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Research on SPDTRS‑PNN based 
intelligent assistant diagnosis 
for breast cancer
Xixi Kong *, Mengran Zhou , Kai Bian , Wenhao Lai , Feng Hu , Rongying Dai  & Jingjing Yan 

Breast cancer is the second dangerous cancer in the world. Breast cancer data often contains more 
redundant information. Redundant information makes the breast cancer auxiliary diagnosis less 
accurate and time consuming. Dimension reduction algorithm combined with machine learning can 
solve these problems well. This paper proposes the single parameter decision theoretic rough set 
(SPDTRS) combined with the probability neural network (PNN) model for breast cancer diagnosis. 
We find that when the parameter value of SPDTRS is 2.5 and the SPREAD value is 0.75, the number 
of 30 attributes of the original breast cancer data dropped to 12, the accuracy of the SPDTRS‑PNN 
model training set is 99.25%, the accuracy of the test set is 97.04%, and the test time is 0.093 s. The 
experimental results show that the SPDTRS‑PNN model can improve the ac‑curacy of breast cancer 
recognition, reduce the time required for diagnosis.

Breast cancer is the most common cancer diagnosed by women aged 20–60. There are more than 2 million 
newly diagnosed cases of breast cancer worldwide each year. Although the incidence rate of breast cancer has 
gradually declined in recent years to  stabilize1, breast cancer is still one of the most common types of cancer 
in women, which seriously affects diseases that threaten women’s life and  health2–4. Early breast cancer is com-
monly identified by mammography, ultrasound, and so on. How-ever, breast cancer still nearly 30% of cases are 
detected in the late stage of breast  cancer5. We can improve the success rate and reduce the mortality rate if we 
find breast cancer  early6,5. Therefore, how to diagnose malignant tumors quickly and accurately is the key in the 
treatment of breast cancer.

The early treatment of breast cancer is needle biopsy based on tissue biopsy. In this method, a thin hollow 
needle into the lump to sample cells, examining the cells sampled under a microscope. But this method may 
lead to misdiagnosis in the process of data collection because of some uncertain factors. In addition, when the 
pathologist manually inspects the abnormality, their experience may affect the diagnostic  results7,8. To solve 
this problem, Wolberg et al.(1994)9 tried to use machine learning technology to reduce the subjectivity inher-
ent in the visual diagnosis of needle aspiration cytology. Nowadays, many algorithms in machine learning can 
distinguish benign and malignant breast cancer samples well and better assist in medical  diagnosis10,11. For 
example, Al-Timemy et al.(2009)12used fine needle aspiration cytology combined with PNN to achieve rapid 
and accurate classification of breast tumors. Whitney et al.(2020)13proved the practicability of transfer learning 
in computer-aided diagnosis by using the breast fusion classifier based on convolutional neural network (CNN) 
transfer learning combined with magnetic resonance imaging (MRI). Nagpur et al.(2020)14 used adaptive mean, 
gaussian mixture model (GMM) segmentation, and probabilistic neural network (PNN) classifier to predict 
whether there are benign or malignant cells in a given mammogram can help patients find diseases faster and 
take appropriate measures. But most of these machine learning analyzed all the features contained in the breast 
cancer dataset. They did not consider whether the data set contains redundant information and whether the 
redundant information will affect the experimental results. Some dimensionality reduction algorithms and clas-
sification models were proposed to identify malignant breast tumors in Wisconsin by using Wisconsin Breast 
Cancer Database (WBCD)15. For example, Zhou et al.(2015)16 used principal component analysis (PCA) to 
preprocess the original breast cancer data and use the improved PNN model to realize the recognition of breast 
tumors, to achieve the auxiliary diagnosis of breast tumors. Kejriwal et al.(2018)4 used a univariate feature 
selection algorithm combined with logic and neural network algorithm to obtain a good classification effect. 
Bian et al.(2020)17 Proposed that the dimensionality reduction algorithm based on random forest (RF) and 
principal component analysis (PCA) combined with extreme learning machine (ELM) significantly reduced the 
time required for breast cancer diagnosis, showing excellent classification performance. Bashier ElKarami et al.
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(2022) 18 used the method of multi-group data integration constructed by gene similarity combination to embed 
gene expression, DNA methylation, and copy number alteration (CNA) into lower dimensions using UMAP 
to create two-dimensional RGB images. Gene expression is used as a reference for constructing GSN, and then 
other omics data are integrated with gene expression to better predict. Gene similarity network (GSN) Based on 
Unified Manifold Approximation and Projection (UMAP) and Convolution Neural Network (CNN).Li Zhou 
et al.(2022) 19 used t-distributed stochastic neighbor embedding (t-SNE) to create a gene similarity network 
(GSN) map for each component. Extraction of multi-group biomarkers related to the prognosis and prognosis 
prediction of breast cancer and establishment of prediction models for multi-category NPI of breast cancer. The 
model is evaluated and compared with different high-dimensional embedding techniques and neural network 
combinations. The accuracy of the proposed model is 98.48% better than that of other methods, and the area 
under the curve (AUC) is equal to 0.9999. And the findings in the literature confirmed the correlation between 
some extracted omics and the prognosis and survival rate of breast cancer.

