections (C). For the test set (TS), 38% of delineations 
were rated as A, 50% as B, and 12% as C.

The absolute and relative bias between automated and corrected delineations (n = 21) for O1 was − 0.1 ± 6.2 ml 
(0 ± 3%) for EDV and − 1.4 ± 3.3 ml (− 2 ± 4%) for ESV. For O2, it was 2.9 ± 10.4 ml (2 ± 5%) for EDV and 
− 0.3 ± 5.3 ml (0 ± 6%) for ESV. For 5 out of 21 ED volumes and 5 out of 21 ES volumes, one observer decreased 
the volume when the other observer increased it. Plots showing the volumetric changes for the corrections can 
be seen in Supplementary Fig. S5.

For the 21 delineations in CVS deemed in need of corrections, the volumetric inter-observer agreement was 
significantly improved (p = 2.23e−02 for ED and p = 5.00e−03 for ES, n = 21) (Fig. 5).

For O1, the average manual delineation time was 6 min and 46 s, and the average correction time was 1 min 
and 38 s (p = 5.96e−05, n = 21). For O2, the corresponding times were 5 min and 19 s as well as 2 min and 30 s 
(p = 3.86e−04, n = 18 due to missing data). The mean runtime for the pipeline per subject (in ED and ES) was 2 s 

Figure 3.   Bland–Altman and correlation plots between the pipeline’s automated (A) and the reference (R) 
RVEDV (left column) and RVESV (right column) on the clinical validation set (CVS). The Bland–Altman plots 
contain bias (full lines) and limits of agreement (± 1.96 SD, dashed lines). The correlation plots contain identity 
lines (black, dashed lines), least squares lines (grey, full lines), Spearman’s rank correlation coefficients (r), and 
corresponding p values.
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on the CVS. The average time reduction (compared to delineating manually) by using pipeline delineations and 
correcting insufficient ones, was 5 min and 17 s (87% of the average manual delineation time).

Figure 4.   Bland–Altman plots and scatter plots on the clinical validation set. The left column (blue) shows 
the pipeline’s automated (A) delineations vs. Observer 1 (O1), the middle column (red) shows A vs. Observer 
2 (O2), and the right column (magenta) shows O1 vs. O2. The top half shows right ventricular (RV) end-
diastolic volumes (RVEDV) and the bottom row RV end-systolic volumes (RVESV). The Bland–Altman plots 
contain bias (full lines) and limits of agreement (± 1.96 SD, dashed lines). The correlation plots contain identity 
lines (black, dashed lines), least squares lines (grey, full lines), Spearman’s rank correlation coefficients (r) and 
corresponding p values.
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Discussion
We have developed a CNN-based pipeline for RV segmentation and shown its ability to reduce the manual deline-
ation time for obtaining delineations of clinically useful quality according to expert reader ratings. However, the 
pipeline’s reduced performance when externally validated indicates that time reduction may not be fulfilled for 
clinics using other RV delineation guidelines.

More than half of the automated delineations on the CVS were rated as of clinically sufficient quality without 
the need for manual corrections. These delineations were obtained in a matter of seconds using a powerful GPU 
in a laptop. The remaining delineations were rated as only in need of minor corrections, and the correction 
time for these was about a third of the manual delineation time. For the TS, 88% of delineations were clinically 
adequate or in need of minor corrections.

Even if both observers were of CMR level 3, an average of 87% of the average manual delineation time could 
be saved by using the pipeline. Less experienced observers may require longer manual delineation times, and a 
larger reduction in delineation time by use of the pipeline could therefore be expected. For example, Caudron 
et al. (2011) reported mean RV delineation times (for both endocardial and epicardial borders on 60 patients) of 
13.4 and 18.9 min for observers with 3 and 1 years of training, respectively29. A result of a reduction in delinea-
tion time could be that an increased number of patients could be assessed in a day.

