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Left ventricular hypertrophy 
detection using 
electrocardiographic signal
Cheng‑Wei Liu 1,11, Fu‑Hsing Wu 2,11, Yu‑Lun Hu 3, Ren‑Hao Pan 4,5,6, Chuen‑Horng Lin 7, 
Yung‑Fu Chen 8, Guo‑Shiang Tseng 9, Yung‑Kuan Chan 3* & Ching‑Lin Wang 10*

Left ventricular hypertrophy (LVH) indicates subclinical organ damage, associating with the incidence 
of cardiovascular diseases. From the medical perspective, electrocardiogram (ECG) is a low‑cost, non‑
invasive, and easily reproducible tool that is often used as a preliminary diagnosis for the detection 
of heart disease. Nowadays, there are many criteria for assessing LVH by ECG. These criteria usually 
include that voltage combination of RS peaks in multi‑lead ECG must be greater than one or more 
thresholds for diagnosis. We developed a system for detecting LVH using ECG signals by two steps: 
firstly, the R‑peak and S‑valley amplitudes of the 12‑lead ECG were extracted to automatically obtain 
a total of 24 features and ECG beats of each case (LVH or non‑LVH) were segmented; secondly, a back 
propagation neural network (BPN) was trained using a dataset with these features. Echocardiography 
(ECHO) was used as the gold standard for diagnosing LVH. The number of LVH cases (of a Taiwanese 
population) identified was 173. As each ECG sequence generally included 8 to 13 cycles (heartbeats) 
due to differences in heart rate, etc., we identified 1466 ECG cycles of LVH patients after beat 
segmentation. Results showed that our BPN model for detecting LVH reached the testing accuracy, 
precision, sensitivity, and specificity of 0.961, 0.958, 0.966 and 0.956, respectively. Detection 
performances of our BPN model, on the whole, outperform 7 methods using ECG criteria and many 
ECG‑based artificial intelligence (AI) models reported previously for detecting LVH.

Left ventricular hypertrophy (LVH) is an early stage of structural heart disease associated with the incidence 
of cardiovascular diseases even  mortality1. LVH contributes to subclinical end organ damage in hypertensive 
patients and is associated with poor prognosis of cardiovascular  diseases1–4. LVH is currently defined using vari-
ous methods, including electrocardiography (ECG), echocardiography (ECHO) and cardiac magnetic resonance 
imaging (cMRI)5. Detecting LVH using ECG is time efficient and reproducible. The diagnosis of LVH by ECG is 
made according to various  criteria6, such as Cornell and Sokolow–Lyon criteria, which check the summations 
of voltage amplitudes of S and R waves representing the left ventricle  depolarization7,8. Transthoracic echocar-
diography (TTE) directly measures the wall thicknesses of the left ventricular septum and posterior wall, but 
the measurement accuracy is dependent on physicians’ experiences of performing  TTE5. The ECG examination 
features simple, reproducible and rapid, which is suitable to screen LVH in the general population, especially in 
largely healthy  populations9,10.

Although ECG-based new criteria or new studies using existing criteria for detecting LVH have been proposed 
or reported in recent years, the overall sensitivity and precision are still  disappointing11–19. These criteria mainly 
take the combination of multi-lead peak and valley amplitudes of R and S waves, associated with ventricular 
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depolarization, as the threshold for diagnosing LVH. Artificial intelligence (AI) or machine learning models 
for detection LVH using the ECG with or without extra features (including demographics, anthropometric 
parameters, etc.) have also been proposed in recent years, however, the overall detection performances still need 
to be  improved20–27.

Therefore, this study aims to develop a system for identifying LVH using our suggested ECG signal processing 
method and machine learning model to improve the LVH detection performances using ECG.

Materials and methods
Data. Study cohort. We retrospectively collected ECG and TTE data from a cohort registered in the divi-
sion of Cardiology, Tri-service General Hospital Songshan Branch, Taipei, Taiwan between Jan. 1, 2016 and 
Dec. 31, 2017. Apparently healthy individuals with abnormal ECG findings at a health examination and who 
also underwent TTE were  enrolled9,10. The time interval between the ECG and echocardiogram examinations in 
each case included in this study was within one to three months and the echocardiogram examination followed 
the ECG examination. The cohort consisted of 952 individuals, 856 men and 96 women, including 173 LVH 
cases (18%) and 779 non-LVH cases (82%). The dataset of this study was collected in the Tri-service General 
Hospital Songshan Branch which is a military hospital in Taipei, Taiwan. Many patients of this hospital are 
the military personnel and most military personnel are male in Taiwan. This explains the gender difference in 
this study. All methods were performed in accordance with the relevant guidelines and regulations. The ECG 
measurement was performed with the ECG machine, Philips Page Writer TC30, following recommendations of 
the American Heart Association for the standardization and interpretation of ECG. The TTE measurement was 
performed with Philips IE33 echocardiographic equipment according to contemporary  guidelines28,29. The study 
was approved by the Institutional Review Board at Tri-Service General Hospital (No. TSGH 2-106-05-148), Tai-
pei, Taiwan. This board judged that the informed consent was not necessary regarding the very low risk of the 
present study design. Our study was previously registered at ClinicalTrials.gov with the identification number 
 NCT0347395130. Furthermore, data were deidentified and meet privacy rules of the health insurance portability 
and accountability act (HIPAA).

LVH definition. The standard LVH can be obtained from echocardiography by calculating the left ventricle 
mass index (LVMI) using the Devereux formula. And LVH meets LVMI greater than 115 g/m2 for a man and 
95 g/m2 for a  woman19,28. The definition was also used in our previous  study31.

System architecture. The system architecture for detecting LVH is illustrated in Fig. 1. Three different 
machine learning models for detecting LVH with proposed signal processing method (for 12-lead ECG data) 
were implemented and comprehensively compared to 7 kinds of different criteria. The machine learning models 
designed in this study adopted 24 features which consisted of R peak and S valley amplitudes automatically 
detected using the proposed signal processing procedures from 12-lead ECG raw data. Thereby, we hope to 
improve the overall predictive performance for detecting LVH based on ECG.

LVH criteria. Different ECG-based criteria have been proposed for assessing LVH. Seven kinds of ECG-
based criteria, listed in Table 1, were adopted in this study for comparing their performances to those of machine 
learning models for detecting LVH.

ECG signal processing. Detection of R peaks and S valleys. In order to establish a machine-learning 
model for the LVH detection system, the first step was to ensure that all the R peaks and S valleys of an ECG se-
quence could be extracted automatically. In wave detection methods of ECG signals, the R peak is often detected 
first, and then the relative positions and characteristics of other waves are used to detect other wave peaks and 
 valleys37–41. For example, an S valley is usually the first lowest voltage point following a R peak. In this study, a 
Philips ECG machine was used to measure the ECG signal. Its sampling frequency was 500 Hz and sampling 
period was 11 s, hence 5500 sampling points of each lead were acquired for each case. MATLAB (Mathwork Inc.) 
was used to read and process the ECG signals.

Let X = [x1, x2, x3,…, x5500] be the raw data of each ECG sequence; Ri is the peak (highest point) of the ith 
R wave in X, Si is the valley (lowest point) of the ith S wave in X, mpa is the minimum peak amplitude of all R 
waves, and miR is the minimum interval between two adjacent R peaks. Our algorithm for detecting R peaks 
and S valleys is summarized as follows.

1. Set mpa = 0.025 mV
2. Set miR = 300 (This is the number of points and stands for 0.6 s)
3. Search for R peaks from the starting point x1 of ECG data sequence by the following conditions:

(a) xj > mpa
(b) (xj-1 < xj) and (xj+1 < xj)

If point xj meets conditions (a) and (b), then it is set as Ri

4. Search for the next peak Ri+1 from potential points with index ≥ (j + miR) and meet two criteria (a) and (b) 
described in step 3

5. Repeat step 4 until the data index (j + miR) > the end index (= 5500 here)
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Figure 1.  The system architecture of LVH detection.

Table 1.  Seven methods, ECG-based criteria, for assessing LVH.

Criterion name ECG criteria for assessing LVH

Cornell32 SV3 + RaVL > 2.8 mV (man)
SV3 + RaVL > 2.0 mV (woman)

Sokolow7 SV1 + max (RV5 or RV6) ≥ 3.5 mV

Peguero11 SD (deepest S wave in any lead) + SV4 ≥ 2.8 mV (man)
SD (deepest S wave in any lead) + SV4 ≥ 2.3 mV (woman)

Framingham33 RaVL > 1.1 mV, RV4 or RV5 or RV6 > 2.5 mV, SV1 or SV2 or SV3 > 2.5 mV, max (SV1 or SV2) + max (RV5 or 
RV6) > 3.5 mV, or RI + SIII > 2.5 mV

Gubner34 RI + SIII ≥ 2.2 mV

Sum of 12  leads35 Sum of max (R, S) amplitude in each of the 12 lead ≥ 17.9 mV

Lewis36 (RI + SIII) − (RIII + SI) > 1.7 mV
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6. Search for the minimum amplitude within 0.12 s forward from each Ri and set the point as Si
7. Search for the minimum amplitude m backward within 0.25 s from each Ri. If m < Si, then update Si as m, 

and search for the maximum amplitude within 0.12 forward from the updated Si and update that point as Ri
8. Repeat step 7 for each R peak preliminarily detected in step 5

The above steps are interpreted as follows. First, the function of setting the minimum peak amplitude, mpa, 
is to limit the minimum amplitude of an R wave peak to be captured to filter out the peaks with too small ampli-
tudes in the ECG signal. And mpa = 0.025 mV was set in this study. Secondly, the heart rate of a human is limited 
(normally within 60–100 ppm, i.e. 1–0.6 s per heart beat). the minimum interval between two adjacent R peaks, 
miR, is adopted to limit the time interval of two adjacent R peaks to be detected sequentially and to filter out the 
next R peak too close to its neighbor. Furthermore, the R peak is often a local maximum and conditions defined 
by mpa and miR (steps 3–5) were criteria adopted to preliminarily detect R peaks in this study.

Moreover, the S valley usually appears within 0.12 s following a R  peak42, and this characteristic can be applied 
in detecting S valley after detecting each R peak (step 6). However, in the ECG sometimes the peak amplitude of 
T wave is greater than the peak amplitude of R wave, which will result in the incorrect detection of some T peaks 
as R peaks. In order to avoid this situation, the algorithm will check that if there is a point with lower amplitude 
than this preliminarily detected S valley within 0.25 s period before each preliminarily detected R peak. If there 
is, then the point will replace the preliminarily detected S valley. After confirming the S valley, the R peak will 
be searched for the point with maximum amplitude within 0.12 s interval before this S valley. Then the prelimi-
narily detected R peak will be replaced by this point (step 7). This step will be repeated for all R peaks detected 
preliminarily (step 8). Then the algorithm for automatically detecting R peaks and S valleys will be finished.

Determination of R peak and S valley amplitudes. In general, there were 8–13 ECG cycles per ECG signal 
sequence (which resulted from differences in heart rate and that some artifacts or small amplitude cycles might 
occur in some leads during ECG measurement) retrieved in this study after the detection of R peaks and S 
valleys. Since the first and last cycles might be incomplete or noisy, they were removed first. Then the median 
amplitudes of detected R peaks and S valleys from the rest ECG cycles were obtained as the R amplitude and S 
amplitude for each lead. This processing may make the automatically computed R and S amplitudes closer to the 
actual values measured manually by the physician.

ECG beat segmentation. Only ECG data of 173 LVH cases existed in the original dataset, which were few 
for designing a machine-learning model. Therefore, the beat segmentation method, Pan-Tompkins technique 
proposed  in43, was performed in this study to increase the ECG data amount to improve the detection perfor-
mances. Detected R peaks were used as distinctive points in the beat segmentation method. Similarly, the first 
and last cycles were both excluded for each ECG sequence to avoid increasing the training and testing errors of 
machine-learning model for LVH detection described in the following section. After ECG beat segmentation, we 
obtained 8.47-fold beats in average in this study.

Machine learning models for LVH detection. Three machine-learning algorithms, decision tree, 
k-means, and back propagation neural network, were implemented with Python and used for LVH detection in 
this study.

Decision tree. A decision tree (DT), a supervised machine-learning method, is suitable for classification and 
regression applications of data  science44 and features the intuitive result and short execution time. Compared 
with other machine-learning methods, each decision-making stage of the decision tree is very clear and easily 
to be understood.

In order to prevent endless growth of the decision tree during classification and result in overfitting, the 
depth of the decision tree is limited within 1–25. The tree with the highest accuracy is selected as the desired 
model. The k-fold cross  validation45,46 is often used to train a machine learning model and validate the predic-
tive performance in the phase of model training. In this study, tenfold cross validation was used to evaluate the 
model accuracy of each decision tree with a certain depth. The Entropy, shown in Eq. (1), is used to assess the 
performance of each classification node of the decision tree. In a binary classification problem, p is the ratio of 
positive cases in a node and q is the ratio of negative cases in the same node. When all the cases classified to a 
node are exactly the same type, then the Entropy = 0. It means an ideal classification. However, if a half of the 
cases classified to a node are positive and the other half are negative, then the Entropy = 1. It means the most 
non-ideal classification.

K-means. The k-means algorithm, which is quite often used for  clustering47, can automatically determine each 
data point should belong to which category by continuously calculating the distance between two data points. 
The k-means algorithm features the simple concept and high computational efficiency (even used for clustering a 
large amount of data). The k value in the algorithm is preset. Initial group centers in the k-means algorithm often 
have a significant impact on the classification results and the k-means++  algorithm48, a modified k-means algo-
rithm which is based on maximizing the distance between the initial group centers, was adopted in this study.

(1)Entropy = p · log2p− q · log2q
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Back propagation neural network. The back propagation neural network (BPN) is one of methods developed to 
imitate biological neural  networks49. The structure of BPN, illustrated in Fig. 2, is a feedforward neural network 
with multilayer structure and trained by error back propagation  algorithm50. Recently, BPN still remains one of 
the popular machine learning methods or an important base for different AI applications, including predict-
ing or classifying many health and medical  events50–55, such as BPN associated models for predicting medical 
expenses and all-cause risk of 30-day readmission, detecting of COVID-19 disease and ischemic stroke, diag-
nosing hypertrophic cardiomyopathy and hypertensive heart disease, classifying arrythmia disease (with ECG 
signals), etc.

A neural network can also be regarded as a nonlinear statistical technique with a great learning ability for 
creating association between input nodes and output nodes of a certain application. The basic architecture of the 
BPN consists of three parts, namely, the input layer, hidden layer and output layer. The input layer of our BPN 
model adopted 24 nodes which corresponds to 24 features extracted automatically by ECG signal processing 
method with 3 procedures (described in section "ECG signal processing" and illustrated in Fig. 1) implemented 
using the MATLAB program from 12-lead ECG data. These 24 features were amplitudes of R peaks and S valleys 
of 12-lead ECG signals and were input characteristics of 3 LVH-detection models designed in this study. There 
is still no good design rule for determining the number of hidden layers and number of nodes of each hidden 
layer of a neural network for obtaining the best predictive  performances45,46. After performing a lot of experi-
ments and examining their detection performances, we adopted 1 hidden layer with 26 nodes for the hidden 
layer structure of BPN model. And the output layer indicates with or without LVH.

The z-score  normalization56 was adopted before model training, which normalized the mean and standard 
deviation of data for each feature to be 0 and 1, respectively. Tenfold cross  validation46 and epoch = 400 were 
adopt for the BPN model training.

F‑statistic for feature importance evaluation. Many features obtained from 12-lead ECG signals can 
be included in model design for detecting LVH. Moreover, the feature importance between LVH and non-LVH 
groups can be obtained and important features can be ranked by using F-statistic values of all  features57,58. The 
F-statistic was used to evaluate the importance of all features adopted in creating the BPN model for LVH detec-
tion in this study and it is defined as Eq. (2):

where n is the number of samples (each sample with p features), G is the number of total groups, ng is the number 
of samples in g-th group, f g is the mean of g-th group, f  is the mean of all samples, and f hg  is the feature value 
of h-th sample in g-th group. The between-group and within-group variances are included in the numerator 
and denominator of Eq. (2), respectively. The large F-statistic value of a feature indicate a significant difference 
between the LVH and non-LVH groups.

(2)F =

∑G
g=1

ng (f g − f )2/(G − 1)
∑G

g=1

∑ng
h=1

(f hg − f g )
2/(n− G)

BPN model

… …

Input 
layer

Hidden
layer

Output
layer

Prediction
result

Features
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after
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signal
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Figure 2.  The structure of back propagation neural network (BPN).
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Experimental results
Detection validation of R‑peaks and S‑valleys. In order to verify the effect of the algorithm on detect-
ing R peaks and S valleys (described in section "ECG signal processing"), mean-square errors (MSEs) and Pear-
son correlation coefficients between the detected and actual amplitudes of R peaks and S valleys in each sequence 
of 12-lead ECG signals of randomly selected 30 individuals were calculated and listed in Table 2. It shows the 
great effect (low MSEs and high correlation coefficients) of the algorithm on detecting R peaks and S valleys.

Performances of ECG criteria for assessing LVH. Performances of 7 kinds of different ECG criteria 
for assessing LVH, described in section "LVH criteria", performed in this study are listed in Table 3. It can be 
seen that the accuracy of all criteria was within 0.50–0.62 and was not accurate enough in diagnosing LVH. The 
precision and specificity of Lewis criterion were both excellent, however, the sensitivity and accuracy of Lewis 
criterion were both very low. A similar phenomenon was observed in the performance of Cornell criteria.

LVH detection performances of machine learning models. In this study, two datasets were sepa-
rately used to design the machine learning models for detecting LVH. One dataset included 12-lead ECG data 
of 173 LVH and 173 non LVH cases without ECG beat segmentation (section "ECG beat segmentation") and the 
other dataset included 1466 LVH and 1466 non-LVH data obtained by performing the ECG beat segmentation 

Table 2.  MSEs and correlation coefficients between detected and actual amplitudes of R peaks and S valleys in 
each sequence of 12-lead ECG signals of 30 individuals.

Lead MSE  (10−8  V2) Correlation coefficient

SII 0.00112 0.991

RaVR 0.00163 0.904

SIII 0.00172 0.977

SaVF 0.00213 0.989

RV3 0.00260 0.997

RI 0.00267 0.988

SI 0.00308 0.965

RaVL 0.00390 0.966

RV6 0.00409 0.995

RV2 0.00515 0.995

RII 0.00520 0.994

SaVL 0.00537 0.986

RV5 0.00548 0.997

RV4 0.00553 0.995

SV5 0.00584 0.975

SV6 0.00598 0.962

RaVF 0.00608 0.992

RV1 0.00673 0.989

RIII 0.00929 0.988

SV4 0.01158 0.947

SV3 0.02237 0.965

SV2 0.03751 0.975

SaVR 0.04108 0.945

SV1 0.05410 0.957

Table 3.  Performances of 7 methods with different ECG criteria for assessing LVH. The bold and underlined 
values indicate the maximum and minimum values.

Criterion name Accuracy Precision Sensitivity Specificity

Cornell 0.54 0.88 0.09 0.99

Sokolow 0.57 0.69 0.26 0.88

Peguero 0.57 0.60 0.44 0.71

Framingham 0.62 0.62 0.66 0.59

Gubner 0.50 0.67 0.01 0.99

Sum of 12 leads 0.62 0.65 0.53 0.71

Lewis 0.52 1.00 0.03 1.00
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from 173 LVH cases and 173 non-LVH cases. The case ratio of training data to testing data was 7:3. Detection 
performances of 3 models in detecting LVH are shown in Table 4.

The corresponding detection performances (accuracy, precision, sensitivity and specificity) of three models 
were all improved after adopting ECG beat segmentation, except for the specificity of k-means model. The detec-
tion performances of BPN model (accuracy = 0.961, precision = 0.958, sensitivity = 0.966 and specificity = 0.956, 
respectively) are the highest among these 3 models with ECG beat segmentation.

The growth situation of our decision tree model, Fig. 3, with ECG beat segmentation shows the readability of 
a decision tree model for LVH detection as well as the similarity between a decision tree model and the existing 
ECG criteria for LVH detection. Four-lead signals, adopted in the seven nodes of the top three layers of the deci-
sion tree model, are also adopted in 6 of 7 ECG criteria listed in Table 1. These 4-lead signals are RI (also adopted 
in criteria of Framingham, Gubner and Lewis), RV4 (also adopted in Framingham criteria), RV5 (also adopted in 
criteria of Sokolow–Lyon and Framingham) and RIII (also adopted in Lewis criterion). Of course, Peguero and 
sum of 12 leads (two of the 7 criteria listed in Table 1 for assessing LVH) consider all of the 12-lead ECG signals.

Feature importance. All of the 24 features, amplitudes of R peaks and S valleys, obtained from the output 
of ECG signal processing method (section "ECG signal processing") were adopted to design machine learning 
models in the current study. The importance of each feature was evaluated using the F-statistic57,58, expressed 
in Eq. (2), and the calculated F-statistic values of all features were ranked in Table 5. Five of the top six features 
(except for RaVF) with the highest F-statistic values are also features used by at least one of criterion methods 
listed in Table 1 (Here, we exclude the method of sum of 12 leads, because it considers all of the 24 features 
obtained from 12-lead ECG signals).

According to the F-statistics of features, the feature with the lowest F-statistic value was excluded sequentially 
in the training and testing phases for a BPN model. We obtained the accuracy of redesigned BPN model versus 
adopted number of features as illustrated in Fig. 4. When the number of features was down to seven, the accuracy 
decreased less than 10%. This indicated that the top seven features listed in Table 5 were most related to LVH.

Table 4.  LVH detection performances of machine learning models. The bold and underlined values indicate 
the maximum and minimum values, respectively, of each column with ECG beat segmentation.

Models Accuracy Precision Sensitivity Specificity

Without ECG beat segmentation

 Decision Tree 0.74 0.85 0.74 0.85

 BPN 0.73 0.75 0.72 0.73

 K-means 0.51 0.51 0.46 0.56

With ECG beat segmentation

 Decision Tree 0.92 0.94 0.90 0.94

 BPN 0.961 0.958 0.966 0.956

 K-means 0.59 0.56 0.79 0.38

Figure 3.  The first three layers of the decision tree after ECG beat segmentation.
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Discussions
Detection performances in the current study. Detection performances of machine learning models 
and criteria-based methods performed in this study for assessing Left ventricular hypertrophy are discussed as 
follows. The numbers of considered leads of seven methods listed in Table 1 are 2, 3, 12, 9, 2, 12 and 2, respec-
tively. Four of seven methods of ECG-based criteria consider only few (2 or 3) leads of 12-lead ECG signals in 
assessing LVH. The other three criteria (Peguero, Framingham, and Sum of 12 leads) consider all or 9 leads 
in assessing LVH. Basically, inequalities with thresholds are adopted as evaluation criteria. Comparing to the 
machine learning model, such as BPN adopted in this study, more comprehensive recognition for assessing 
LVH can be built into the machine learning model during the training phase using all 12-lead ECG signals. 
Furthermore, we adopted the ECG signal processing method (described in section "ECG signal processing") 
including an automatic detection of R-peak and S-valley amplitudes and ECG beat segmentation before design-
ing machine learning models in the current study.

Table 5.  F-statistic values of adopted features.

Feature F-statistic value

RI 682.6

RaVL 469.5

RIII 151.5

RV5 150.1

RaVF 141.7

RV4 136.5

SaVR 103.7

SV4 78.3

SaVL 67.9

RV6 45.8

SII 45.6

RV3 42.2

SV5 37.7

SaVF 34.6

SI 34.1

SIII 33.4

SV2 26.9

SV3 22.2

RII 15.4

RaVR 12.6

RV2 7.8

RV1 6.8

SV6 3.5

SV1 2.1

Figure 4.  Accuracy variation of the number of features.
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The LVH indirectly implies cardiac overloading and it can be diagnosed by ECG such as the voltage  criteria11. 
However, the waveform details of multiple ECG cycles of the same LVH subject might differ  slightly11, and the 
indirect manifestation level in R peak and S valley of each ECG cycle of a LVH subject might differ slightly. 
Using only the single-cycle ECG signal to determine if a person is LVH or not, like the seven methods listed in 
Table 1 often  do11, may not be comprehensive enough. Above description may be one of the common reasons 
for low accuracy of ECG criteria (7 methods listed in Table 1) in detecting LVH. Even by averaging the signals 
of more ECG cycles for each criteria-based method, the relation between R peak and S valley of each cycle may 
be changed due to the average process.

On the contrary, in this study we tried to utilize comprehensive signals of ECG cycles and the details hid-
ing in each ECG cycle of each LVH subject to design a model for LVH detection. After ECG beat segmentation 
(section "ECG beat segmentation"), we could adopt more ECG cycles (8.47-fold cycles in average) of each LVH 
subject, which might contain more information details among these increased ECG cycles (increased 7.47 cycles 
in average). In other words, after ECG beat segmentation, we could adopt the more comprehensive and detail 
dataset with 8.47-fold number of ECG cycles (1021 positive and 1031 negative cases) to train the BPN model. 
Hence, the BPN model could learn more on both what LVH and non-LVH should be from the larger dataset. This 
in turn improved detection performances of designed BPN model in the test phase. This explains that detection 
performances of a BPN model designed with a dataset obtained after beat segmentation outperformed the BPN 

Table 6.  Comparison of state-of-the-art methods for detecting LVH using ECG. ACC  Accuracy, PRE 
Precision, SEN Sensitivity, SPE Specificity, AUC  area under ROC curve, NVP negative predictive value. 
# 1NCRCHS = Northeast China Rural Cardiovascular Health Study. # 2CHCM = Cardiac Hypertrophy 
Computer-based Model. # 3BART = Bayesian Additive Regression Trees. #4 26 features include age, sex, height, 
systolic and diastolic blood pressures and 21 ECG features. # 5Ensemble neural network = convolutional 
neural network + deep neural network. # 6demographic features include age, sex, weight and height. 
# 7GLMNet = penalized logistic regression with the ElasticNet penalty. The bold and underlined values indicate 
the maximum and minimum values, respectively, of each column for ECG criteria or machine learning 
models.

Study (year) Method Adopted features

Detection performances

LimitationACC PRE SEN SPE Others

ECG criteria

 Ref.16

2019 Cornell Product criteria Multi-lead ECG – – – – AUC = 0.62 Patients with age < 65 y were 
excluded

 Ref.17

2019 Combined criteria 12-lead ECG – 0.401 0.379 0.915 AUC = 0.65 For a untreated hypertension cohort

 Ref.18

2021 Peguero-Lo Presti criteria 12-lead ECG – 0.665 0.519 0.821 AUC = 0.7 Patients with age < 70 y were 
excluded

 Ref.15

2021

Peguero–Lo Presti

Multi-lead ECG

0.68 0.12 0.29 0.73 NPV = 0.89

Cornell voltage 0.86 0.24 0.12 0.95 NPV = 0.89

Cornell product 0.86 0.12 0.04 0.96 NPV = 0.89

Sokolow–Lyon voltage 0.81 0.13 0.12 0.89 NPV = 0.89

Sokolow–Lyon product 0.86 0.13 0.04 0.96 NPV = 0.89

Ref.12

2021
NCRCHS#1

criterion with multiple linear 
regression

3-lead ECG – – 0.90 0.36 AUC = 0.74

Ref.23

2021 CHCM#2 3-lead ECG 0.705 – 0.743 0.687

 Ref.14

2021
RaVL voltage-duration product Lead aVL ECG – 0.756 0.674 0.546 AUC = 0.64 In older individuals with left bundle 

branch blockSokolow–Lyon criteria 3-lead ECG – 0.75 0.261 0.818 AUC = 0.54

Machine learning models

 Ref.27

2018 Random forest ECG data 0.661 – 0.58 0.709

 Ref.20

2019 BART #3-LVH criteria 26  features#4 – 0.299 0.29 0.946 AUC = 0.829 Participants without cardiovascular 
disease at enrollment

 Ref.21

2020
Decision tree with logistic regres-
sion 6 ECG features 0.733 – 0.816 0.693

 Ref.24

2020 Deep neural network 87 ECG features 0.736 0.73 0.667 0.782

 Ref.25

2020 Ensemble neural  network#5 12-lead ECG signals + demographic 
 features#6 0.851 – 0.613 0.896 AUC = 0.868

 Ref.26

2021 Convolution neural network 12-lead ECG – – 0.96 0.34 AUC = 0.653

 Ref.22

2021 GLMNet#7 34-feature 12-lead ECG – – – – AUC = 0.873

This study BPN 24-feature 12-lead ECG with ECG 
beat seg-mentation 0.961 0.958 0.966 0.956 Participants without arrhythmia
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model designed with original dataset (118 positive and 124 negative cases) without beat segmentation as shown 
in Table 4. Moreover, this also explains detection performances (the penultimate row in Table 4) of the BPN 
model designed using 12-lead ECG signals with ECG beat segmentation greatly outperformed existing seven 
methods (Table 3) using criteria defined from fewer leads and a single cycle of ECG signals.

Comparison of state‑of‑the‑art methods for detecting LVH using ECG. New methods or machine 
learning models for detecting LVH using ECG signals reported in previous studies are summarized in Table 6. 
Where the criteria methods based on ECG signals are summarized in the top 7  studies12,14–18,23 and described 
as follows. In Ref.16, Sokolow–Lyon, Cornell and Cornell Product (CP) criteria were adopted to detect LVH of 
elderly Chinese aged > 65 years. CP reached the greatest performance (AUC = 0.62) but it is still unsatisfactory. In 
Ref.17, a combination of 6 methods of ECG criteria was proposed to detect LVH. This combined method reached 
slightly better detection performances for detecting LVH in a hypertension cohort than a general population. In 
Ref.18, Peguero-Lo Presti criteria outperformed Cornell voltage, Sokolow–Lyon voltage and Romhilt-Estes crite-
ria for detecting LVH of patients ≥ 70 years old and 83.1% with hypertension. Their Peguero-Lo Presti criterion 
reached precision, sensitivity and specificity (0.665, 0.519, and 0.821, respectively) and were slightly better than 
our results (0.60, 0.44, and 0.71, respectively) listed in Table 3 (Peguero).

In Ref.15, five methods of ECG criteria (Peguero–Lo Presti, Cornell voltage, Cornell product, Sokolow–Lyon 
voltage and Sokolow–Lyon product) for LVH detection of a general Chinese population were studied. These 
ECG-LVH criteria reached negative predictive value (NPV = 0.89), accuracy (0.68–0.86), specificity (0.73–0.96), 
positive predictive value (0.12–0.24) and sensitivity (0.04–0.29). They concluded that these 5 ECG-LVH criteria 
had high NPV to detect Echo-LVH. Three of the 5 methods were also adopted in our current study. In Ref.12, 
the NCRCHS (Northeast China Rural Cardiovascular Health Study) criterion, constructed with multiple linear 
regression to assess the relationship between ECG-LVH criteria and LVMI by using 3-lead ECG signals, was 
proposed in 2021. In Ref.23, cardiac hypertrophy computer-based model (CHCM) was proposed to detect LVH 
using criteria of the T voltage in lead I (≤ 0.055 mV), peak-to-peak QRS distance in lead aVL (> 1.235 mV), and 
peak-to-peak QRS distance in lead aVF (> 0.178 mV). In Ref.14, 10 methods of ECG criteria were used to detect 
LVH in an elder cohort. Two of the methods (RaVL voltage-duration product and Sokolow–Lyon criteria) with 
the best detection performances are listed in Table 6.

Above methods of ECG criteria (listed in Table 6) reached detection performances of accuracy, precision, 
sensitivity and specificity within 0.68–0.86, 0.12–0.756, 0.04–0.9, and 0.36–0.96, respectively. The precision, 
sensitivity and specificity among these studies ranged widely. Our prediction performances of 7 methods of 
criteria listed in Table 3 reached the accuracy, precision, sensitivity and specificity within 0.50–0.62, 0.60–1.0, 
0.01–0.66, and 0.59–1, respectively. Similarly, the precision, sensitivity and specificity among our results obtained 
using 7 methods of criteria ranged widely. The best precision and specificity in our results outperform previous 
 studies12,14–18,23, while the best accuracy and sensitivity of ours are lower than some of these studies. Unfortunately, 
the detection performances listed in Tables 3 and 6 show that all these methods of ECG criteria are not perfect 
enough in detecting LVH by evaluating using the accuracy, precision, sensitivity and specificity.

On the other hand, machine learning models for detecting LVH using ECG signals reported in previous 
 studies20–22,24–27) are also summarized in Table 6. In Ref.27, the random forest model was designed using ECG 
data with K-nearest neighbor and Z-score for LVH detection. In Ref.20, the BART-LVH criteria constructed using 
Bayesian additive regression trees with 26 features (include age, sex, height, systolic and diastolic blood pressures 
and 21 ECG features) was proposed for LVH detection. In Ref.21, a decision tree model with logistic regression 
for dimensionality reduction using 6 features of ECG signals was proposed for detecting LVH.

In Ref.24, a model of deep neural network (DNN) with 6 layers was trained using 87 ECG features and devel-
oped for detecting LVH. In Ref.25, a model of ensemble neural network (ENN) which integrated the convolution 
neural network (CNN) and DNN was proposed in predicting LVH. The 8-s 12-lead ECG signals (two-dimen-
sional data, 4000 × 12) were input to the CNN, while ECG features and demographic features (age, sex, weight 
and height) were input to the DNN. Then the outputs of CNN and DNN were integrated together to generate 
an output of LVH detection.

In Ref.26, a CNN was trained with the entire 10-s 12-lead ECG waveform to predict the left ventricular (LV) 
mass. The cardiac magnetic resonance (CMR)-derived LV mass was used as the standard. Then their CNN model 
can predict LVH indirectly. In Ref.22, several LVH detection models designed using 4 machine learning methods 
were reported in 2021. In which, the GLMNet (penalized logistic regression with the ElasticNet penalty) model 
reached the best detection performance with AUC = 0.873. The GLMNet model was designed using 34 features, 
which include 24 features of R peaks and S valleys obtained from 12-lead ECG signals and 10 more features 
retrieved from ECG signals.

The detection performances of the aforementioned methods for detecting LVH proposed in previous stud-
ies are summarized in Table 6. Above machine learning models proposed in previous studies reached detection 
performances of accuracy, precision, sensitivity and specificity within 0.661–0.851, 0.299–0.73, 0.29–0.96, and 
0.34–0.946, respectively. The precision, sensitivity and specificity of these models designed in previously stud-
ies ranged widely. Our prediction performances of BPN model reached the accuracy, precision, sensitivity and 
specificity equaling 0.961, 0.958, 0.966, and 0.956, respectively. Our BPN model outperforms 7 models, reported 
in previous  studies20–22,24–27 and listed in Table 6, in detecting LVH using ECG signals.

Furthermore, in Refs.12,20–22,24–26, they concluded that machine learning methods outperform some methods 
of classical ECG criteria in detecting LVH. Basically, our BPN model also outperforms the methods of criteria 
reported in previous studies listed in Table 6 in terms of accuracy, precision, sensitivity and specificity. Moreover, 
Our BPN model mostly obtained the higher and more uniform accuracy, precision, sensitivity and specificity. 
This might result from that (1) we designed our BPN model using a balanced dataset and which may reduce the 
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difference between sensitivity and specificity of predictive performances of a  model46,59; (2) we preprocessed 
12-lead ECG to automatically and precisely obtain amplitudes of R peaks and S valleys; and (3) we adopted 
ECG beat segmentation to utilize as many ECG cycles (8.47 cycles per sequence in average) as possible to train 
our BPN model, such that the model can learn and recognize slight differences among different ECG cycles of 
each subject.

Study limitations and future perspectives. The ECG signals retrieved in the current study were all 
obtained from participants without arrhythmia (e.g. atrial fibrillation), and the algorithm we adopted for auto-
matic detection R peaks and S valleys described in section "Detection of R peaks and S valleys" could limit the 
heart rate within 60–100 ppm. The modified detection algorithm can be adopted or created for a wider range of 
heart rates resulting from including participants with arrhythmia in the future study.

Hopefully, our outcome could benefit the accurate detection of LVH or other cardiovascular diseases using 
ECG and AI. The more comprehensive detection of P, Q, R, S and T points in each ECG wave for obtaining more 
features (such as the change of ST segment, etc.) automatically for more accurately detecting the LVH or other 
cardiovascular diseases using an AI method may be considered. So that an AI system (or called clinical decision 
support system,  CDSS46,59 for LVH detection, which features accurate, automatic and fast, can be built for sup-
porting diagnosis and providing useful information for physicians.

An AI system may help cardiologists to manage the large demand for ECG, especially when mass screening 
of hundreds of apparently healthy individuals by ECG is required daily. Our future perspective further includes 
analyzing other surrogate end points in cardiovascular diseases (such as left ventricular diastolic dysfunction, 
new-onset myocardial infarction or heart failure, and cardiac-related  mortality31,60, thereby creating the cor-
responding AI models for detecting these cardiovascular events accurately.

Conclusions
We conducted a simple and useful preprocessing method for RS amplitude detection and ECG beat segmenta-
tion to obtain 24 features from 12-lead ECG for designing the machine-learning model. Thereby, the designed 
BPN model might reach the excellent LVH prediction performance and outperform previous reported models 
and criteria.

Data availability
The datasets used and/or analysed during the current study would be available from the corresponding author 
on reasonable request.
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