The rough set theory is a novel mathematical tool for dealing with uncertain, fuzzy, and inconsistent data 
proposed by Professor Pawlak in  198220–22. The rough set provides an effective method for multi-source hetero-
geneous information classification without prior  knowledge23. The rough set theory can find the dependency 
between data, and reduce the number of attributes of the data set. So the rough set is widely used in dimension 
 reduction24. But the classical rough set is only suitable for discrete data. So the classical rough set has been popu-
larized from many  aspects25. Suo  M26 proposed a Single-parameter decision-theoretic rough set (SPDTRS), which 
can determine the loss function matrix by setting a single parameter and improves engineering practicability. 
The SPDTRS used a large number of data to prove the reliability of the model. The PNN is a feedforward neural 
 network27,28, which is essentially a supervised network classifier based on the Bayesian minimum risk criterion. 
It has a simple structure and PNN commonly used in classification and  identification27,29. Wang X X used PNN 
to intelligently classify photovoltaic array faults, achieving high classification  accuracy30.

The main work of this paper is to use SPDTRS to reduce the dimension of breast cancer data, divide the 
reduced data as the input of PNN, divide the sample training set and test set. The training set is used for modeling 
PNN, and the test set is used to test the model. Then we can build a breast cancer classification model based on 
SPDTRS-PNN and optimize it. Finally, the conclusion and prospects summarize at the end of the article.

Methods and materials
Main contents. The main framework of this paper is in Fig. 1 The main idea is to use the five-dimensional 
reduction algorithm and three machine learning algorithms to establish fifteen different models for distinguish-
ing breast cancer data. We selected the better model from 15 models, the dimensionality reduction algorithm 
is adopted to reduce data redundancy, and the classification algorithm is adopted to classify breast cancer data. 
Then the selected model is optimized to achieve fast and accurate identification of breast cancer data.

Data description. There are 32 attributes in total, including ID number and diagnostic sample label. There-
fore, there are 30 attributes representing data features in each instance, including the average value, standard 
deviation, and maximum value of 10 quantitative features in each nucleus in the sample organization,1–10 
attributes representing the average value of 10 quantitative features, and attributes 11–20 represent standard 
deviation of 10 quantitative features, the 21–30 attributes represent the maximum value of 10 quantitative fea-
tures. Among them, the 10 quantitative features are radius, texture, perimeter, area, smoothness, compactness, 
concavity, concave points, symmetry, and fractal dimension. The dataset used in this paper has 569 samples in 
total, including 357 benign samples and 212 malignant samples.

Selection of training set and test set. 569 cases of breast cancer dataset were randomly divided into a 
training set and test set. 400 cases were selected as a training set, and the remaining 169 cases were taken as test 

Figure 1.  Main frame diagram.
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sets. The computer processor used in the experiment was Intel core i3-4005U, 4 GB memory, Win7 system, and 
was simulated under Matlab R2014b version.

Dimension reduction algorithm and Classification algorithm. This paper adopts the neighborhood 
rough set (NRS)31, the single-parameter decision-theoretic rough set (SPDTRS) 26, the stochastic neighborhood 
embedding (SNE)32, the stochastic proximity embedding (SPE)33and the neighbor component analysis (NCA)34. 
A suitable dimension reduction algorithm is selected as the input of the classifier.

In this paper, three classification algorithms in machine learning, the probability neural network (PNN)28, the 
learning vector quantization (LVQ)35, and the backpropagation (BP)36, are used to select the more appropriate 
classification algorithm.

SPDTRS algorithm. Based on the theory of classical rough set, the probabilistic rough set proposes two 
threshold parameters α and β , in which 0 < β < α < 1 . Decision theory rough set combines probability rough 
set with Bayesian minimum risk to give state set � =

{

X,XC
}

 and action set A = {aP , aB, aN } , in which,X rep-
resents the entity set satisfying condition C,XC represents the entity set that does not meet condition C , and C is 
the conditional attribute set, aP , aB, aN represent three behaviors, namely, accepting events, delaying decision-
making , and rejecting something, then, the loss function matrix can be described. When X meets condition 
C , the losses when making aP , aB, aN actions are recorded as �PP , �BP , �NP , similarly, when X does not meet 
condition C , the losses when making aP , aB, aN action are recorded as �PN , �BN , �NN , but six loss functions need 
to be set artificially. On this basis, SPDTRS26 sets a compensation coefficient ξ to replace the six loss functions.

Given an information system IS = (U ,A) , A is the attribute set, A = C ∪ D , D is the decision attribute set, 
when C ∪ D �= ∅,D  = ∅ , the decision system DS = (U ,C ∪ D) is defined. The inherent category represented 
by D is defined as the nominal decision class, represented by N,SPDTRS gives a loss function matrix according 
to the property that significance represents the importance of local equivalence classes in their relevant global 
statistical distribution, as shown in Table 1, among them, to simplify the research, let �PP = 0,�NN = 0,S(X|[x]) 
represents the significance of the N-labeled sample of X in [x] to X,SC(X|[x]) represents the significance of the N
-labeled sample of XC in [x] to X,and S(X|[x]) and SC(X|[x]) can be obtained from the distribution information 
of original data, so the loss function matrix is only related to the compensation coefficient ξ.

The overall risk is defined according to Bayesian risk decision ℜB 37:

When B(B ⊆ C) satisfies the following two conditions, subset B is considered to be an attribute reduction with 
lower risk than C . the conditions are as follows:

1) ℜB < ℜC;
2) ∀A ⊂ B, ∃ℜA > ℜB.

PNN algorithm. A Probabilistic neural network (PNN)38 is a feedforward neural network extended from 
the nonparametric probability density estimation method based on Bayes classification rules and kernel density 
estimation38. PNN can use linear learning algorithms instead of nonlinear learning algorithms, and can meet 
the requirements of real-time processing in training.

PNN is a four-layer feedforward neural network, as shown in Fig. 2. PNN includes the input layer, model 
layer, summation layer, and output layer. The input layer inputs the value of training samples and is responsible 
for transmitting feature vectors to the network; the model layer and input layer connection through the connec-
tion weight. Generally, the neuron activation function of the model layer is Gaussian function, which is used to 
calculate the similarity between the input eigenvector and each mode in the training set, and send its distance 
to the Gaussian function to obtain the output of the model layer; the summation layer is responsible for con-
necting the pattern units of each class. Each class has only one summation unit. The summation unit only adds 
the pattern units belonging to its class and has no connection with the pattern units of other classes; the output 
layer is responsible for outputting the highest score of the summation layer, and the number of output neurons 
is equal to the number of sample categories.

The basic structure diagram of PNN is given below:
Input layer: input the n-dimensional samples x = [x1, x2, · · · , xn]

T to be classified into the network;
Model layer: receive input data x , output of ψij(x) of jth corresponding to class iith:

(1)

ℜB =
∑

x∈POSs

(

1− P
(

X|[x]δB
))

· �PN +
∑

x∈BNDs

(

P
(

X|[x]δB
)

· �BP

+
(

1− P
(

X|[x]δB
))

· �BN
)

+
∑

x∈NEGs

P
(

X|[x]δB
)

· �NP

Table 1.  Loss function matrix.

X X
C

aP �PP = 0 �PN = S
C(X|[x])

aB �BP = S(X|[x])(P(X|[x])− ξ) �BN = S
C(X|[x])(1− P(X|[x])− ξ)

aN �NP = S(X|[x]) �NN = 0
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where j = 1, 2, 3 · · · ci , i = 1, 2, 3 · · · n,where ci is the number of class i training samples; n is the total number of 
training samples; b is the dimension of each sample;xij is the j center vector of class i of the model layer; δ is the 
smoothing factor, which plays an important role in classification;

Summation layer: add the mode units of the same kind and calculate their average value gi,ci (x):

Output layer: the n outputs obtained by the summation layer are multiplied by the a priori probability pi = ci
n 

of each category, and the maximum output value is the predicted test sample label value µ(x),

Results
Model selection. To obtain a better classification and recognition effect on the premise of using no more 
than half of the attributes ( ≤ 15), this paper tries five dimensionality reduction methods.

For SPDTRS, the compensation coefficient ξ represents the tolerance of the decision-maker to uncertainty. 
The smaller ξ , the greater the amount of acceptable uncertainty. When the conservatism of the object is unknown, 
the value range of the compensation coefficient ξ should be (0, 0.4] . Therefore, we select the value of ξ every 0.05, 
combined with PNN, LVQ, and BP classifiers to construct three different models of SPDTRS-PNN, SPDTRS-
LVQ, and SPDTRS-BP. We compare the accuracy and test time of the training set and test set of the three models 
under different ξ values. Taking the accuracy as the main evaluation index and combined with the test time, we 
select a better value of ξ.

The training results are in Table 2. We can see that the accuracy of the training set and test set of the three 
models under different ξ values are more than 85.00%, which can be seen from the data in the table when the ξ 

(2)ψij(x) =
1

(2π)b/2δb
exp

[

−
(x − xij)

T (x − xij)

2δ2

]

(3)gi,ci (x) =
1

ci

ci
∑

j=1

ψij(x)

(4)µ(x) = argmax
[

pigi,ci (x)
]

1x

2x

nx
...

...

1y

2y

my

 Input layer

Model layer

Summa�on layer Output layer

... ...
Figure 2.  PNN structure diagram.

Table 2.  Comparison of accuracy and time of different ξ values. The bold font in the table is the parameter 
value with better effect selected from each model.

SPDTRS Dimension

PNN LVQ BP

Training set(%) Test set(%) Time (s) Training set(%) Test set(%) Time (s) Training set(%) Test set(%) Time (s)

0.05 12 97.50 94.67 0.15 90.00 88.76 0.17 98.25 95.55 0.91

0.10 12 98.50 94.08 0.14 90.00 86.98 0.12 90.15 90.07 0.86

0.15 12 97.45 93.49 0.14 90.00 88.17 0.10 95.21 95.23 0.83

0.20 12 97.25 94.67 0.13 91.00 91.02 0.10 94.71 96.62 0.85

0.25 12 97.00 97.04 0.12 90.00 94.08 0.10 91.27 96.98 0.94

0.30 12 98.75 94.08 0.14 87.25 86.39 0.10 97.04 96.16 0.87

0.35 12 99.00 92.90 0.15 87.50 86.98 0.10 91.41 90.21 0.85

0.40 14 99.75 92.90 0.33 92.00 91.72 0.10 95.21 96.11 0.89
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value of the SPDTRS-PNN model is 0.25, the accuracy of the training set is 97.00%, the accuracy of the test set 
is 97.04%, the test time is 0.12 s, and the training effect is good. When the ξ value is 0.40, although the accuracy 
of the training set is 99.75%, the accuracy of the test set is only 92.90%, the accuracy is low, and the test time is 
0.33 s, and the time is long, Therefore, when constructing the SPDTRS-PNN model, the value of ξ is 0.25.

When the ξ value of the SPDTRS-BP model is 0.30, the accuracy of the training set is 97.04%, the accuracy 
of the test set is 96.16%, and the test time is 0.87 s. The training effect is good. When the value is 0.05, although 
the accuracy of the training set is 98.25%, the accuracy of the test set is 95.55%, and the test time is 0.91 s.

When the ξ value of the SPDTRS-LVQ model is 0.40, the accuracy of the training set is 92.00%, the accuracy 
of the test set is 91.72%, and the test time is 0.10 s. The training effect is good. When the ξ value is 0.25, although 
the accuracy of the test set is 94.08%, the accuracy of the training set is only 90.00%, the accuracy is low, and 
the test time is 0.10 s.

We can see that the SPDTRS-PNN model has a better performance by comprehensively comparing the accu-
racy and test time of the three models, and the number of attributes sent to the classifier after model reduction is 
12 (< 15), which meets the expectation of this paper. Among them, when the value of ξ is 0.25, the 12 attributes 
selected by SPDTRS-PNN model are {21,27,22,29,20,25,2,18,5,8,11,6}.

For NRS, fifteen attributes are selected according to their importance. As shown in Fig. 3, the top fifteen 
attributes selected according to their importance ranking are {22,28,19,5,15,18,25,27,10,9,29,2,7,26,20}.

For NRS, this paper uses the NRS algorithm to reduce breast cancer data to 1–15 dimensions and constructs 
three models of NRS-PNN, NRS-LVQ, and NRS-BP. We can obtain the comparison diagrams of the accuracy of 
the training set and the test set and test time of the three models in different dimensions.

Figure 4a and b show the comparison of the accuracy and test time of the three models under different 
dimensions. It can be seen from the figure that the accuracy of the BP training set and test set is higher than LVQ 
and PNN, but the test time of BP is longer, and there is no difference in the test time of the other two models. 
Through comprehensive comparison, we can see that the NRS-BP model is better. The original data is reduced 
to 14 dimensions with NRS. After recognition with BP, the accuracy of the NRS-BP training set is 95.16% and 
the test set is 93.79%, the test time is 0.96 s.

For SNE, this paper uses the SNE algorithm to reduce breast cancer data to 1–15 dimensions and constructs 
three models of SNE-PNN, SNE-LVQ, and SNE-BP. We can obtain the comparison diagrams of the accuracy of 
the training set and the test set and test time of the three models in different dimensions.

Figure 5a and b show the comparison of the accuracy and test time of the three models under different dimen-
sions. It can be seen from the figure that although the accuracy of PNN’s training set is higher, the accuracy of 
PNN’s test set is lower, and there may be an overfitting phenomenon, on the whole, the training effect of LVQ 
is good. For PNN, the overall training effect is poor. Through comprehensive comparison, we can see that the 
SNE-LVQ model is better. After reducing the dimension of the original data to 15 dimensions by SNE, combined 
with LVQ for identification. At this time, the accuracy of the training set is 90.00%, the accuracy of the test set 
is 92.31%, and the test time is 0.15 s.

For SPE, this paper uses the SPE algorithm to reduce breast cancer data to 1–15 dimensions and constructs 
three models of SPE-PNN, SPE-LVQ, and SPE-BP. We can obtain the comparison diagrams of the accuracy of 
the training set and the test set and test time of the three models in different dimensions.

Figure 6a and b show the comparison of the accuracy and test time of the three models under different dimen-
sions. It can be seen from the figure that the accuracy of the PNN training set is lower as a whole; the test time of 
BP is long. Through comprehensive comparison, it can be seen that the SPE-LVQ model is better. After reducing 
the dimension of the original data to 14 dimensions by SPE and combining LVQ for identification, the accuracy 
of the training set is 91.00%, the accuracy of the test set is 91.13%, and the test time is 0.099 s.

For NCA, this paper uses the NCA algorithm to reduce breast cancer data to 1–15 dimensions and constructs 
three models of NCA-PNN, NCA-LVQ, and NCA-BP. We can obtain the comparison diagrams of the accuracy 
of the training set and the test set and test time of the three models in different dimensions.
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Figure 3.  Comparison chart of absolute value of importance.
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Figure 7a and b show the comparison of the accuracy and test time of the three models under different 
dimensions. It can be seen from the figure that the accuracy of PNN is higher. On the whole, the NCA-PNN 
model is better. After reducing the dimension of the original data to 11 dimensions by NCA, PNN is used for 
identification. At this time, the accuracy of the training set is 100.00%, the accuracy of the test set is 95.86%, 
and the test time is 0.12 s.

This paper compares the above-selected model with the accuracy and test time of putting the original data 
directly into the classifier, as shown in Table 3. We can see that the training effect of putting the original data into 
BP is the best from the table. At the same time, the accuracy of all models falls within the 95% CI for the identifi-
cation and classification of any benign sample. The accuracy of the training set is 97.38% and the accuracy of the 
test set is 95.46%, but compared with other models, the test time is longer, the model constructed by the dimen-
sion reduction algorithm and the classification algorithm can achieve higher recognition accuracy with fewer 
attributes and shorten the testing time. The SPDTRS-PNN model is more accurate and the test time is 0.12 s.

The precision rate and recall rate are shown in Fig. 8. It can be seen that the precision rate and recall rate of 
the training set of the original data under the PNN classification are high, but the precision rate of the test set is 
only 74.31%. For NCA-PNN, although the precision rate and recall rate of the training set and the recall rate of 
the test set are high, the precision rate of the test set is low, only 93.75%; For SNE-LVQ and SPE-LVQ, the recall 
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Figure 4.  Comparison diagram of NRS-PNN, NRS-LVQ and NRS-BP models: (a) Accuracy comparison chart; 
(b) Comparison diagram of test time.
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Figure 6.  Comparison diagram of SPE-PNN, SPE-LVQ and SPE-BP models: (a) Accuracy comparison chart; 
(b) Comparison diagram of test time.
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Figure 7.  Comparison diagram of NCA -PNN, NCA -LVQ and NCA -BP models: (a) Accuracy comparison 
chart; (b) Comparison diagram of test time.

Table 3.  Comparison of different models. The bold font in the table is the parameter value with better effect 
selected from each model.

Model Dimension Training set (%) Training-95% CI Test set (%) Test-95% CI Time (s)

PNN 30 100 [0.9804,1.0000] 72.78 [0.6623,0.8105] 0.17

LVQ 30 89.75 [0.8354,0.9154] 92.9 [0.8256,0.9440] 0.16

BP 30 97.38 [0.9578,0.9950] 95.46 [0.9094,0.9923] 1.6

SPDTRS-PNN 12 97 [0.9235,0.9776] 97.04 [0.9041,0.9883] 0.12

NRS-BP 14 95.16 [0.9453,0.9901] 93.79 [0.9041,0.9883] 0.96

SNE-LVQ 15 90 [0.8201,0.9019] 92.31 [0.8552,0.9592] 0.15

SPE-LVQ 14 91 [0.8470,0.9243] 91.13 [0.8057,0.9312] 0.099

NCA-PNN 11 100 [0.9688,1.0000] 95.86 [0.8709,0.9723] 0.12
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rate is high but the precision rate is low; For SPDTRS-PNN, the accuracy and recall of its training set and test 
set are more than 95%. Therefore, the SPDTRS-PNN model is selected to identify breast cancer data.

Optimization of SPDTRS‑PNN model. In this paper, we used the SPDTRS algorithm to reduced breast 
cancer data, and we set the SPDTRS compensation coefficient ξ as 0.25. After obtaining dimension reduction, 
the twelve attributes are {21,27,22,29,20,25,2,18,5,8, 11,6}, and the dimensionality reduction data are taken as 
the input of PNN. To achieve better diagnosis and discrimination of breast cancer data, we further optimize the 
SPDTRS-PNN model.

For PNN, the distribution density SPREAD is the expansion coefficient of the radial basis function. Reason-
ably selecting the value of SPREAD is also a significant step in classification. When the value of SPREAD is close 
to 0, it can form the nearest neighbor classifier. When the SPREAD value is more, the output result will become 
smooth and can form a proximity classifier for several training samples, however, too large a SPREAD value 
will make numerical calculation difficult. Therefore, in this paper, the value range of SPREAD is set as (0.5, 1.5] , 
the step size is 0.05, the accuracy is the main evaluation index, and in combination with test time to select the 
appropriate SPREAD parameter value.

As shown in Table 4, 569 samples were divided into 400 training samples, including 250 benign samples and 
150 malignant samples; 169 test samples, including 107 benign samples and 62 malignant samples.

The accuracy of the training and the test set and test time obtained under different SPREAD values are in 
Fig. 9. The left axis is the accuracy, the right axis is the test time, the blue solid line represents the training set 
accuracy, the green solid line represents the test set accuracy, and the red dotted line represents the test time. 
It can be seen from the figure that with the increase of SPREAD value. The accuracy of the training set of the 
SPDTRS-PNN model shows a downward trend as a whole. The accuracy of the test set is stable at 95.00–97.50%, 
and the test time fluctuates between 0.09 and 0.12 s. It can be seen from the test time curve that when the 
SPREAD value is 1.55, although the shortest test time is 0.09 s, the accuracy of the training set is only 96.50%, 
and the accuracy of the training set is low. When the SPREAD value is 0.75, the accuracy of the training set and 
the test set are 99.25% and 97.04%, and the test time is only 0.003 s later than the test time when the SPREAD 
value is 1.25. Therefore, this paper sets the SPREAD value to 0.75.

In this paper, we will use the 12 attributes of SPDTRS to reduce the dimension of breast cancer data as the 
input feature vector of the PNN model. The output eigenvector of PNN is the sample label, which is benign and 
malignant breast cancer. We set the SPREAD parameter of PNN as 0.75. A model combining SPDTRS-PNN is 
used to identify the breast cancer data.

The 400 samples of the training set are input into PNN, and the training effect is shown in Fig. 10. The red 
asterisk is the output value of the network prediction, and the blue circle is the actual output value of the network. 
From the graph, 3 malignant tumors in the breast cancer data can be mistakenly divided into benign tumors. 
In general, the training set has 3 errors in the network prediction, and the accuracy rate of the training set is 

PNN LVQ BP SPTDRS-PNN NRS-BP SNE-LVQ SPE-LVQ NCA-PNN
0.5

0.6

0.7

0.8

0.9

1

tr-precision
tr-recall
test-precision
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Figure 8.  Comparison of precision rate and recall rate of each model.

Table 4.  Sample distribution table.

Category

Benign Malignant

Training set 250 150

Test set 107 62

Total 357 212
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99.25%, The precise is 98.81%, and the recall is 100%. For the training set, the 95% CI for any sample to judge 
correctly is [0.9629, 0.9969].

The 169 samples of the test set were input into PNN, and the training effect is shown in Fig. 11. The red star 
is the output value of the network prediction, and the blue circle is the actual output value of the network. From 
the chart, we can see that 4 of the breast cancer data have been mistaken for benign tumors and become benign, 
and 1 actually benign tumor is wrongly predicted for malignant tumors. The network prediction has five errors, 
and the accuracy of the test set is 97.04%, The precise is 96.36%, and the recall is 99.07%. For the test set, the 
95% CI for any sample to judge correctly is [0.9041,0.9883].

Discussion
The results show that: (1) The SPDTRS can express more comprehensive information in the original breast 
cancer data with fewer features by selecting the appropriate value. It can reduce the complexity of the model 
and improves the efficiency of the model. (2) The appropriate SPREAD value was selected, then using the PNN 
model for classification, the test time of SPDTRS-PNN is short and fast. (3) The SPDTRS-PNN model is suitable 
for breast cancer diagnosis. It can objectively distinguish breast cancer from benign and malignant samples and 
meet the needs of a rapid and accurate breast cancer diagnosis. Although this research has made some achieve-
ments, there are still some shortcomings. To a certain extent, the SPDTRS-PNN model can reduce the redundant 
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Figure 9.  Comparison of accuracy and time of different SPREAD values.
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information of breast cancer and improve prediction accuracy. But parameters in the algorithm need artificial 
settings, that is, manual optimization. In future work, we need to add some automatic parameter optimization 
algorithms to improve the model performance and make the model performance closer to our ideal state. And 
when PNN is used to identify breast cancer classification, each test sample needs to be calculated with all training 
samples, which requires a lot of calculation. At the same time, because it needs to store all samples, the required 
storage space will be larger. To solve this problem, the subsequent research needs to further optimize PNN to 
reduce the computation and reduce the spatial complexity of the algorithm.

Conclusions
In this paper, we combed a dimension reduction algorithm with a machine learning algorithm. Then we proposed 
a new auxiliary medical diagnosis method, that is, SPDTRS-PNN. The SPDTRS is used to reduce the quantitative 
characteristic data of breast tumor images to 12 dimensions. Then the PNN model was set up to test the predic-
tive effect of breast cancer. We have demonstrated that the rapid and accurate diagnosis of breast cancer can be 
achieved by using the attributes of fewer breast cancer data.

Data availability
The datasets analyzed during the current study are available in the UCI repository, [http:// archi ve. ics. uciedu/ 
ml/ datas ets/ Breast+ Cancer+ Wisco nsin+% 28Dia gnost ic% 29]. And for further research in this area, we provide 
code on GitHub: https:// github. com/ kxxdg et/ Machi ne- learn ing- diagn osis- of- breast- cancer.

Received: 10 April 2022; Accepted: 17 January 2023

References
 1. Marchetti, P. et al. New immunological potential markers for triple negative breast cancer: IL18R1, CD53, TRIM, Jaw1, LTB, 

PTPRCAP. Discover Oncol. https:// doi. org/ 10. 1007/ s12672- 021- 00401-0 (2021).
 2. Ragab, D. A., Attallah, O., Sharkas, M., Ren, J. & Marshall, S. A framework for breast cancer classification using Multi-DCNNs. 

Comput. Biol. Med. 131, 104245. https:// doi. org/ 10. 1016/j. compb iomed. 2021. 104245 (2021).
 3. Basunia, M. R., Pervin, I. A., Al Mahmud, M., Saha, S. & Arifuzzaman, M. On predicting and analyzing breast cancer using data 

mining approach. In 2020 IEEE Region 10 Symposium (TENSYMP), 1257–1260 https:// doi. org/ 10. 1109/ TENSY MP500 17. 2020. 
92308 71. (2020).

 4. Khuriwal, N. & Mishra, N. Breast cancer diagnosis using adaptive voting ensemble machine learning algorithm. In 2018 IEEMA 
Engineer Infinite Conference (eTechNxT), 1–5 https:// doi. org/ 10. 1109/ ETECH NXT. 2018. 83853 55 (2018)

 5. Bhangu, K. S., Sandhu, J. K. & Sapra, L. Improving diagnostic accuracy for breast cancer using prediction-based approaches. In 
2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC), 438–441 https:// doi. org/ 10. 1109/ 
PDGC5 0313. 2020. 93158 15. (2020).

 6. Al-sammarraie, L. H. A. & Ibrahim, A. A. Predicting Breast Cancer in Fine Needle Aspiration Images Using Machine Learning. 
In 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), 1–4 https:// doi. org/ 
10. 1109/ ISMSI T50672. 2020. 92548 91. (2020)

 7. Ahmad, F. K. & Yusoff, N. Classifying breast cancer types based on fine needle aspiration biopsy data using random forest classi-
fier. In 2013 13th International Conference on Intellient Systems Design and Applications, 121–125 https:// doi. org/ 10. 1109/ ISDA. 
2013. 69207 20. (2013).

 8. Dennison, G., Anand, R., Makar, S. H. & Pain, J. A. A prospective study of the use of fine-needle aspiration cytology and core 
biopsy in the diagnosis of breast cancer. Breast J. 9, 491–493. https:// doi. org/ 10. 1046/j. 1524- 4741. 2003. 09611.x (2003).

 9. Wolberg, W. H., Nick Street, W. & Mangasarian, O. L. Machine learning techniques to diagnose breast cancer from image-processed 
nuclear features of fine needle aspirates. Cancer Lett. 77(2–3), 163–171. https:// doi. org/ 10. 1016/ 0304- 3835(94) 90099-X (1994).

 10. Thomas, T., Pradhan, N. & Dhaka, V. S. Comparative analysis to predict breast cancer using machine learning algorithms: a survey. 
In 2020 International Conference on Inventive Computation Technologies (ICICT), 192–196 https:// doi. org/ 10. 1109/ ICICT 48043. 
2020. 91124 64 (2020).

0 20 40 60 80 100 120 140 160 180
Training set sample

1

2

C
at

eg
or

y 
la

be
l

Classification of actual test sets
Predictive test set classification

Figure 11.  Effect drawing of test set classification.

http://archive.ics.uciedu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29
http://archive.ics.uciedu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29
https://github.com/kxxdget/Machine-learning-diagnosis-of-breast-cancer
https://doi.org/10.1007/s12672-021-00401-0
https://doi.org/10.1016/j.compbiomed.2021.104245
https://doi.org/10.1109/TENSYMP50017.2020.9230871
https://doi.org/10.1109/TENSYMP50017.2020.9230871
https://doi.org/10.1109/ETECHNXT.2018.8385355
https://doi.org/10.1109/PDGC50313.2020.9315815
https://doi.org/10.1109/PDGC50313.2020.9315815
https://doi.org/10.1109/ISMSIT50672.2020.9254891
https://doi.org/10.1109/ISMSIT50672.2020.9254891
https://doi.org/10.1109/ISDA.2013.6920720
https://doi.org/10.1109/ISDA.2013.6920720
https://doi.org/10.1046/j.1524-4741.2003.09611.x
https://doi.org/10.1016/0304-3835(94)90099-X
https://doi.org/10.1109/ICICT48043.2020.9112464
https://doi.org/10.1109/ICICT48043.2020.9112464


11

Vol.:(0123456789)

Scientific Reports |         (2023) 13:4386  | https://doi.org/10.1038/s41598-023-28316-6

www.nature.com/scientificreports/

 11. Hayashi, Y. Does deep learning work well for categorical datasets with mainly nominal attributes?. Electronics 9(11), 1966. https:// 
doi. org/ 10. 3390/ elect ronic s9111 966 (2020).

 12. Al-Timemy, A. H., Al-Naima, F. M. & Qaeeb, N. H. Probabilistic neural network for breast biopsy classification. In 2009 Second 
International Conference on Developments in eSystems Engineering, 101–106 https:// doi. org/ 10. 1109/ DeSE. 2009. 31 (2009)

 13. Whitney, H. M., Li, H., Ji, Y., Liu, P. & Giger, M. L. Comparison of Breast MRI tumor classification using human-engineered 
radiomics, transfer learning from deep convolutional neural networks, and fusion methods. Proc. IEEE 108(1), 163–177. https:// 
doi. org/ 10. 1109/ JPROC. 2019. 29501 87 (2020).

 14. Nagpure, R., Chandak, S. & Pathak, N. Breast cancer detection using neural network mammogram. In 2020 International Confer-
ence on Convergence to Digital World - Quo Vadis (ICCDW), 1–6 https:// doi. org/ 10. 1109/ ICCDW 45521. 2020. 93186 35 (2020)

 15. Street, W. N., Wolberg, W. H. & Mangasarian, O. L. Nuclear feature extraction for breast tumor diagnosis. Proc. SPIE 1993, 861–870 
(2012).

 16. Zhou, J., Zhong, T. & He, X. Auxiliary diagnosis of breast tumor based on PNN classifier optimized by PCA and PSO Algorithm. 
In 2017 9th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC) 222–227 https:// doi. 
org/ 10. 1109/ IHMSC. 2017. 164. (2017).

 17. Bian, K., Zhou, M., Feng, H. & Lai, W. RF-PCA: a new solution for rapid identification of breast cancer categorical data based on 
attribute selection and feature extraction. Front. Genet. 11, 1082. https:// doi. org/ 10. 3389/ fgene. 2020. 566057 (2020).

 18. ElKarami, B., Alkhateeb, A., Qattous, H., Alshomali, L. & Shahrrava, B. Multi-omics data integration model based on UMAP 
embedding and convolutional neural network. Cancer Inform. 28(21), 11769351221124204. https:// doi. org/ 10. 1177/ 11769 35122 
11242 05 (2022).

 19. Zhou, L., Rueda, M. & Alkhateeb, A. Classification of breast cancer Nottingham prognostic index using high-dimensional embed-
ding and residual neural network. Cancers (Basel) 14(4), 934. https:// doi. org/ 10. 3390/ cance rs140 40934. PMID: 35205 681; PMCID: 
PMC88 70306 (2022).

 20. Feng, Z. Q., Yun, Z. S. & Chao, B. Y. On the application of rough sets to data mining in economic practice. In 2009 International 
Conference on Machine Learning and Cybernetics, 272–276 https:// doi. org/ 10. 1109/ ICMLC. 2009. 52124 52. (2009)

 21. Swiniarski, R. W. & Skowron, A. Rough set methods in feature selection and recognition. Pattern Recogn. Lett. 24(6), 833–849. 
https:// doi. org/ 10. 1016/ S0167- 8655(02) 00196-4 (2003).

 22. Chen, Y. & Chen, Y. Feature subset selection based on variable precision neighborhood rough sets. Int. J. Comput. Intell. Syst. 14(1), 
572. https:// doi. org/ 10. 2991/ ijcis.d. 210106. 003 (2021).

 23. Li, C. X. et al. Neighborhood rough set-based three-way clustering considering attribute correlations: an approach to classification 
of potential gout groups. Inform. Sci. 535, 28–41. https:// doi. org/ 10. 1016/j. ins. 2020. 05. 039 (2020).

 24. Ping, L. & Heng, L. Y. Neighborhood rough set and SVM based hybrid credit scoring classifier. Expert Syst. Appl. 38(9), 11300–
11304. https:// doi. org/ 10. 1016/j. eswa. 2011. 02. 179 (2011).

 25. Fan, X., Zhao, W., Wang, C. & Huang, Y. Attribute reduction based on max-decision neighborhood rough set model. Knowl.-Based 
Syst. 151, 16–23. https:// doi. org/ 10. 1016/j. knosys. 2018. 03. 015 (2018).

 26. Suo, M. et al. Single-parameter decision-theoretic rough set. Inform. Sci. 539, 49–80. https:// doi. org/ 10. 1016/j. ins. 2020. 05. 124 
(2020).

 27. Naaz, S. & Parveen, S. A PNN based malign attack detection and classification model. In 2020 International Conference on Smart 
Electronics and Communication (ICOSEC), 933–938 https:// doi. org/ 10. 1109/ ICOSE C49089. 2020. 92154 24 (2020)

 28. Kusy, M. Selection of pattern neurons for a probabilistic neural network by means of clustering and nearest neighbor techniques. 
In 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT), 598–603 https:// doi. org/ 10. 
1109/ CoDIT. 2019. 88203 85. (2019).

 29. Guo, J., Chen-xu, G., Yang, J.-j, Zhang, Y. & Yang, H. Data mining and application of ship impact spectrum acceleration based on 
PNN neural network. Ocean Eng. 203, 107193. https:// doi. org/ 10. 1016/j. ocean eng. 2020. 107193 (2020).

 30. Wang, X. X., Dong, L., Liu, S. Y.; