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Novel data dependent divider 
circuit block implementation 
for complex division and area 
critical applications
Udayan S. Patankar 1*, Miguel E. Flores 2 & Ants Koel 1

This article elaborates on the state-of-the-art novel Udayan S. Patankar (USP)-Awadhoot algorithm 
for distinctive implementation area improvement for area-critical electronic applications. The 
proposed USP-Awadhoot divider is a digit recurrence class, but it can be flexibly implemented 
as a restoring or nonrestoring algorithm. The implementation example indicates the use of the 
Baudhayan-Pythagoras triplet method in association with the proposed USP-Awadhoot divider. The 
triplet method provides an easy way to generate Mat_Term1, Mat_Term2, and T_Term, which are 
further utilized with the proposed USP-Awadhoot divider. The USP-Awadhoot divider is implemented 
in three parts. First is preprocessing circuit stage for executing a dynamic separate scaling operation 
on input operands, ensuring the inputs are in the correct form. Second is the processing circuit 
stage for implementing the conversion logic expressed by the Awadhoot matrix, and third is the 
postprocessing circuit stage for recombining the individual results into the final result. The proposed 
divider works upto 285 MHz frequency with a power estimation of 3.366 W, also significantly improves 
the chip area requirements over those of the commercially and noncommercially implemented 
solutions.

Enhancement in the semiconductor manufacturing industry has proven valuable and innovative for existing 
applications such as communications, transport, signal processing, and computation, where mathematics plays 
a vital role and enables the evolution of new fields of work and study, mainly data protection, statistical data 
analysis, computational processing, signal processing, artificial intelligence, image processing, high-performance 
graphics rendering systems (such as graphic processing units (GPUs), complex systems on chips, central pro-
cessing units, biomedical equipment, fuzzy control, and space  engineering1–15. Performance evaluations of 
division operation implementations typically fall into the latency range of tens of clock cycles to hundreds of 
clock  cycles16–22. Researchers have focused more on creating better adders and multipliers instead of develop-
ing dedicated algorithms for division operations to improve the divider circuit’s implementation performance. 
Therefore, the prospect of improving or developing a new algorithm is plausible. This article elaborates on the 
state-of-the-art novel Udayan S. Patankar (USP)-Awadhoot algorithm to achieve distinctive implementation area 
improvement. Furthermore, the sections below describe a divider implementation based on the state-of-the-art 
novel USP-Awadhoot algorithm; a statistical analysis of its implementation resources; a comparative discussion 
with different dividers, complex division operations, and area-critical application followed by the conclusion 
and the future work directions.

Division circuit block taxonomy. A study presented  in23 indicated the performance dependency of a 
sophisticated system on a division circuit block implementation. It stated that the slightest improvement, such as 
a 1% improvement in a division circuit block, can increase the original system performance by up to 20%. The 
hierarchical distribution of various classes of division algorithms is expressed as a division algorithm taxonomy 
in Fig. 1 based on conversion logic, hardware architecture, performance, and execution  type6,16,24–30.

Digit recurrence is one of the most trusted, implemented, researched, and commercially utilized division 
algorithms among all divider implementation classes. Restoring algorithms and some nonrestoring algorithms 
implement simple conversion logic but requiring longer conversion time and large areas. Although the conver-
sion logic is simple, it is not suited for high-frequency applications due to latency problems. Functional iterative 
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class dividers compute a quotient bit based on the estimation or approximation of series expansion functions, 
such as the Newton-Rapson  algorithm31,32, Goldschmidt  algorithm11,33–36, Taylor series  algorithm11,37–40. This 
approach utilizes multiplication instead of subtraction operations, reducing the number of required iterations, 
and can generate multiple quotient digits in one iteration with low latency, but the area required for a multiplier 
is higher than that of an adder or subtractor. This type of divider has a major drawback regarding quotient bit 
inaccuracy because of the direct rounding off of approximate solution values rather than infinitely precise values. 
The induced error depends on the accuracy of the initial estimation.

In the Newton–Raphson iteration method, which is limited to two multiplications and must proceed in 
series, a large error is generated due to the rounding off to approximate value. Reducing this error requires the 
introduction of a trade-off between the additional chip area required for the LUT and the latency of the divider. 
The Goldschmidt algorithm is another functional iterative divider whose major drawback is that it does not 
provide a remainder, making it useful only for floating-point  division36. Another drawback is that 1’s complement 
can prevent carry propagation delay, but it adds a new approximation error in each iteration. In Taylor series 
dividers, Taylor series expansion is used to calculate accurate anti-divisors (reciprocals) to reduce the error in 
the least-important bits of quotient precision with a parallel powering section that computes high-order terms, 
leading to extra hardware overhead and increased area requirements.

Variable-latency  class41,42 dividers are very rare due to their complexity and area constraints. A high 
radix  divider43 reduces the latency but requires a high-capacity LUT, which is impractical for implementation. 
The LUT  class27,44 requires storage such as read-only memory (ROM), which increases the area requirements 
of its implementations. For better performance, either optimized area and hardware resources are needed, or 
the latency cycles must be interrelated. Three types of hardware architectures can be used for divider imple-
mentations. A serial hardware  architecture25,45,46 requires higher latency and a larger conversion time, mak-
ing it inappropriate for highly critical applications. A parallel hardware  architecture6,10,13 contrasts with serial 
architectures, requires multiple cores to work together simultaneously, makes synchronization critical, and has 
high area requirements, leading to increased implementation costs. A pipelined  architecture9,25,45,47 is the best 
choice for achieving parallelism in a sequential architecture with parallel processing. Some or all processes of 
division algorithms can be pipelined to achieve partial parallel processing. The radix based SRT division algo-
rithm is one of the most implemented nonrestoring digit recurrence algorithms. The SRT algorithm named after 
Sweeney, Robertson, and Tocher is used in serial, parallel, pipelined, and cascaded architectures and various 
 applications16,25,28,48–64. Although the SRT algorithm was the first choice for commercial implementations of the 
majority of soft and modern processors, such as Intel’s Pentium  processor65, Xilinx’s FPGA  controllers66, and the 
arithmetic logic units (ALUs) of complex hardware, it is restricted to specific low radix values (significantly less 
than 10). Radix-2 and radix-4 are the most implementable formats of the SRT algorithm. The main reasons for 
limiting the implementations of the SRT algorithm to low radix values are the increase in the quotient selection 
logic’s criticality and the enormous increase in the area requirements of storing LUTs for this logic. It results in 
the failure to follow the execution cycle, as it requires multiple clock cycles for execution.

Complex divider. A software or hardware divider forms complex numbers based on the conventional for-
mula using a complex conjugate, where z1 , and z2 are two complex numbers consisting of real and imaginary 
parts. The divide-and-conquer concept must be used to implement two separate dividers for a complex number’s 
real and imaginary parts. In the end, these two parts must be connected into one part to represent a complex 
quotient and the remainder as a final result. Many different approaches have recommended alternate number 
system for complex number representation as a single entity instead of separate real and imaginary parts, but 
it increases the complexity of conversion logic, resulting in area  overhead67–71. A software or hardware divider 
forms complex numbers based on the conventional formula mentioned in (2), where z1 , and z2 are two complex 

Figure 1.  Division algorithm taxonomy.
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numbers that may lead to overflow or underflow conditions when the operands are near the extreme ends of the 
representable  range72.

Smith’s algorithm solved this drawback by providing a more robust calculation, which was further enhanced 
by the Stewart process. Ultimately, the Stewart process makes the algorithm more complex rather than making it 
more robust. It also lacks a guarantee regarding the correctness of the rounding process for the quotient’s real and 
imaginary parts during complex division. The hardware implementation of Smith’s division algorithm is unsuit-
able because of the overhead caused by the costliest hardware components  needed72. The hardware implementa-
tion of a single divider could be critical and in the complex divider, we must implement two sets of dividers for 
the real and imaginary parts of the given complex number, restricting the SRT divider to low radix to keep low 
area overhead and less critical conversion logic. In the case of a functional iteration divider, the correctness of the 
obtained result depends on the closeness of the reciprocal value selected in the initial iteration. Among several 
approaches for high-radix complex dividers, the best is a prescaled  divider72,73, where the divisor and dividend 
are multiplied by the same scaling factor so the resultant divisor must be close to unity. The main drawback of 
this method is that it requires an extra full-width divider for calculating the scaling factor.

Research questions. Many researchers have worked on various parameter improvement techniques, such 
as prescaling operands, carry-save remainders, array implementations, truncations, and differential LUTs, lead-
ing to the possibility of developing a new technique or combination of fast or moderate methods in terms of time 
and area efficiency. The current article is concerned with the following research problems/questions.

• Investigate the theory of conversion logic to develop a dynamic separate scaling operation/factor for input 
operands. Here separate scaling operations/factors mean one for the dividend and another for the divisor. 
Also, dynamic means different values for separate scaling operations/factors for different combinations of 
input operands.

• Improve the implementation area requirements to realize a dedicated divider circuit.
• Reduce the criticality of conversion logic by avoiding overlapping regions in quotient selection.

We propose a digit recurrence divider based on a state-of-the-art novel USP-Awadhoot algorithm for improv-
ing distinctive divider implementations with moderate operation speeds suitable for complex division and area-
critical applications. In the following sections, we discuss the implementation of a Baudhayan-Pythagoras triplet 
method using a novel state-of-the-art USP-Awadhoot algorithm-based divider developed according to the ancient 
theories provided by Vedic mathematics during the early centuries. We also discuss the statistical analysis of 
implementation resources and elaborate on a comparative discussion with different dividers, followed by a 
conclusion and future work directions.

Complex division via the Baudhayan-Pythagoras triplet algorithm using a novel state-of-the-art 
USP-Awadhoot divider circuit block. In the present article, we discussed the unique way of complex 
division based on the Baudhayan-Pythagoras triplet method and the proposed novel state-of-the-art USP-
Awadhoot divider circuit block. The use of the Baudhayan-Pythagoras triplet algorithm is possible because of 
the geometric properties of the complex numbers, which can be used to represent them via real and imaginary 
axis. The proposed complex division implementation is partitioned into three parts. The Baudhayan-Pythagoras 
triplet algorithm is used for the input circuit stage, ensuring the separation of the real and imaginary parts of 
complex number for further calculation. The second stage consists of a novel state-of-the-art USP-Awadhoot 
divider circuit block, which actually performs the division in real and imaginary parts of the complex num-
ber. The third stage consists of the recombination stage representing the final results in complex numbers. The 
Pythagorean theorem was known long before Pythagoras (570–500/490 BCE); Baudhayan (800–740 BCE) is 
said to be the pioneer of the Pythagorean theorem. Baudhayan formulated the relation between the hypotenuse 
and other sides of a triangle in terms of the area of the triangle in his book titled Baudhāyan Śulbasûtra, and in 
contrast, Pythagoras presented proof of the relationship between the hypotenuse and other sides of a triangle in 
terms of  length74,75 giving the equation

As i =
√
−1 or i2 = −1 , we can correlate the Baudhayan-Pythagoras triplet function T(x, y, z) with the com-

plex number, and we can represent a given complex number in terms of T(x, y, z) . The first two variables of the 
triplet are considered the real and imaginary coefficients of a given complex number. The following equations 
are used to develop the input circuit stage.

(1)z1 = x1 + iy1 and z2 = x2 + iy2

(2)
z1

z2
=

(

x1x2 + y1y2
)

(

x22 + y22
) +

(

x2y1 − x1y2
)

i
(

x22 + y22
)

(3)Baudhayan-Pythagoras Triplet(x, y, z) = T(x, y, z)

(4)r1 = x1 + iy1 and r2 = x2 + iy2

(5)T(r1) = f (x1, y1, z1)
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A detailed list of essential terms associated with the input circuit stage of complex divider implementation, 
as shown in Fig. 2, given below:

• Complex number one is termed r1 = x1 + y1i.
• Complex number two is termed r2 = x2 + y2i.
• The dividend of a complex number is termed “ C_Dd”.
• The divisor of a complex number is termed “ C_Dr”.
• The real number coefficient of the dividend of a complex number is termed “ xDd”.
• The imaginary number coefficient of the dividend of a complex number is termed “ yDd”.
• The real number coefficient of the divisor of a complex number is termed “ xDr”.
• The imaginary number coefficient of the divisor of a complex number is termed “ yDr”.
• The first triplet product term is named “TP_Term1”.
• The second triplet product term is named “TP_Term2”.
• The third triplet product term is named “TP_Term3”.
• The fourth triplet product term is named “TP_Term4”.
• The triplet term is named “T_Term”.
• The first triplet matrix term is named “Mat_Term1”.
• The second triplet matrix term is named “Mat_Term2”.

(6)T(r2) = f (x2, y2, z2)

(7)
T(r1)

T(r2)
=

f (x1, y1, z1)

f (x2, y2, z2)
=

[(

x1x2 + y1y2
)

,
(

x2y1 − x1y2
)

, z22
]

Figure 2.  Schematic block diagram of the complex divider.
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• The USP-Awadhoot dividend of a complex number is termed “ C_Dd1”.
• The USP-Awadhoot divisor of a complex number is termed “ C_Dr1”.
• The real number coefficient of the USP-Awadhoot quotient is termed “ C_Qr”.
• The real number coefficient of the USP-Awadhoot remainder is termed “ C_Remr”.
• The imaginary number coefficient of the USP-Awadhoot quotient is termed “ C_Qi”.
• The imaginary number coefficient of the USP-Awadhoot remainder is termed “ C_Remi”.
• The final quotient of a complex number is termed “ C_Q".
• The final remainder of a complex number is termed “ C_Rem”.

Figure 2 illustrates the process of complex division implementation based on the Baudhayan-Pythagoras tri-
plet algorithm and the proposed novel state-of-the-art USP-Awadhoot divider circuit block. Smith and Stewart’s 
 algorithm72,73, represented by Eqs. (8) and (9), is generally used for software implementation of complex division, 
but the underflow and overflow conditions could occur during extreme distance between divisor and dividend, 
which results in the incorrect recombination of the real and imaginary part of the quotient and  remainder37. 
We use the Baudhayan-Pythagoras triplet algorithm as an input circuit stage of the complex divider to eliminate 
this drawback.

The first stage of the Baudhayan-Pythagoras triplet algorithm circuit block of the proposed divider separates 
the real and imaginary parts of the input operands and considers their real numeric values, especially the imagi-
nary number’s real numeric value without considering the imaginary unit ( i ), which is recombined at the final 
recombination circuit block. During the Baudhayan-Pythagoras triplet algorithm circuit block, all operands are 
processed to develop the Mat_Term1, Mat_Term2, and T_Term values/signals as an output of the first stage of 
the proposed divider. The logic behind Mat_Term1, Mat_Term2, and T_Term is explained in the next section 
with Fig. 3. In the second stage, the USP-Awadhoot divider circuit block receives Mat_Term1, Mat_Term2, 
and T_Term values/signals from the first stage. The Mat_Term1, Mat_Term2, and T_Term values/signals are 
essential to keep the operations under bounded conditions and avoid underflow and overflow conditions. Dur-
ing the second stage, the USP-Awadhoot divider circuit block generates two sets of the quotient and remainder 
values/signals separately as an output. In the final stage, the recombination circuit block rearranges quotients and 
remainders into complex numbers by adding an imaginary unit ( i ) with the real numeric value of the imaginary 
coefficient. It provides resultant quantities for display, storage, or further communication. The detailed work is 
explained in the next section.

Working theory of the Baudhayan-Pythagoras triplet algorithm. Figure  3a–c illustrates the 
schematic diagram of the proposed Baudhayan-Pythagoras triplet algorithm circuit block implementation. It 
consists of three circuit stages: input, intermediate, and output. The different signals used in the Baudhayan-
Pythagoras triplet algorithm circuit block implementation are grouped into input operand, control, output, and 
indicator signal groups.

The signals r1 and r2 are the input operand data signals; Mat_Term1, Mat_Term2, and T_Term are output 
signals; Valid_O/P and Error are indicator signals; and cd_enable, CLK, and RST are considered control signals. 
the control group CLK signal provides the timing reference signal for computation execution. The reference 
clock signal’s period value is dependent on the working frequency. When the CLK signal continues generating 
the reference signal and the control group signals (cd_enable and RST) both possess low logic values, then the 
operation of the proposed circuit is in an idle state. The values of the input operand, output, and indicator group 
signals are in a high-impedance tri-state condition during the idle state. As shown in Fig. 3a, the input operand 
signals r1 and r2 provide two complex numbers used to perform division operations based on the current statuses 
of the cd_enable, CLK, and RST control signals. In the input circuit stage, all real and imaginary parts of input 
operands are separated and stored in the input buffer and wait until the cd_enable signal is high (1) and reset 
(RST) is low (0), and the output circuit stage initializes the Mat_Term1, Mat_Term2, and T_Term signals from 
the output and indicator signal group to 00, assuring that the previous computation results are not involved in 
the current computation. Once the cd_enable signal is applied, this signal is used to develop a select signal and 
is stored in the control register to connect with further circuit stages. The input operand data is provided for 
further computation in the input circuit stage. The input operand data is stored into x1, x2, y1 and y2 buffers to 
extract xDd , yDd , xDr , and yDr values, respectively, for the generation of signals B to G.

Figure 3b illustrates the intermediate circuit stage of the proposed Baudhayan-Pythagoras triplet algorithm 
implementation. The intermediate circuit stage receives signal B to signal G data from the input circuit stage and 
the O signal data from the output circuit stage. The forward signals B, C, D, F, H, and G are generated from the 
computation of TP_Term1 to TP_Term4, as

(8)
r1

r2
=

x1 + iy1

x2 + iy2
=

y2
x2

(

x1 + y1
)

y2
x2

(

x2 + y2
) + i

y2
x2

(

y1 − x1
)

y2
x2

(

x2 + y2
) if (x2 ≥ y2)

(9)
r1

r2
=

x1 + iy1

x2 + iy2
=

x2
y2

(

x1 + y1
)

x2
y2

(

x2 + y2
) i

x2
y2

(

x1 − y1
)

x2
y2

(

x2 + y2
) if (x2 ≤ y2)

(10)TP_Term1 = (xDd × xDr)
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The computed data are stored in separate buffers and provided for further computation based on the selected 
signal data to calculate partial Mat_Term1, partial Mat_Term2, and partial T_Term values. Signals K, L, M, and 
N, indicate the partial Mat_Term1, partial Mat_Term2, and partial T_Term values and transfer the respective 
data to the next circuit stage.

Figure 3c illustrates the output circuit stage of the proposed Baudhayan-Pythagoras triplet algorithm imple-
mentation. It receives signals K, L, M, and N from the intermediate circuit stage and stores the respective data 
in Mat_Term1, Mat_Term2, and T_Term buffers. The output circuit initializes the Valid_O/P and Error signals 
of the indicator group to 00 to ensure that no previously computed data are included. When the RST signal is 
deactivated, the cd_enable signal is activated during the initial state. Partial values are converted into the final 
Mat_Term1, Mat_Term2, and T_Term values based on the selected signal logic, and they are utilized as the 
Mat_Term1, Mat_Term2, and T_Term output group signals. These signals are connected with the proposed 
USP-Awadhoot divider circuit block and complex number recombination circuit to receive the final division 
result of complex input operands. The Valid_O/P and Error signal indicates computation completion and invalid 
working conditions, respectively. After completing the computation operation, depending on the completion 
of data computation, the Valid_O/P and Error are updated and validate the computation and O/P results, i.e., 

(11)TP_Term2 = (yDd × yDr)

(12)TP_Term3 = (xDr × yDd)

(13)TP_Term4 = (xDd × yDr)

(14)T_Term = (xDr)
2 + (yDr)

2

(15)Mat_Term1 = TP_Term1+ TP_Term2

(16)Mat_Term2 = TP_Term3− TP_Term4

Figure 3.  Schematic diagram of the proposed Baudhayan-Pythagoras triplet algorithm circuit block of the 
complex divider.
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whether the obtained values are correct or incorrect. If a high logic signal activates an RST signal, then the 
proposed divider circuit suspends its current computation operation state and resets it to the initialization state.

Working theory of the proposed novel state-of-the-art USP-Awadhoot divider circuit 
block. As discussed in the previous section, the novel state-of-the-art USP-Awadhoot Divider Circuit Block 
is the second major part of the proposed complex divider. The Baudhayan-Pythagoras triplet algorithm circuit 
is used as an input stage to arrange given operands in a required format to be supplied for the next stage of a 
complex divider to reduce the criticality of calculation and reduce the area overhead due to complex conversion 
logic. The major requirement of using novel state-of-the-art USP-Awadhoot divider circuit block is to reduce the 
implementation area for conversion logic. As we know, we have to use separate dividers for real and imaginary 
parts in maximum complex dividers. The SRT dividers are restricted to low radix as the implementation area 
increases with high radix, making conversion logic very complex due to overlapping regions. Functional iterative 
dividers take more area than SRT dividers, and sometimes the final results contain round-off errors. Thus, we 
proposed to use novel-state-of-the-art USP-Awadhoot Divider Circuit Block developed on the novel concept of 
a dynamic separate scaling operation/factor for input operands to reduce the implementation area for conver-
sion logic and eliminate the overlapping region, which can simplify the conversion logic.

The working theory of the proposed novel state-of-the-art USP-Awadhoot divider circuit block is based on 
a three-stage algorithm developed and built on the ancient Indian mathematics (Vedic mathematics) rules. The 
detailed embodiments of the state-of-the-art USP-Awadhoot divider circuit block are presented herein with 
reference to the accompanying results, facts, and figures that describe a circuit implementation for achieving an 
area-effective implementation of the divider circuit with moderate time and power consumption. Figure 4 illus-
trates the functional block diagram of the proposed divider circuit block and is expressed in three circuit stages: 
Preprocessing circuit stage, Processing circuit stage, and Postprocessing circuit stage. Numbered blocks {101 to 
104} stipulate preprocessing circuit stage components/elements as per the proposed algorithm. The preprocessing 
circuit stage accepts the input data (here, the dividend and divisor values) from the external channel, performing 
initial input processing and confirming that the data are in their correct form for the primary processing circuit 
stage. Arrows between the numbered blocks indicate data flow directions. Numbered blocks {105 to 107} stipulate 
processing circuit stage components/elements as per the proposed algorithm. This stage accepts the input data 
from the preprocessing circuit, performs iterations to implement the steps involved in the Awadhoot matrix, and 
provides separate group quotient bits that are further supplied to the postprocessing circuit stage. Numbered 
blocks {107 to 108} stipulate the postprocessing circuit stage components. This stage recombines separate quotient 
bits (hereafter termed group quotient bits) and presents the quotient and remainder data separately; output on 
the controlling signal verifies the correctness of the division operation performed by the circuit.

Figure 3.  (continued)
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The first number is Divisor ( Dr ), and the second number, Dividend ( Dd ), are provided as input data signals for 
the proposed divider circuit, and Enable (E), Clock (CLK), Reset (RST), and Fd_Enable are provided as control 
input signals for the proposed divider circuit. The preprocessing circuit element covers the input data storage, 
control circuit, NZC circuit, and modified divisor circuit. The multiple outputs yielded by the preprocessing cir-
cuit stage are further fed to the processing circuit stage. The processing circuit stage iteratively constructs the core 
conversion logic, consisting of a dividend group, a p-term, an NDd S-term and group quotients are arranged in a 
particular sequence of steps in one iterative circuit stage. The same element structure is used in all iterative circuit 
blocks of the processing circuit stage. At the end of the processing circuit stage, all individual dividend group 
quotients and the remainder are passed to the postprocessing stage. The individual dividend group quotients 
are recombined to form the final quotient and remainder in the postprocessing stage. In the end, confirmation 
of the completion of a successful conversion is validated by the present value of the valid output signal and the 
error signal in the postprocessing circuit stage. Detailed descriptions of the three stages are explained further, but 
it is essential to understand the vital terms or elements used in these three circuit stages of the USP-Awadhoot 
technique for the hardware and circuit implementation of a divider (or simply the USP-Awadhoot division 
technique). This approach utilizes a variable conversion time based on the dividend grouping technique. It has 
the following important terminology.

• Dd = [d1d2 . . . . . . . . . . . . dk] , where " Dd " represents dividends with a maximum size of "k" digits.

Figure 4.  Schematic block diagram of the proposed USP-Awadhoot algorithm-based divider.
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• Q =
[

q1q2 . . . . . . . . . qk−1

]

 , where "Q" represents a quotient with a maximum size of " k − 1 " digits. Except 
for the condition in which both operands are single digits, the maximum digit size is "k" digits.

• Dr = [d1d2 . . . . . . . . . dk] , where " Dr " represents a divisor with a maximum size of "k" digits.
• R = [r1r2 . . . . . . . . . rk−1] , where "R" represents a remainder with a maximum size of " k − 1 " digits.
• NDr = [ndr1ndr2 . . . . . . . . . . . . ndrm] , where " NDr " represents a "New Divisor" with a maximum size of 

"m" digits. The range is defined as " k − 1 ≤ m ≤ k + 1".
• FD =

[

fd1
]

 , where "FD" represents a "Flag Digit" with a maximum size of a single digit with a fixed range of 
[1,2……9].

• MDr =
[

md1md2 . . . . . . . . .mdp
]

 , where " MDr " represents a "Modified Divisor" with a maximum size of 
"p" digits. The range is defined as " p ≤ k − 1".

• NZC =
[

nzc1nzc2 . . . . . . . . . nzcp
]

 , where "NZC" represents the "Number of Zeroes Cancelled" with a maxi-
mum size of "p" digits. The range is defined as " p ≤ k − 1".

• NDd = [ndd1ndd2 . . . . . . . . . nddk] , where " NDd " represents a "Net Dividend" with a maximum size of "k" 
digits.

• GrDd =
[

gdd1gdd2 . . . . . . . . . gddk
]

 , where " GrDd " represents a "Gross Dividend" with a maximum size of 
"k" digits.

After providing all inputs, at numbered block 101, the preprocessing circuit stage obtains a divisor ( Dr ) and 
dividend ( Dd ) with maximum word sizes of "k" digits. The widths of the dividend and divisor determine the 
circuit hardware requirements. Prior to storing the input in the operand registers, i.e., the dividend register 
and divisor register, the divisor ( Dr ) and dividend ( Dd ) operands undergo an input normalization process that 
confirms that the input operands’ widths are within the permissible limits and are in the required frame format. 
The use of a hex number system aids in keep this stage simple in terms of the implementation. This condition is 
not a restriction. In the SRT divider implementation, multiple number systems were used to reduce the critical-
ity in the input circuitry. One of the best examples for expressing this involves binary-coded decimal (BCD) 
numbers, as explained  in76, where BCD numbers are used to implement the radix-10 SRT divider. The proposed 
algorithm is represented with a hexadecimal number system to provide a robust frame structure for electronic 
implementation. It is not restricted to hexadecimal number systems and can be used with other number systems, 
such as binary, decimal, and octal systems. The controlling signal circuit generates reference signals to control 
individual elements of the proposed divider’s three circuit stages; then, the divisor ( Dr ) undergoes a check for 
invalid conditions, i.e., division by zero. This would indicate an error signal at numbered block 108 derived by 
signal 115 and redistribute further for display or transmission in the postprocessing circuit stage upon detecting 
the invalid condition. In the false case, the divisor ( Dr ) is passed by 109 to numbered block 102, where the circuit 
obtains a flag digit (FD) and a new divisor ( NDr ); this step follows the basic concept of obtaining the FD and NDr.

Later, at numbered block 103, the FD and NDr are used to obtain the modified divisor ( MDr ) and the num-
ber of zeros canceled (NZC); this step follows the basic concept of obtaining an MDr and the NZC with respect 
to Fig. 4. Furthermore, the values of the FD and NZC are supplied to numbered block 104 by the 111 path. At 
this stage, dividend sectioning/regrouping is performed, and dividend groups are given out based on the NZC 
value provided by the previous step. Unlike the various SRT implementations that utilize operand prescaling 
or  truncation65,77, a fixed number of dividend sectioning or partitioning operations are performed to enhance 
the implementation; the proposed divider performs a cross combination of divisor prescaling and dividend 
sectioning or partitioning, giving us the upper hand to achieve area efficiency in the division implementation.

As discussed, the hardware requirements depend on the operand size; the maximum number of iterative 
circuit elements never exceeds the maximum operand size. This suggests that if the operand size is 8 bits, then a 
maximum of 8 iterative circuit stages is needed. Nevertheless, the number of iterative circuit stages used in a par-
ticular conversion depends on the value of the NZC. Similar to the variable-latency class algorithms, the dynamic 
nature of iterative circuit stages provides flexible conversion clock cycles for every dividend-divisor combina-
tion with the possibility of a variable quotient bit retiring rate in different iterations or some iterations requiring 
less execution time, resulting in different conversion times in different sets of dividends and divisors. Once the 
NZC value is determined, the circuit completes the preprocessing circuit stage and arranges the dividends MDr 
and FD in separate dividend groups as per the arrangement shown in the Awadhoot matrix by sending data to 
numbered blocks 105–107. The proposed divider’s processing circuit stage performs a computational process on 
the Awadhoot matrix (following Fig. 4) to obtain the group quotient’s value and the remainder. Block number 
106 shows the iterative circuit stages; as discussed earlier, the maximum number of iterative circuit stages is not 
greater than the operand width size. Numbered block 107 is the condition checker, which confirms that the com-
putation ends in the iterative circuit stage. Once block 107 ensures the completion of the computation, the data 
are passed to the postprocessing circuit stage at block 108 of Fig. 4. Figure 4 represents the group recombination 
circuit followed by a distribution circuit for the separate visualization or transmission of the quotient (Q) and 
the remainder (R). After computing the Awadhoot matrix, the individual group quotients are recombined as 
per the relative weights and form a final quotient (Q). The final residue or remainder is obtained from the last 
iterative circuit stage, depending upon the conversion status.

• First: Net Dividend = 0. This shows that the dividend ( Dd ) is completely divisible by the divisor ( Dr ), where 
the remainder (R) = 0 and the quotient (Q) = the partial quotient ( PQn ) formed by concatenating the indi-
vidual group quotients (GQn).

• Second: Net Dividend = Divisor ( Dr ). This shows that the dividend ( Dd ) is completely divisible by the divisor 
( Dr ), where the remainder (R) = 0 and the quotient (Q) = the partial quotient ( PQn) + 1.
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• Third: Net Dividend ( NDd) > Divisor ( Dr ). The remainder (R) = RAQ the value obtained during the calculation 
of the additional quotient ( AQ ), and the quotient (Q) = the partial quotient ( PQn) + the additional quotient 
( AQ ), where the AQ is derived by initializing the count to zero, subtracting the divisor ( Dr ) from the last 
iteration of the net dividend ( NDd ), and incrementing the count by one until we obtain a sub-result that is 
zero or less than the divisor ( Dr).

• Fourth: Net Dividend ( NDd) < Divisor ( Dr ). The remainder = the value of the last iteration of the NDr , and 
the quotient (Q) = the partial quotient ( PQn).

The last step of the proposed divider recombines the individual group quotient (GQn) in the postprocessing 
circuit stage. Upon completing the conversion process, the final quotient and remainder are available, along with 
an error signal indicating the conversion’s correctness and the presented data.

Therefore, after the last iteration of the Awadhoot matrix, based on the condition function, the final quotient 
and remainder value are calculated and represented as follows:

where PQ is the partial quotient, AQ is the additional quotient and RAQ is the remainder generated during the 
calculation of the additional quotient.

In most of the performance enhancement schemes utilized in divider circuit block implementations, scaling 
down the operands with a common static scaling factor is considered a preliminary option. Different methods 
may be available for calculating the scaling factor, but the same factor scales down both operands (divisor and 
dividend). Thus, even after scaling down, the relationship between the divisor and dividend remains the same. 
Considering that the dividend is (x), the divisor is (y), and both operands are scaled down by a common scaling 
factor (m), the relation between the dividend and divisor is expressed as

Example: If the dividend = 500, the divisor = 50, and they are scaled down by common factor 5, then

where the relationship between the scaled-down values is presented as

Several ways of finalizing the scaling factor may be available, but the same scaling factor is used to scale down 
both operands. By performing scaling, we can reduce the values of operands, which can reduce the number of 
iterations required to calculate the quotient bits; however, this does not allow us to reduce the divisor quantity 
beyond the preliminary relation. Even though it is possible to further scale down the dividend or divisor, it is 
not executed because of the divisor has reached its limits. Nevertheless, doing so increases the area overhead. As 
explained in Fig. 4, the preprocessing circuit consists of the control circuit, NZC circuit, and modified divisor 
circuit, confirming the use of a dynamic separate scaling operation/factor, reducing the number of iterations 
required for the quotient calculation and ensuring that different factors scale down the divisor and dividend. 
Partitioning the original dividend value into several group dividends is also considered to ease the process of 
designing the quotient bit selection logic. The preprocessing circuit provides a key improvement to achieve 
performance enhancement. The processing circuit stage provides restoring and nonrestoring functionality for 
executing the division steps described in the Awadhoot matrix. It also provides a second improvement in the form 

(17)Dd = [d1d2 . . . . . . . . . . . . dk] and Dr = [d1d2 . . . . . . . . . dk]

(18)Division(Q,R) = f (Dd ,Dr) = f (Awadhoot matrix,Condition)

(19)Awadhoot matrix(GQn,Rn) = f (GDd ,MDr , FD)

(20)f (GDd ,MDr , FD) =
∑k

n=1
[(Rn−1|GDdn)+ (P − Term)n − (S − Term)n]

(21)Condition(Q,R) = f (NDdn, PQ,AQ)

(22)Division(Q,R) = (PQ, 0) if NDdn = 0

(23)Division(Q,R) = [(PQ + 1), 0] if NDdn = Dr

(24)Division(Q,R) = (PQ,NDdn) if NDdn < Dr

(25)Division(Q,R) = [(PQ + AQ),RAQ] if NDdn > Dr

(26)
(

x → y
)

=
(

xm → ym
)

(27)
(

500

50
× 100

)

= 1000%

(28)
(

100

10
× 100

)

= 1000%
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of clearer and simpler quotient selection logic without overlapping conditions, unlike in the SRT divider, where 
the overlapping region is critical and causes severe losses in the case of misalignment of the overlapping area.

The Awadhoot matrix circuit elements of the processing circuit stage. Figure 5 illustrates the 
particular arrangement of the processing circuit stage elements of the proposed algorithm. The structure is 
termed the Awadhoot matrix. The Awadhoot matrix provides a computational arrangement of various aspects 
of the processing circuit stage of a proposed divider. Figure 5 shows that each column represents an individual 
iterative circuit stage, and each row represents the elements of the corresponding iterative circuit stage. We can 
use a single set or multiple sets of iterative circuit elements depending on which hardware architecture is con-
sidered for implementation.

The Awadhoot matrix arrangement is composed of the previous remainder ( Rn−1) , the group dividend 
(GDdn) , the group quotient of the previous iteration ( GQn−1) , the gross dividend ( GrDdn) , the flag digit ( FD) , 
the modified divisor ( MDr) , the net dividend ( NDdn) , the present quotient ( Qn) and the present remainder 
( Rn) . The proposed divider circuit hardware requirement depends on the number of dividend groups made in 
the preprocessing stage of the divider, and the maximum possible number of dividend groups is related to the 
maximum width among the available operands. This Awadhoot matrix arrangement provides a detailed struc-
ture of the processing circuit, which can be realized by serial, parallel, or pipeline hardware architectures. In 
the present article, we compare the sequential combinational circuit implementation of the Awadhoot matrix. 
Under the idle condition, the values of the previous remainder ( Rn−1) and the previous iteration group quotient 
( Qn−1) are considered zero to avoid any computational errors in an iterative circuit. Upon the execution value 
of the first iteration circuit stage, the group quotient and remainder are used as the previous iteration group 
quotient ( Qn−1) and the previous remainder ( Rn−1) , respectively, for the next iteration circuit stage and depend 
on the number of dividend groups.

A detailed description of the Awadhoot matrix is given in the patent application. In short, a gross dividend 
( GrDdn) is derived from the previous remainder ( Rn−1) and the present value of the group dividend at the first 
level of the iterative circuit stage of the Awadhoot matrix. Further simple addition and multiplication operations 
are performed with the gross dividend ( GrDdn) , previous iteration group quotient ( GQn−1) and flag digit ( FD) 
to derive the value of the net dividend ( NDdn) , which is indicated by the p-term terminology in the Awadhoot 
matrix. Additional multiplication operations are performed depending on the condition of the present net 
dividend ( NDdn) value in comparison with the value of the modified divisor ( MDr) to obtain the value of the 
s-term. Depending on the comparison, the final value of the group quotient ( GQ) and the present remainder 
( Rn) are calculated and presented for the next iterative circuit stage or postprocessing circuit stage. During the 
execution of the postprocessing circuit stage, all individual group quotient values are recombined together with 
the associative weights to form the final quotient value. Later, this final quotient and remainder value are dis-
played or transmitted to other circuits if necessary. We consider the hexadecimal number system to implement 
the proposed system due to its ease of use in digital systems and computer applications. Hexadecimal numbers 

Figure 5.  The Awadhoot matrix.
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in digital electronics result in better readability and provide a frame structure with a fixed bit size to represent 
each decimal number in a digital form.

We obtain several representation forms in the binary representations of decimal numbers or digits. Some-
times they can be represented by one-bit equivalent binary numbers or multiple-bit binary numbers, whereas 
in the case of hexadecimal representation, every hexadecimal digit is defined as a frame of four binary bits. The 
fixed frame used for representing hexadecimal numbers in digital or binary form provides better support for 
performing operations such as shifting, comparing, and giving a simple logic for quotient bit selection in the 
processing circuit stage.

The use of a hexadecimal system also simplifies internal operations, such as concatenating digits in digital 
computations. A binary system could also be used, but hexadecimal numbers also provide the advantage of 
working with four bits per digit each time. In the binary system, the minimal number of bits to be considered 
for computation is one; in the case of a hexadecimal system, four binary bits are used, providing more clarity for 
understanding the computation process performed on a digital system with long bitstream data. The conversion 
of any digit value of any number system into a single digit by repetitively adding all digits is called a beejank or 
digital root. The beejank operation (digital root), alternate beejank operation, deviation, and alternate representa-
tion of addition and subtraction, which we perform during the iteration of the processing circuit stage, exhibit 
great ease of use in the quotient bit selection logic developed with the hexadecimal system.

The beejank approach is used to verify answers except for the binary number system; hence, we consider a 
hexadecimal number system in the quotient bit selection logic to confirm the correct selection of the quotient 
bit in a particular iteration. The same operations are performed with a number and its beejank; if both results 
are found to be the same, the answer is verified. The beejank does not indicate a deficiency in the minimum 
(zero) and maximum numbers. If the placement(s) of a digit (digits) in a number is/are interchanged, then this 
change is not indicated by the beejank. If the beejank is negative, then ‘9’ is added to convert it to a positive value.

The difference between a number and its nearest base is called the deviation.

During computation, the deviation also supports the representation of the addition or subtraction of two 
numbers as one hexadecimal number, which can reduce the number of steps required in the quotient bit selection 
logic and helps to reduce the area requirement and complexity of the quotient bit selection logic.

Implementation statistics and performance results analysis. The very high-speed integrated cir-
cuit (VHDL) hardware description language is used to develop the implementation idea based on the functional 
block diagram of the proposed USP-Awadhoot algorithm-based divider. To realize the theoretical concept and 
idea of the proposed state-of-the-art novel USP-Awadhoot algorithm-based divider, we develop a synthesiz-
able architecture. This synthesizable architecture implementation provides a unified way of comparing and test-
ing the proposed divider. To develop and implement the proposed USP-Awadhoot algorithm-based divider, 
we use the Vivado 2016 simulation tool with the Zybo development board based on Xilinx Zynq XC7Z010, 
XCZU7EV-FFVC1156-2-E with Zynq UltraScale + MPSoC and the Quartus Prime Lite simulation software with 
the Cyclone IV development board based on the EP4CE6E22C8N Cyclone IV FPGA manufactured by Altera to 
generate a truth table and cross-verify the simulation results by comparing the outputs separately. Here two dif-
ferent FPGA’s (Xilinx and Altera) were used to test the correctness of the logical results when implemented with 
different structured FPGAs. Xilinx implementation and simulation statistics of the proposed divider considered 
further for comparison. The overall performance of the divider depends on the proposed algorithm for the data-
dependent divider, which determines the latency for a particular input operand combination. To gain complete 
control over each implementation detail and make the synthesis as technology  independent as possible, we 
create a set of components based exclusively on register transfer level (RTL) descriptions. In other words, each 
component is described by some structure composed of basic gates, and their connectivity is similar to that of 
the various implementations studied during the review.

We verify the simulation output of the proposed divider, which depends on the random number generator 
(RNG) outputs for the random and sequential input operand combinations covering complete bit or digit range 
operands, as proposed by the truth table. To verify whether the generated output is valid, we prepare a truth 
table for every possible operand combination, including the true or theoretical results. We execute this process 
for every possible input operand combination and compare its results with the truth table. Any differences in the 
results indicate the incorrectness of the calculation and are rectified via corrective actions. Also, all the possible 
input operand conditions are sequentially and randomly checked on both experimental test boards. We created 
one logic test bench board, as shown in Fig. 6, that can provide operand values with multiple word sizes. The 
logic test bench board is designed so that it can check minuscule bit size combinations and offer the flexibility 
to add extra bits to the input operands in cases with extended bit sizes. We tested the operation of the proposed 
USP-Awadhoot algorithm-based divider with static inputs supplied via separate single-pole single-throw rocker 
switches and a continuous sequence generator. We executed simulations with different clock frequencies and 
also tested by implementing them in both development boards to determine the working latency and conver-
sion speed.

(29)(F89A0BCD)16 = (F + 8+ 9+ A+ 0+ B+ C + D)16

(30)(F89A0BCD)16 = (4E)16 = (4+ E)16 = (12)16 = (3)16

(31)Number = (100F)16 Base = 1000 Deviation = 00F
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After verifying the simulations and hardware implementations of different versions of the proposed divider 
circuit, the implementation statistics of every version are mapped to the LUTs, flip-flops, registers, multiplexers, 
latches, adder, subtractor, multiplier, basic gates, clock frequency, and power. In short, the number of transis-
tors or gates used indicates the implemented area, hardware resource utilization, working frequency, and power 
consumption needed to realize the proposed USP-Awadhoot algorithm-based divider. Thus, the behavior of the 
proposed USP-Awadhoot algorithm-based divider is mapped to the latency performance function designed to 
keep track of the required clock cycles for a given pair of input operands. It is the best way to compare implemen-
tation statistics based on area, and the other approach for performance comparison is based on the latency time.

The physical implementation of the proposed divider based on the USP-Awadhoot division algorithm is per-
formed with various hardware implementation techniques, referred to as the implementation versions. A study 
of different implementation versions indicates the total trade-offs between area, time, and power, so depending 
on the application, one must decide which implementation version should be utilized. Implementation versions 
V8.1 to V8.9 are based on 8-bit operands, whereas V16.1, V24.1 and V31.1 are the 16-bit operand, 24-bit operand, 
and 31-bit operand implementations, respectively. The variances in the resulting parameters for different versions 
of the proposed divider circuit indicate the effectiveness of the corresponding versions.

As mentioned above, version V8.1 is the first implementation version of the proposed USP-Awadhoot divider 
with 8-bit operands. All the steps involved in the preprocessing, processing, and postprocessing circuit stages 
are implemented sequentially, and the execution of each step is concluded in a separate clock cycle. However, 
it requires less implementation area (explained in a further section), resulting in the slowest implementation of 
the proposed divider circuit because storing the intermediate values generated during execution is not needed, 
as the next step is executed only after the completion of the first step. Version V8.2 is the successor to version 
V8.1; it includes storing intermediate values generated during the execution process, causing the area overhead 
to increase compared to that of the predecessor version (V8.1). Version V8.3 is the third version of the 8-bit 
implementation of the proposed USP-Awadhoot divider in the series utilizing separate clock cycle executions 
for each step of the preprocessing, processing, and postprocessing circuit stages. While implementing these ver-
sions, we change the NDd , the remainder and the error signal calculation circuit and provide an extra buffer to 
hold the values. This improves the accuracy of the output by providing the correct remainder value. Version V8.4 
initiates the concurrent execution concept to implement the proposed USP-Awadhoot divider. In this version, 
the circuit allows the data available at the input data lines to be stored at input registers, the most significant bits 
(MSB) are stored as separate hexadecimal integers, and the least significant bits (LSB) are stored as additional 
hexadecimal integers in an array of hexadecimal integer elements for the dividend. The same process is applied 
to the divisor. Concurrently, the preprocessing circuit stage formulates the FD and NDr values by working only 
on the least significant hexadecimal part of the divisor.

V8.5, V8.6, V8.7, V8.8 and V8.9 are the successors of the V8.4 version of the proposed USP-Awadhoot divider 
implementation. In the V8.5 version of the implementation, the processing circuit stage concurrently executes the 
NDd and GQn calculation steps. In the V8.6 version of the implementation, the processing circuit stage utilizes 
the predefined values for error conditions during the concurrent execution of the NDd and GQn calculations. It 
reduces the area overhead and power consumption while increasing the execution speed. In the V8.7 version 
of the implementation, the processing circuit stage concurrently executes the residue/remainder and additional 
quotient calculations. Based on the concurrent execution process, the NDd values are compared, and the condi-
tion selection circuit is activated in the postprocessing circuit stage to compute the final values for the quotient 
and residue as per the display requirements. In the V8.8 version of the implementation, the processing circuit 
stage introduces an extra buffer and counter in addition to those in the V8.7 version to improve the expected 
group residue/remainder calculations. This version improves the working clock cycle requirements and main-
tains the same area requirements as the V8.7 version of the proposed USP-Awadhoot divider implementation. In 
the V8.9 version of the implementation, the processing circuit stage introduces different logic to implement 
alternate conditions to the residue/remainder and additional quotient calculations. This version improves the 
implementation area or resource utilization by keeping same clock cycle requirements as the V8.8 version of 
the proposed USP-Awadhoot divider implementation. Versions V16.1, V24.1 and V31.1 are the 16-bit operand, 

Figure 6.  Logic test bench board.



14

Vol:.(1234567890)

Scientific Reports |         (2023) 13:3027  | https://doi.org/10.1038/s41598-023-28343-3

www.nature.com/scientificreports/

Figure 7.  Hardware resource utilization of the proposed USP-Awadhoot algorithm-based divider.
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24-bit operand, and 31-bit operand implementations, respectively, based on the modifications performed in 
the V8.9 version. V31.1 implementation uses 31 bit operands to avoid overflow condition during conversion.  

Figure 7a–c shows hardware resource utilizations required by multiple versions of the proposed USP-Awad-
hoot algorithm-based divider implementations. The results shown in Fig. 7 are the actual data for the proposed 
circuit implementation based on Xilinx FPGA and Vivado 2016 simulation tool, which is considered as a baseline 
to compare with several other implementations to draw a comparative analysis. The circuit arrangements are 
different in terms of how they execute the various states of the logic flow state diagram of the proposed divider 
to improve the implementation area and enhance the operational performance with respect to the space, latency 
time, and power of the proposed divider circuit based on the USP-Awadhoot division algorithm. While imple-
menting these versions, we must consider that area is an essential point when working with embedded systems. 
Based on the slice logic LUT graph of the hardware resource utilization, we confirm that each implementation 
requires a minimum of 238 counts of slice logic LUTs after comparing the different 8-bit implementation versions.

Slice logic represent the group of hardware resources necessary to create a configurable logic block. Every slice 
logic contains a fixed numbers of LUTs and slice register flip-flops; sometimes, they are accompanied by slice 
register latches and multiplexers. A LUT is a collection of logic gates that are hard-wired on an FPGA. LUTs store 
a predefined list of outputs for every combination of inputs and provide a fast way to retrieve a logic operation’s 
output. A flip-flop is a circuit that is capable of two stable states and represents a single bit. A multiplexer, also 
known as a mux, is a circuit that selects between two or more inputs and outputs the selected input. Different 
FPGA families implement slices and LUTs differently. For example, a logic slice on a Virtex-II FPGA has two 
LUTs and two flip-flops, but a logic slice on a Virtex-5 FPGA has four LUTs and four flip-flops. Additionally, the 
number of inputs to a LUT, commonly two to six, depends on the selected FPGA family. A register is a group 
of flip-flops that stores a bit pattern. A register on an FPGA has a clock, input data, output data, and enabled 
signal ports. Every clock cycle, the input data are latched and stored internally, and the output data are updated 
to match the internally stored data.

While implementing the proposed divider, an approximately one hundred and forty-six slice register flip-
flops, and 37 bounded input outputs are required in the case of an 8-bit implementation. The bounded I/O is 
divided into two groups of data operands, which are input, and output data lines and control lines used to control 
the divider’s operation and indicate an error if it occurs during computation. Some implementation versions 
require additional seven-input multiplexers or eight-input multiplexers. Versions V8.1 and V8.6 require eight 
seven-input multiplexers, V8.3 and V8.4 require one seven-input multiplexer, and V8.5 requires twenty-six 
seven-input multiplexers. Along with the area and power analyses, frequency or cycle time calculations also 
form an important part of divider circuit analysis.

The proposed divider’s implementation uses variable power (approximately from a minimum of 0.108 watts 
to a maximum of 7.9941 W). It works at up to 285 MHz depending on the implementation version selected, i.e., 
the 8-bit, 16-bit, 24-bit, or 31-bit implementation. Depending on the best suitable hardware resource utiliza-
tion combination and a better performance analysis of the proposed USP-Awadhoot algorithm-based divider 
implementation, version V8.9 is the most suitable option for implementation in an application with a lower-to-
moderate range of resource requirements. This version requires 266 slice logic LUTs, 146 slice register flip-flops, 
zero latches and 37 bounded input–outputs with no seven-input multiplexers, DSP, or eight-input multiplexers. 
Simulation confirms it works at a moderate frequency up to 285 MHz and requires 3.366 watts estimated power 
to run. For all the comparative studies we consider version V8.9 of the proposed divider circuit.

Figure 7.  (continued)
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During each clock cycle, the processing unit can perform basic operations such as fetching instructions or 
data, accessing memory, and reading or writing data. The processing unit often requires multiple clock cycles to 
complete a single process. The processing unit’s frequency is calculated depending on the clock cycles, also termed 
the cycles per second or frequency. Here, the clock frequency is considered the system frequency or the divider’s 
working frequency. The clock frequency is also considered a reference point for executing different instructions 
during the implementation of a particular operation. The frequency of a processing unit is also known as the pro-
cessor’s clock speed. Clock speed is essential for determining the processor’s overall performance. Since proces-
sors have different instruction sets, they may differ in the number of cycles needed to complete each instruction 
(or cycles per instruction (CPI)). Some processors can perform faster than others, even at slower clock speeds. 
This indicates that studying the clock cycles required for a particular conversion is essential.

Latency analysis is conducted in terms of clock cycles as the behaviour of the proposed USP-Awadhoot 
algorithm-based divider is mapped with a latency time performance function designed to keep a record of the 
number of clock cycles required given a pair of input operands. Simulations obtain the minimum and maximum 
performance of the proposed divider with analytically determining best and worst cases. The use of a latency 
time calculation in terms of clock cycles for determining the best and worst cases is rational when comparing 
divider performance. To consider the latency time performance of the proposed divider, we choose two options; 
the first is a sequential truth table that assures that each combination of input operands is considered during the 
execution, and its related data are stored.

The second option is RNG, is suitable for evaluating operands possessing larger word sizes with more sig-
nificance. In the case of the data-dependent divider, the execution time depends not on how large the dividend 
is but on how far the divisor is from the dividend. The larger the distance between the dividend and divisor, 
the more execution time is needed. We conduct a clock performance analysis of the comprehensive range of 
dividends and divisors for 8-bit operands with the RNG and the sequential truth table, where the number of 
possible combinations is 65K; for higher bit sizes, only the RNG method is considered due to the possibility of 
billions of combinations. There are two possible ways to achieve variable-latency time in the division operation: 
one is by varying the frequency for performing the iteration process, and the second is by varying the number 
of iterations. One can provide a variable conversion rate or time by having variable latency. Latency is defined 
as the total time taken by an operation to generate the first output after providing an input; in other words, it is 
the total number of clock cycles required after providing inputs to develop the first result. We conduct a divider 
circuit clock performance analysis to understand the nature of the proposed divider.

The proposed division circuit based on the USP-Awadhoot algorithm executes all possible input operand 
combinations while performing the divider circuit’s clock performance analysis. Every possible combination of 
dividend and divisor values is executed, giving us the details regarding the number of clock cycles required to 
compute a dividend–divisor combination. In the present article, we provide the implementation data for the 
eight-bit operands, suggesting that the divisor’s width and the dividend’s width are eight bits. The eight bits of each 
operand are expressed as two hexadecimal numbers, making it easier to execute the computation. We perform 
65K combinations of input operands.

To represent the data in a standard format, we divide the dividend range into three sections with a low range 
of dividend values in the first region named dividend range 00, suggesting that the dividend has half-filled four-
bit values or one-digit-lower hexadecimal values; a middle range of dividend values in the second region named 
dividend range 80, suggesting a range of half-filled four-bit values to six-bit values or lower two-digit hexadecimal 
values; and a high range of dividend values in the third region named dividend range FF, suggesting a range 
from six-bit values or lower two-digit hexadecimal values to full eight-bit values or higher two-digit hexadecimal 
values. The execution of the proposed divider is performed based on the USP-Awadhoot division algorithm by 
considering different divisor values starting from half-filled four-bit values or lower values of single hexadecimal 
digits to full eight-bit values or two-digit hexadecimal digit values. A relative presentation between the various 
combinations of operands with their required clock cycles is provided to compute the results.

The results generated from this clock performance analysis state that the proposed divider circuit based on 
the USP-Awadhoot algorithm requires a variable number of clock cycles to perform division operations on the 
particular operands provided at specific times. This shows that the proposed divider circuit requires the fewest 
clock cycles (0 clock cycles) when the operands exhibit invalid conditions. An invalid condition suggests that the 
divisor value is zero, and division by zero yields an indefinite condition that causes the generation of the invalid 
condition. An exception to the invalid condition exists with a dividend value of zero; when the input operand 
value indicates that the dividend and divisor values are both zero, then the proposed divider circuit takes slightly 
more clock cycles (17 clock cycles) to finish the execution process. The important reason behind this is that the 
circuit first detects of dividend value to indicate it as a nonzero value. If it detects a dividend value of zero, it 
sets the temporary output to zero and checks the divisor for a nonzero value. If it detects a nonzero value, then 
the final answer is zero. In a case with zero, the result must be changed to an invalid result generating an error 
signal, which requires extra clock cycles to execute the error signal generation process. The most clock cycles 
required for computing operands are two hundred and seventy-five clock cycles for the combination of the low-
est divisor and the highest dividend value, indicating that more iterations must be completed before reaching 
the final result. When the divisor value is closer to the dividend value, the number of clock cycles required to 
execute the division step is lower.

Figure 8 illustrates the behaviour of the proposed divider, based on the difference between the dividend and 
divisor values. It is clear that the performance of the proposed divider is data-dependent, the number of average 
clock cycles required over more than half the range of the difference between the dividend and divisor falls into 
an almost fixed range of clock cycles. The required values of the average maximum numbers of clock cycles stay 
in the range of twenty-eight to sixty-three clock cycles. When the distance between the divisor value and dividend 
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value is less, the minimum required average number of clock cycles stays in the range of thirteen to twenty-four 
clock cycles. The lowest number of clock cycles (7 clock cycles) is required when the divisor value is unity.

Because the dividend value was previously confirmed to be a nonzero value and no iteration is performed, 
the final result value is calculated directly after confirming that the divisor value is unity. Midrange operand 
combinations possess clock requirements in the range of fifteen to thirty-five clock cycles. The divider circuit 
clock performance demonstrates the variable latency induced by the variable number of clock cycles required 
for different operand combinations in the proposed divider implementation and execution.

Waveform analysis. This section discusses the functional waveform analysis of the proposed divider based 
on the USP-Awadhoot division algorithm. We present the working conditions of the various signals used or 
generated by implementations in different situations, such as idle/initial and off/on states. We consider vari-
ous combinations of dividends and divisors, giving better insight into different signals and data at the time of 
a particular conversion process. A waveform analysis is used to study the nine signals data to provide a clear 
idea regarding the proposed divider’s working conditions based on the USP-Awadhoot division algorithm. The 
nine signals, such as the reference CLK, dividend ( Dd ), divisor ( Dr ), enable ( Fd_enable ), quotient (Q_Result), 
remainder (Rem_Residue), Valid_O/P, Error and RST required for waveform analysis, are distributed into five 
different groups depending on the nature of each signal: the reference group, I/P operand group, control group, 
O/P results group and indicator group.

Different dividend and divisor combinations require different clock cycles to operate; the reference group 
CLK signal provides the timing reference signal for computation execution. The reference clock signal’s period 

Figure 8.  Clock performance analysis of the proposed USP-Awadhoot algorithm-based divider.

Figure 9.  Waveform analysis of the proposed USP-Awadhoot algorithm-based divider.
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value is dependent on the working frequency; thus, the higher the frequency is, the lower the clock period value. 
The I/P operand group consists of the dividend ( Dd ) and the divisor ( Dr ) signals, which indicate the dividend 
and divisor values, respectively. The control group consists of Fd_enable and RST signals to provide start and 
end control for the computation process. The indicator group consists of Valid_O/P and Error signals, indicating 
computation completion and alerting the system of any invalid working condition or incorrect execution. The 
last and essential O/P results group consists of the Q_Result and Rem_Residue signals that provide the values of 
the quotient and remainder, respectively, as results of the division operation performed by the proposed divider 
based on the USP-Awadhoot algorithm. Figure 9 indicates a reference working waveform diagram concerning the 
initial working condition. The initial working waveform is mainly sectorized into an idle state, an initialization 
state, an operation state, and the next state. The idle state shows the proposed divider circuit’s nonworking or 
stationary condition and beginning state when only a power supply is provided to the circuit after a shutdown. 
In the idle state, the CLK signal continues generating the reference signal, and the values of the I/P operand 
group’s dividend ( Dd ) and divisor ( Dr ) signals are in the high-impedance tri-state condition. The control group 
Fdenable and RST signals both possess low logic values, suggesting no operation. Similarly, the values of the 
indicator group and O/P result group’s Q_Result and Rem_Residue signals are in a high-impedance tri-state 
condition, suggesting a stationary work condition. The initialization state indicates the next stage after applying 
the Fd_enable control signal to the proposed divider. In the initialization state, the proposed circuit resets the 
signal value of the O/P results group to the initial value of 00H, suggesting no result at the start. Later, it fetches 
the dividend ( Dd ) and divisor ( Dr ) data values from the input data lines that are stored in the input operand 
registers for further computation, as described in the previous sections. The indicator group’s Valid_O/P and 
Error signals are set to logic low values, indicating that no computation operations have been performed yet.

The proposed divider circuit computes the Q_Result during the operation state, and the Rem_Residue signal 
provides the absolute value. After completing the computation operation, the Valid_O/P and Error are updated, 
and whether the computation and O/P result values are correct or incorrect is validated. At any instance, if a 
high-logic signal activates an RST signal, then the proposed divider circuit suspends its current computation 
operation state and resets it to the initialization state. The RST signal value is set to low logic, indicating an inac-
tive reset signal that allows the continuing computation process to execute the division operation and compute 
the final O/P result values. Thus, depending on the control group signal values, the proposed divider circuit is 
ready to execute the next state.

Comparative statistics. Due to strict conversion rules, the division is the most complex essential arith-
metic operation and is difficult to implement. As discussed in the division circuit block taxonomy section, many 
ways to identify different divider circuits are available. Given the continued growth of industry and technological 
improvements, there is a demand for achieving an efficient trade-off between the area, latency time, and critical-
ity of the conversion logic. Table 1 illustrates different dividers based on their mathematical formulations and 
theoretical backgrounds. Digit recurrence-based dividers are the most commercially implemented divider cir-
cuits that provide many ideas, processes, and hardware architectures. However, much room remains to improve 
digit recurrence algorithm-based divider circuits’ areas, frequencies, and power levels. We develop a new state-
of-the-art digit recurrence algorithm-based divider named the USP-Awadhoot algorithm divider.

During various simulations performed on the Vivado 2016 simulation tool, the results of different input 
operand combinations are collected, forming a truth table for all possible combinations of input operands. The 
collected simulation data are summarized into time values, current operand (dividend and divisor) values, the 
present values of the control signals, and the outputs (quotient, remainder, error state, and valid output) obtained 
by the computation of the algorithm. The data collected from the output of the Xilinxs simulation and hardware 
implementation on Xilinxs FPGAs are compared with their known solutions from the reference truth table pre-
pared from theoretical calculations. Once the data obtained from the output of the hardware implementation are 
successfully compared, the resources and execution speeds obtained with various divider implementations are 
determined. However, the hardware resource utilization data presented in Fig. 7 of the proposed USP-Awadhoot 
algorithm-based divider is considered further for comparative analysis.

Bailey1 presented an article about statistical implementation data for restoring and nonrestoring algorithms 
in 2006. He presented a comparative analysis of the FPGA and Handel-C software implementation of restoring 
and nonrestoring division algorithms. These algorithms were implemented on RC-100 and RC-300 development 
boards produced by Celoxica using Xilinx’s Spartan-II and a Virtex-II FPGA. A statistical comparison between 
the algorithms implemented as macro expressions with the Handel-C built-in integer divider is presented. For 
comparison, only restoring and nonrestoring algorithms based on the basic equations expressed in an earlier 
section are used without implementing the radix SRT algorithm.

The comparison presented in Table 2 concludes that Handel-C built-in divider is the slowest, as it can work 
on frequencies near 10 MHz. The chip area required in the FPGA is approximately more than double the area 
required by the proposed USP-Awadhoot algorithm-based divider. In Handel-C implementations, the use of 
subtraction for performing comparisons, its reuse as an input to a multiplexer, and the utilization of separate 
LUTs for addition and multiplexing requires extra hardware, limiting the speed improvement. The basic ideas 
of restoring and nonrestoring division algorithms can be implemented in a sufficiently small chip area, but the 
maximum working frequency is low. The number of LUTs may vary based on the hardware description languages 
(HDLs) used to implement the above algorithms.

In5, Matthews et al. discussed integer divider designs for the ascendancy of FPGA-based soft-processor over 
the adaptation of variable-latency execution units in their instruction pipeline. The implementation efforts were 
focused on the Quick-Div divider, which exhibits data dependency and variable latency in integer division. This 
divider was integrated into the FPGA-based Taiga RISC-V pipelined soft processor.
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Sr. no. Algorithm Equations Important points

1 Restoring divider

For Jth iteration
qj = 0 if R′

j < 0

qj = 1 if R′
j ≥ 0

Rj = 2Rj−1 if qj = 0

Rj = R′
j if qj = 1

R′
j = 2Rj−1 − Dr

It is similar to the long division algorithm

Simple logic for implementation

No requirement for a LUT

Iterative subtraction is performed

The nonredundant number system is used to write a 
quotient

If the partial remainder value is not positive or zero, then 
the divisor is restored by the subtraction result performed 
in that iteration

It requires a full-width comparator in each iteration, and 
the subtractor, shift register, and multiplier provide the 
approximate area requirement for algorithmic implemen-
tation

Checks for possible MSB losses and overflow are needed

Requires a full-width comparison at every iteration to 
obtain one bit of a quotient

The quotient needs to be rearranged to obtain the actual 
quotient

2 Nonrestoring divider

For Jth iteration
qj = −1 if Rj−1 < 0

qj = 1 if Rj−1 ≥ 0

Rj = 2Rj−1 + Dr if qj = −1

Rj = 2Rj−1 − Dr if qj = +1

Similar to the restoring algorithm, it does not require 
restoring the partial remainder if the subtraction result is 
negative

No requirement for a LUT

The operation in each iteration depends on the result of 
the previous iteration

Only one addition or subtraction operation can be per-
formed in each iteration, so separate hardware is needed

The partial remainder is kept between − Dr and + Dr, and 
the quotient digit is − 1 or 1

It requires a sign bit to decide whether to perform addi-
tion or subtraction; the adder, subtractor, and shift register 
give the approximate area requirement for algorithmic 
implementation

Requires an extra bit to be added with the partial remain-
der to have a track on a sign

Requires a separate adder and subtractor in each iteration

The area utilization of the implementation is approxi-
mately equal to the area required to implement the adder, 
subtractor, and shift register

3 SRT divider

For Jth iteration
qj = 1 if 2Rj−1 < −Dr

qj = 0 if −Dr ≤ 2Rj−1 ≤ Dr

qj = 1 if 2Rj−1 ≥ Dr

Has one of the values -m, −m + 1… −1, 0, + 1. . . m−1, m, 
where m is an integer comprising k digits of radix-n as
1
2 (n− 1) ≤ m ≤ n− 1

n = 2b and k = x/b

Q =
∑k

j=1 qjn
−j

Quotient q is generated as a dividend through division 
by a divisor with the x most significant bits to remove 
b bits from the quotient in each iteration. Thus, radix-n 
performs k iterations to obtain the desired quotient

It is a nonrestoring algorithm based on radix-n

Named after Dura W. Sweeney, James E. Robertson, and 
Keith D. Tocher

For x bits, integer division requires k = x/b iterations, 
where b = the number of bits detected in each iteration

n decides how many quotient bits are to be detected in 
each iteration; if n = 2, then one quotient bit is detected 
per iteration, and radix–n is typically selected as a power 
of base 2

Each quotient digit has a value from {−m, −m + 1, ….., −1, 
0, 1, ……., m−1, m}

The algorithm implements 2’s complement value of Dr 
instead of Dr . This enables shifting over zeros to eliminate 
extra adders and subtractors

It needs an extra subtractor to determine the next partial 
remainder

Error results are obtained due to few MSBs being used 
to predict the quotient bits (as in the low radix case); the 
error decreases with the increase in the radix

A quotient selection table plus a carry-saving adder (CSA) 
gives the approximate area requirement for algorithmic 
implementation. It requires a quotient selection LUT. This 
shows the iteration time of accessing the quotient selection 
table plus multiple additions and subtractions

Selecting higher quotient bits causes complexity in the 
quotient selection logic, and higher radix implementations 
are complex due to the impractical multiples of the divisor

It needs to convert the last remainder to a conventional 
representation to find the sign bit, and the quotient correc-
tion stage selection depends on the sign bit

Continued
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Sr. no. Algorithm Equations Important points

4 Very high radix *******

It removes more than ten quotient bits in one iteration; 
it requires a very large LUT with a large capacity for the 
quotient selection logic. A LUT is required for obtaining 
initial approximations of the reciprocal and the quotient 
digit selection logic

It uses multiplication to form divisor multiples

It differs from the regular radix-n divider in terms of the 
number and type of operations used in each iteration and 
the quotient digit selection logic

A high radix makes quotient selection logic more complex 
and impractical to implement

5 Taylor series

q = Dd/Dr and X0 = 1/Dr

q =DdX0
{

1+ (1− DrX0)+ (1− DrX0)
2

+(1− DrX0)
3}

Dd = Dividend and Dr = Divisor
1/Dr = Antidivisor

It is a multiplicative iteration-based algorithm that thus 
requires a large area

The precision depends upon the closeness with the antidi-
visor (reciprocal) estimation

It provides a parallel powering section that computes 
high-order terms faster, with a minimal extension of the 
hardware overhead

A quotient digit selection logic LUT and a three-full-
word-length multiplier give the approximate area require-
ment for algorithmic implementation

6 Newton–Raphson

Q = Dd/Dr = p× (q)−1

f (X) = 1/X − q−1 = 0

Xi+1 = Xi − f (Xi )

f ′(Xi)

Xi+1 = Xi − (1/Xi−q−1)

1/X2
i

  = Xi × (2− q−1 × Xi)

∈i+1 = ∈2
i (q

−1)

p = Dividend and (q)−1 = Antidivisor

The accuracy can be improved by selecting a proper root 
at the beginning

The latency and error during convergence are directly 
dependent on the root selected at the beginning of the 
convergence process, the iteration time is approximately 
equal to the time required for two serial multiplications

A multiplier, a quotient selection LUT, and control logic 
give the approximate area requirement for algorithmic 
implementation

The final quotient is derived by multiplying the approxi-
mated reciprocal and dividend

Shows the error induced due to the inaccuracy of the 
quotient digit prediction or estimation

It requires multiplication and addition or subtraction at 
each iteration, and using 1’s complement induces more 
error

7 Goldschmidt
Dd/Dr = N/D = A/B

xn+1 = xn
(

2− yn
)

= xnrn
yn+1 = yn

(

2− yn
)

= ynrn

It is a convergence-based functional iterative class divider 
algorithm

It multiplies both the dividend and divisor by the antidivi-
sor or reciprocal

It originates from the Taylor-Maclaurin series of 1/(x + 1)

It does not provide a remainder

1’s complement can be used instead of (2 − yn ) to avoid 
carry propagation delays, but this adds a new approxima-
tion error in each iteration

A quotient digit selection logic LUT, a one-full-word-
length multiplier, and a one-full-word-length adder/
subtractor logic give the approximate area requirement for 
algorithmic implementation

8 Variable-latency ******

Its variable execution time thus results in different conver-
sion times for different sets of dividends and divisors

Self-timing, result caching, and quotient digit speculation 
are some techniques used to provide variable latency

8 Variable latency ******
The DEC Alpha 21,164 is one of the best variable-latency 
class algorithm implementation examples, based on the 
concepts of the simple normalizing and nonrestoring 
division algorithm

9 Svoboda algorithm and Svoboda-Tung algorithm

{

mn
(m+1)(n−1) < Dr <

m(n−2)
(n−1)(m−1)

}

{

−m/n− 1 < Rj < m/n− 1
}

Range = {0,±1, . . . . . . .,±m}
Boundry limit = {n/2+ 1 ≤ m ≤ n− 1}
m = Range of SBD and n = Radix

The quotient digit is predicted based on the partial 
remainder without considering the divisor; one or two 
MSBs of the partial remainder are used for generating 
quotient digit selection logic

It can select a quotient digit out of the radix range if an 
overflow occurs due to compensation

It requires prescaled operands and can work on conven-
tional and signed digit ranges

It is also a radix-n based algorithm with signed binary 
digit numbers, making it similar to the SRT algorithm

It is applicable more than radix 4, and Prescaled operands 
are needed; it needs extra multipliers, resulting in more 
hardware overhead

Continued
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Taiga is a RISC-V open-source soft processor. Experimental implementations are performed over the Xilinx 
Virtex UltraScale + VCU118 board (XCVU9P-L2FLGA2104E) using Vivado 2018.3 synthesis. With ascendancy 
over the variable-latency execution unit’s operation in the Taiga soft processor instruction pipeline, all dividers are 
realized with the RISC-V Taiga soft processor. A comparative statistic is derived between the implementations of 
the data-dependent variable-latency Quick-Div dividers and fixed- latency radix-n (n = 2, 4, 8, 16) dividers with 
the RISC-V Taiga soft processor. Quick-Div dividers are unsigned processes, so sign conversion is performed 
before and after conversion; completion is required depending on the instruction operands and types. Therefore, 

Sr. no. Algorithm Equations Important points

10 Smaller dividend

N1 =
∑2n−1

i=0 x2n+i2
2n+i

N2 =
∑2n−1

i=0 xi2
i

Dd = N1 + N2
Dd/Dr = (N1 + N2)/Dr = N1/Dr + N2/Dr

It is the simplest parallel computing algorithm

The basic phenomenon behind this algorithm is to con-
sider division as a fraction

It requires an actual dividend greater than the divisor, i.e., 
a dividend bit count of 4n and divisor bit counts of n

We can represent dividends in terms of fixed partitions 
based on their associated weights as per the dividers’ radix 
values

The area is directly dependent on the number of dividend 
partitions related to the dividers’ radix values

11 Jebelean exact division

Dd = d *Q
Dd = Ddupkn

k + Dk

bk =
(

−n−kDdk

)

modd

bk =
(

−n−k
moddDdk

)

modd

modPower calls and ParallelPrefixSum call = O
(

logn
)

It is applied when complete division is performed on long 
integer operands in digital computation, even after know-
ing that the remainder is zero

It starts from the least significant digits of the operands

Remarkable performance is observed when the radix is a 
prime or power of 2

It takes constant execution time to access a fixed-word-
length LUT

It takes O(log n) execution time, and for short division, 
O(n/ρ + logρ) , where n is the word length of the dividend 
and ρ is the number of processors

It needs synchronization to execute calculations in parallel

Table 1.  Summary of a comparative study on different division algorithm-based dividers.

Table 2.  Comparative analysis of the resource utilization of the proposed USP-Awadhoot algorithm-based 
divider with those of the Handle-C and digit recurrence algorithm-based dividers.

Parameter/result Slice logic LUTs

Clock frequency 
(MHz)

From To

Handel–C 747 721 10,965

Restoring 115 13,716 20,345

Nonrestoring 144 24,175 40,073

Nonrestoring with pipeline 66 37,806 63,558

Proposed USP-Awadhoot divider version V8.9 266 50 285

Table 3.  Comparative analysis of the resource utilization of the proposed USP-Awadhoot algorithm-based 
divider with variable-latency Quick-Div dividers and fixed-latency radix-n dividers.

Name/parameter Slice logic LUTs

Slice 
register flip-
flop Clock frequency (MHz)

Radix-2 1500 1100 375

Radix-4 1520 1200 350

Radix-8 1990 1000 350

Radix-16 2100 1200 300

Quick-Div initial 1600 1000 350

Quick-Div count leading zeros 1600 1150 375

Quick-Div CLZ-2BIT worst-case optimization 1700 1100 300

Proposed USP-Awadhoot divider—8 bits version V8.9 266 146 285

Proposed USP-Awadhoot divider—16 bits version V16.1 622 241 125
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Quick-Div requires an additional three cycles for sign conversion. Table 3 illustrates the comprehensive results of 
the variable-latency Quick-Div dividers and the fixed-latency radix-n (n = 2, 4, 8, 16) dividers with the RISC-V 
Taiga soft processor compared with those of 8/16-bit USP-Awadhoot dividers. This indicates that the variable-
latency Quick-Div dividers and fixed-latency radix-n (n = 2, 4, 8, 16) dividers require 5 to 7 times more chip 
area than the proposed USP-Awadhoot divider; this is represented by the numbers of slice logic LUTs and slice 
register flip-flops used for the implementation. In contrast, the maximum clock frequency is almost double the 
maximum clock frequency of the proposed USP-Awadhoot divider.

In9, Sorokin discussed the implementations of fixed-point dividers based on different algorithms on Xilinx’s 
common FPGA platform. Different divider modules have been compared with Xilinx’s 32-bit IP core-pipelined 
divider. This indicates that a nonrestoring algorithm-based fixed-point divider module is much faster than the 
32-bit Xilinx IP core-pipelined divider. This paper points out that the results are more approximations than 
exact values and demonstrate more practical division operations than digital operations. These approximated 
values can cause trouble in more critical applications, such as biomedical applications, sensor signal processing, 
coordinate computation for an item, etc.9. As we have discussed earlier, even for integer division, we must use 
a fractional divider, which includes a fixed-point or floating-point divider; thus, floating-point implementation 
is critical and complex, making it sometimes impracticable. Out of many theoretical concepts, one practicable 
solution was provided by Xilinx’s IP core-pipelined  divider78. 32-bit input operands produce 32-bit remainders 
in many cases, making them impossible to implement in applications where high calculation precision is needed. 
Another implementation-focused problem in this article concerns the chip area requirements of this solution. The 
fixed-point algorithm follows the basic principles of the simple paper-and-pencil division algorithm. A fixed-bit-
length quotient is generated in every iteration of a fixed-point divider, similar to digit recurrence dividers. Much 
attention is given to improving the addition and multiplication operations, as speeding up addition operations 
reduces the computational time required in the actual division process. Replacing the divisor with its inverse 
value can allow the use of multiplication by an antidivider to obtain division results.

Speeding up dividers has been achieved by developing fast adders, carry look-ahead adders, matrix- or array-
type adders, etc. Xilinx’s Ip core divider has certain properties, such as the availability of drop-in modules for 

Table 4.  Comparative analysis of the resource utilization of the proposed USP-Awadhoot algorithm-based 
divider with that of the Xilinx IP core-pipelined divider.

Name/parameter Slice logic LUTs
Slice register 
flip-flops Look-up tables Frequency (MHz)

IP core-pipelined divider 8-bit 2247 4020 1400 204.3

IP core-pipelined divider 16-bit 2742 4904 1680 201.6

IP core-pipelined divider 32-bit 3843 6864 2240 193.1

Proposed USP-Awadhoot divider—8 bits version V8.9 266 146 0 285

Proposed USP-Awadhoot divider—16 bits version V16.1 622 241 0 125

Figure 10.  Comparative analysis regarding the hardware resource utilization of the proposed USP-Awadhoot 
algorithm-based divider and radix-n-based dividers.
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Virtex, Virtex-II, Virtex-II Pro, Virtex-4, Spartan-3, etc. The dividend can be up to 32 bits and has a fully pipe-
lined structure. Table 4 compares 8/16/32-bit Xilinx IP core-pipelined dividers and the proposed USP-Awadhoot 
divider. This indicates that Xilinx’s IP core-pipelined dividers are bulkier, with three to five times more chip area, 
and the maximum clock frequency is almost the same as that of the proposed USP-Awadhoot dividers.

Many nonrestoring algorithms have been designed and implemented, but the SRT algorithm is the most 
implemented approach. The basic SRT algorithm was implemented  in5,9,12,18,20,25,42,51,62,68,76–83 for different appli-
cations utilizing different aspects of the algorithm. Figure 10 illustrates the comparative analysis regarding the 
hardware resource utilization of the USP-Awadhoot division algorithm-based divider and other SRT-based 
radix-n dividers. On average, the proposed USP-Awadhoot algorithm-based divider requires 266 slice logic 
LUTs, 146 slice register flip-flops with a power dissipation estimation of 3.366 watts. In contrast, the radix-2 to 
radix-16 divider implementations require 1500 to 2100 slice logic LUTs and 1100 to 1200 slice register flip-flops5. 
This indicates that the concept of different prescaling factors for the input operands used in the proposed USP-
Awadhoot divider helps reduce its chip area requirements.

From the commercial and noncommercial implementation points of view, two classes of dividers are the main 
focus. One is the famous digit recurrence class, and the other is the functional iteration class of dividers.  In6, 
Tatas et al. discussed different concepts involved in partitioning the main dividend into segments to represent 
an actual division of a numerator by a denominator as a series of smaller divisions with necessary requirement 
for numerator to meet (Numerator N= N1 + N2 +...). This concept of a series of divisions showcases a smaller-
dividend division algorithm, where we must perform shifting, partial division, and accumulation operations. 
All intermediate operations are performed by considering the weights of the dividend bits.

This algorithm can be implemented in both series and parallel  architecture8, but a higher-radix system is 
critical and difficult to implement. The partitioned numerator’s partial division process can be performed seri-
ally or in parallel due to the trend between cost and time. This algorithm is implemented with a length of N, D 
32-bit dividends and a parallel-array divider, a sequential divider with two partitions, or a parallel divider with 
two partitions in the partial division stage. These implementations require 4316, 2136, and 3050 slices on a Xilinx 
Virtex-E 1000. From the above data, it is clear that the sequential implementation of the proposed algorithm 
is more area-efficient and moderate in terms of the time delay. If any corrective stage is required in a sequen-
tial divider, this will degrade the efficiency of serial dividers. In contrast, parallel implementation produces a 
slight reduction in the delay but insufficient decreases in the area and latency. The array implementation of this 
algorithm is inefficient as it increases the chip area by four times based on doubling the word length. Whereas 
the proposed USP-Awadhoot algorithm-based divider does not partition the given Numerator (Dividend) into 
smaller dividends like mentioned above (Numerator N = N1 + N2 +...). The USP-Awadhoot algorithm-based 
divider converts the Numerator (Dividend) into group dividends, which are not required to add up to the main 
Dividend value. The proposed USP-Awadhoot algorithm-based divider requires 266 slice logic LUTs, 146 slice 
register flip-flops with a power dissipation estimation of 3.366 watts indicating better implementation area 
performance.
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Figure 11.  Comparative analysis regarding the hardware resource utilization of the proposed USP-Awadhoot 
algorithm-based divider and different functional dividers.
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In27, Kasim et al. discussed a divider block with precomputed values stored in ROM in terms of a LUT. This 
divider operation is similar to the dividers based on functional iteration algorithms such as Goldschmidt’s algo-
rithm and Newton’s  method27. The result of this divider is also an approximate value, unlike those of iterative 
subtraction class-based dividers.  In38, Liu et al. discussed an algorithm that utilizes prescaling, series expansion, 
and Taylor series expansion together; hence, it is sometimes called a phase stretch transform (PST) algorithm. At 
the start, both operands are prescaled up to the suitable starting level. Operand prescaling is performed based on 
a scaling factor E0, stored in a LUT. In the second stage of the PST algorithm, series expansion is applied to the 
scaled operands to obtain an accurate antidivisor approximation. To calculate the partial quotient and the next 
remainder in the iteration stage, it utilizes 0-order Taylor series expansion. The iterative process must continue 
until a quotient is obtained with the required precision range of error. Three Taylor expansion iterations and a 
LUTs are needed to finish one operation.

Figure 11 illustrates a comparative analysis regarding the hardware resource utilization of the proposed USP-
Awadhoot algorithm-based divider implementation and that of different functional iteration divider implemen-
tations, as discussed above. As per the performance comparison between the proposed USP-Awadhoot divider 
and the Mega Wizard IP core, DSP, and non-DSP structures of the divider algorithm, the resource utilization 
of the proposed USP-Awadhoot algorithm-based divider includes 266 slice logic LUTs, 146 slice register flip-
flops with a power dissipation estimation of 3.366 watts; whereas the PST algorithm-based divider requires 213 
slice logic LUTs, 768 bytes of memory, and 28  DSP84, the PST algorithm-based divider without DSP needs 1437 
slice logic LUTs and 768 bytes of memory. The precomputed divider and Goldschmidt’s algorithm-based divider 
require 647 and 816 slice logic LUTs, respectively. The divider algorithm’s Mega Wizard IP core, DSP, and non-
DSP structures significantly delay the results, as their maximum clock frequencies are limited to 50 to 73 MHz. 
This framework does not save sufficient area relative to the proposed USP-Awadhoot divider. Additionally, the 
precomputed values introduce rounding errors in the calculation process. The proposed USP-Awadhoot divider 
displays better implementation area requirements and maximum clock frequency performance.

Table 5 illustrates a comparative analysis regarding the resource utilization of the proposed USP-Awadhoot 
division algorithm-based divider and the Xilinx LogiCORE IP Divider Generator V4.062. The proposed USP-
Awadhoot algorithm-based divider requires 266 slice logic LUTs, 146 slice register flip-flops, and a total of 37 
bounded I/o’s for providing input operands and reading the quotient and remainder outputs. The operating 
speed of the proposed divider is given in terms of its operating frequency, which is equal to 285 MHz, with a 
power dissipation estimation of 3.366 watts. The implementation statistics are derived for the proposed divider 
with a dividend width of eight bits, a divisor width of eight bits, a quotient width of eight bits, a remainder width 
of eight bits, and Error and Valid_O/P signals. The Valid_O/P signal indicates the computation’s completion, 
whereas the Error signal indicates an invalid condition caused by a divisor value of zero, i.e., the divide-by-zero 
condition. The resource utilization analysis of the proposed divider implementation is conducted with Xilinx’s 
LogiCORE IP Divider Generator V4.0. Xilinx is the leading candidate in the IC industry and has a wide range 
of Intellectual property (IPs). We consider Virtex 6 and 7, Kintex 7, and the Spartan 6 FPGA from Xilinx during 
the comparison. The number of slice register flip-flops used is constant at 288 for each FPGA IC, whereas the 
number of slice logic LUTs used ranges from 197 to 205 and the number of input LUT-FF pairs used slightly 
varies from 223 to 215 for Virtex 7, Kintex 7, Virtex 6 and Spartan 6. The document does not mention the power 
consumption of the LogiCORE IP Divider Generator V4.0, whereas the proposed divider based on the USP-
Awadhoot division algorithm simulation estimates 3.366 Watts.

The proposed USP-Awadhoot algorithm-based divider implementation utilizes 64% less FPGA hardware 
resources than the Handel-C built-in divider but, it requires 57% and 75% more FPGA hardware resources 
than simple restoring and nonrestoring dividers. The proposed divider’s working frequency based on the USP-
Awadhoot algorithm implementation versions is approximatly 50% greater than other performances presented 
 in1, indicating the FPGA resource utilization improvement achieved by the proposed USP-Awadhoot algorithm-
based divider implementation. Based on the statistics presented  in9, the proposed USP-Awadhoot algorithm-
based divider implementation shows improvements in its FPGA resource utilization in terms of 86% to 88% 
improvements in the number of required slice logic LUTs (depending on the use of 8-bit or 16-bit operands) 
and 95% to 96% improvements in the number of slice register flip-flops required (depending on the use of 8-bit 
or 16-bit operands). Based on the statistics presented  in5, the proposed USP-Awadhoot algorithm-based 8-bit 
divider implementation shows improvement in slice logic LUTs and slice register flip-flops requirement as the 

Table 5.  Comparative analysis regarding the resource utilization of the proposed USP-Awadhoot algorithm-
based divider and Xilinx’s LogiCORE IP divider generator V4.0.

Parameter/result Case 1 Case 2 Case 3 Case 4 Proposed divider version V8.9

Dividend width 8 8 8 8 8

Divisor width 8 8 8 8 8

Remainder and quotient width 8 8 8 8 8

LUT6-FF pairs 223 218 217 215 000

Slice logic LUTs 203 205 203 197 266

Slice register flip-flops 288 288 288 288 146

IC name Virtex7 Kintex7 Virtex6 Spartan6 Xilinx Zynq XC7Z010
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proposed divider implementation do not require any six input LUT-FF pairs. As compared to the variable-latency 
Quick-Div dividers and fixed-latency radix-n dividers but the results exhibit a comparatively lower working 
frequency of 285 MHz for the proposed divider. The power required for variable-latency Quick-Div dividers 
and fixed latency radix-n dividers is not mentioned, but the proposed divider simulation estimates 3.366 Watts.

As per the comparative statistics presented  in27, the proposed USP-Awadhoot algorithm-based divider imple-
mentation exhibits an FPGA resource utilization improvement in terms of a 58% improvement in the number 
of required slice logic LUTs compared to that of the precomputed divider, a 67% improvement in the number of 
required slice logic LUTs compared to that of Goldschmidt’s algorithm-based divider, a 76% improvement in the 
number of required slice logic LUTs compared to that of the divider developed from Quartus Mega functions. 
The proposed divider does not induce any errors in the computed results and simulations estimated required 
power of 3.366 watts. As per the statistics presented  in38 It achieves a 82% improvement over the IP core from 
MegaWizard’s operating frequency as it is upto 50.16 MHz and a 75% improvement over the PST-DSP and non-
DSP dividers as it is upto 73 MHz. The proposed divider requires no extended memory or DSP compared to the 
IP core from the MegaWizard and the PST divider.

Conclusion
The evaluation of addition and multiplication implementations typically falls into the latency range from a 
couple of clock cycles to less than ten clock cycles, while the performance evaluation of division operation 
implementations typically falls into the latency range from tens to hundreds of clock cycles and requires a high 
implementation area. The primary focus of the problem statement is to design and implement a reduced-area 
divider circuit block, providing straightforward dialectics between divisors, dividends, and quotients to avoid 
round-off errors. A design is developed by simulating the proposed technique and cross-verified by performing 
regular sequential and pseudorandom sequential analyses of the implementation against standard result tables 
generated by simulations and the theoretical study of the proposed idea. The main contributions highlighted in 
the article are as follows.

• Significant efforts were taken toward developing the state-of-the-art novel USP-Awadhoot algorithm-based 
divider circuit block implementation.

• The proposed USP-Awadhoot algorithm-based divider circuit block implementation substantially reduces 
the required implementation resources, resulting in better area efficiency.

• Successful implementation of a dynamic separate scaling operation/factor for input operands to reduce the 
conversion complexity.

• A novel divisor-dividend relationship is demonstrated with the proposed USP-Awadhoot algorithm-based 
divider circuit block implementation to derive dividend groups, modified divisors ( MDr ), and FD terms. 
This proves that the hypothesis of utilizing different scaling operation/factors for dividends and divisors can 
improve the area requirements by reducing resource utilization.

• A comparatively straightforward group quotient ( GQn ) value selection logic is developed based on the unique 
relations derived between the dividend groups, modified divisors ( MDr ), and FD terms of the proposed 
technique or algorithm of the divider circuit block implementation; this is termed the Awadhoot matrix.

• A comparatively straightforward process for selecting the final quotient based on the group quotient ( GQn ), 
partial quotient ( PQn ), and additional quotient ( AQ ) values is developed.

The second-most significant contribution is the design and verification of complex division via the Baudhayan-
Pythagoras triplet method using the novel state-of-the-art USP-Awadhoot divider circuit block implementation.

Future work road map

• As the current implementation verifies the successful implementation of the proposed divider on different 
FPGAs, the next target is to design a dedicated integrated-circuit IP. The first step is to design a physical 
layout, starting from the floor plan, which determines which circuit component is placed in which area and 
extracts the parasitic values to prepare the final layout for fabrication.

• Another future work target is to improve the working frequency and conversion time. To do so, we must fuse 
some intermediate functional blocks such as separate addition, and multiplication can be performed in the 
fused mode such as fused-multiply-add (FMA). We need to test the implementation and verify the resource 
utilization of the proposed divider to validate these changes.

• The current implementation validates its successful implementation using combinational circuits. Thus, 
reducing the area and hardware resource utilization is also a future target. Some processes involved in the 
proposed divider can be represented as different hardware architectures, such as pipelined architectures, 
parallel architectures, array structures, and cascade structures. Thus, it is necessary to validate the usage of 
different architectures and compare their resource utilization levels to prove the usability of the proposed 
divider in different working environments with different requirements. Detailed implementation results 
will be utilized to choose the most suitable architecture implementation of the proposed divider in various 
applications based on their time, area, and power requirements.

• We must verify the performance of the proposed divider in various applications, such as image processing, 
particle detection, and signal processing. Complex number arithmetic is critical and requires a careful design 
and more hardware resources. It is also very helpful in various essential engineering applications, such as 
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acoustic pulse reflectometry, astronomy, nonlinear radio frequency measurements, control theory applica-
tions such as finding root loci, Nyquist plots, and microwave system frequency responses.

Methods
Process of FPGA-based circuit integration. The circuit constructed based on the proposed USP-Awad-
hoot division algorithm is preliminarily implemented on an FPGA, and the computational results are studied 
and analyzed with the help of FPGA design simulation suites. We utilize the Xilinx Vivado design suite and 
the Altera Quartus II design suite for the proposed design. Before utilizing the design suites, we subdivide the 
complete computation into different FSM states. VHDL is utilized for the implementation, making it easier in 
design and performance simulations to analyze the resulting behavior. The tests and implementations of the 
circuits using FPGAs are parts of the design process for application-specific integrated circuit (ASIC) design. 
The manufacturing of the USP-Awadhoot division algorithm implemented in an ASIC is possible. We develop 
the proposed circuit implementation with the algorithm’s established flow, which is tested in behavioral and 
implementation timing simulations to verify its performance and results. The post-simulation circuit is tested in 
the real world by implementing it in different FPGAs, especially those from Altera and Xilinx.

Data availability
All data generated or analyzed during this study are included in this published article [and its supplementary 
information files].
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