We have shown that the use of corrected pipeline delineations was able to decrease the inter-observer vari-
ability compared to manual delineations. In a study by Bai et al. (2018), the variability of a CNN-based cardiac 
segmentation method was on par with the inter-observer variability15. Our pipeline-observer variability was 
lower than the inter-observer variability, although only significantly for O1 in ES (p < 0.05). A reason for the 
substantial ES variability between observers could be that trabeculations may be harder to distinguish from 
the endocardial wall when the ventricle is contracted. Thus, even if human observers are trained in the same 

Figure 5.   Bland–Altman plots and correlation plots showing the inter-observer variability for manual 
delineations (blue) and the corrections of delineations from the pipeline (red). To the left are results for end-
diastolic volumes (RVEDV) and to the right are results for end-systolic volumes (RVESV). The Bland–Altman 
plots contain bias (full lines) and limits of agreement (± 1.96 SD, dashed lines). The correlation plots contain 
identity lines (black, dashed lines), least squares lines (full lines), Spearman’s rank correlation coefficients (r) and 
corresponding p values. Both plots indicate that the inter-observer variability decreased when the pipeline was 
used, and delineations were corrected.
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institution and adhere to the same consensus guidelines, they can still vary, especially when delineating the RV 
in ES. This shows the difficulty of the segmentation problem, and indicates that a common starting point could 
be helpful for decreasing the inter-observer variability (as seen in Fig. 5). Nonetheless, this also shows the dif-
ficulty of validating the performance of automated segmentation methods.

Since the main dataset consisted of delineations from several observers, it is likely that delineation variabilities 
of a magnitude similar to the one between observers in ES were present. This could have affected the learning 
process negatively, by the ground truth examples showing contradictory ways of delineating the RV. However, it 
could also have affected the learning process positively, by allowing the segmentation network to learn a middle 
ground between the separate observers’ individual opinions on RV delineations. The pipeline-observer bias was 
lower than between observers for EF and for volumes in ES, and of similar magnitude for volumes in ED, with 
no observable negative or positive trend.

Larger RVs did not seem to affect the delineation performance of the pipeline in a negative way (Fig. 4), 
showing the potential to use it in a clinical environment where both healthy cases and pathological cases (with 
enlarged RVs) may be present. This is important for clinical settings with both pediatric and adult cases. With a 
decreased inter-observer variability for RV delineations, the possibility to detect true volumetric changes between 
examinations of a patient at different time points would increase, making CMR an even more robust method 
for determining changes and trends in pathological states. Moreover, it is important that RV delineations yield 
replicable volumes close to their true absolute magnitude, since large variations in delineations could mislabel 
an RV as healthy or pathological30 purely due to volumetric errors. The low bias indicates that this might not 
be a problem for the pipeline. The scan-rescan assessment indicated that inter-scan differences could affect the 
robustness of the pipeline in some cases. However, no manual reference segmentations were available to deter-
mine if the effect would be similar for human observers.

The segmentation network architecture, the 2D U-Net31 (see Supplementary Methods S2 for details), is 
widely used in recent medical image segmentation literature32, and its functionality for cardiac segmentation is 
well described16. The novelty of our approach consists of extending this architecture with two additional CNN 
architectures for robustly pre-processing the CMR images before segmentation, with the purpose of handling 
the wide variability of CMR data that can be encountered in a clinical setting.

Although the used combination of CNN architectures is new, there exists many previous studies that have 
presented modifications or additions to segmentation network architectures similar to the one we have used5–9, 33. 
However, unlike this study, most previous studies do not have clinical implementation as the end goal of their 
method development. Instead, a frequent goal is to create a method that improves upon the segmentation per-
formance of existing deep learning-methods. Performance improvements are commonly assessed using public 
datasets for training and testing, and evaluations are often performed in a challenge setting. As of November 2022, 
the 15 RV delineation methods on the Automated Cardiac Diagnosis Challenge post-2017-MICCAI-challenge 
testing phase leaderboard23 presented mean Dice scores in the range of 0.87–0.96 for ED and 0.77–0.90 for ES, 
mean Hausdorff distances in the range of 8.21–19.20 for ED and 11.65–24.25 for ES, EF correlations (Pearson) 
in the range of 0.54–0.92 and EDV correlations in the range of 0.92–0.99. The pipeline’s performance on the 
same dataset was within these ranges, except for ED mean Hausdorff. However, our pipeline was trained using 
in-house data while the methods on the leaderboard had used the designated ACDC training dataset from the 
same domain as the testing dataset23. This disallows direct comparisons between the learning methodologies. 
Nonetheless, these results indicate that the trained pipeline can yield delineations that somewhat generalize to 
segmentation guidelines that differ from those used in its training dataset. Yet, it might not generalize well enough 
to yield a time reduction as substantial as that observed on the in-house data.

To our knowledge, there is no previous RV segmentation study that has presented the full process from clini-
cal pipeline development to a clinical validation that focuses on the important aspect of time reduction. Existing 
clinical validation studies16, 17 base their analyses on commercial deep learning-based methods and provide 
limited details on development and function. The pipeline was implemented in the clinical software Segment 
CMR and made freely available to the research community in the software Segment18. We consider this study to 
be a step forward for the clinical use of deep learning-based RV segmentation methods, by motivating clinicians 
that still perform fully manual RV segmentations to start using these methods, and by showing clinicians that 
already use these methods that they can in fact be beneficial, despite the need for corrections.

Limitations.  The delineation quality ratings for defining the quality level of a clinically useful delineation 
were done by a single observer (O1). Since they are subjective, they may vary between observers, making the 
presented ratings apply only to the observer that carried them out. However, before the ratings were carried out, 
the two observers together assessed delineations on 10 separate subjects to ensure a uniform assessment. They 
also adhered to the same consensus guidelines22. Thus, even though the limits of agreement between observers 
were somewhat wide (Fig. 4), they still have the same general understanding of how the RV should be delineated. 
It is thus likely that their quality ratings would be similar, and also resemble those of other observers that use the 
same guidelines. For centers using different guidelines such as excluding trabeculations and papillary muscles 
from the volumes, the time reduction by using the pipeline was not assessed.

Due to the removal of clinical information during anonymization, it was not possible to assess whether the 
manual corrections could yield changes in pathological classification. Also, no pathology-specific performance 
testing could be done. Therefore, no assessment could be made regarding the effect of pathologies on pipeline 
performance. Nonetheless, our training set included a wide range of volumes and subjects referred to cardiac 
MR at a large university hospital, making it likely that the pipeline is applicable to pathological cases. Further-
more, the pipeline used short-axis images, and did not make use of transversal (axial) images, which could be a 
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limitation for some institutions. Also, a more robust segmentation model could potentially have been obtained 
through experimenting more with different types of data augmentation.

We abstained from performing any additional training of our pipeline on any public datasets (e.g. the ACDC 
training set) because: (a) we used a segmentation network with well-described cardiac segmentation abilities; 
(b) we believe that the strength of our method can largely be attributed to the width of the training dataset that 
was used; and (c) the purpose of this study was to validate the clinical usefulness of our pipeline, and since re-
training the networks of our pipeline using a different dataset would change the properties of our pipeline, we 
consider it to be outside the scope of this study.

This study only assessed a reduction in segmentation time compared to fully manual segmentations and did 
not consider other segmentation methods used in contemporary clinical practice. Moreover, this study showed 
the possibility to accelerate a single segmentation task. However, these results are not sufficient to determine 
if the reduced cost from the accelerated segmentation overweighs the potential cost of commercialized deep 
learning-based segmentation software.

Conclusion
A deep learning-based clinical pipeline could substantially reduce the time needed to manually obtain RV 
delineations of clinically sufficient quality, even when considering the occasional need for manual corrections. 
This indicates that deep learning-based methods can yield right ventricular assessments faster than fully manual 
analysis in clinical practice, but it remains to be assessed how the observed time reduction would change for 
clinics adhering to other delineation guidelines.

Data availability
Data supporting the findings of this study are available from Skåne University Hospital, but restrictions apply 
to the availability of these data, which were used under license for the current study, and so are not publicly 
available. Aggregated data are however available from the authors upon reasonable request and with permission 
of Skåne University Hospital. The pipeline is implemented in the software Segment (http://​segme​nt.​heibe​rg.​se) 
and is freely available for research purposes.
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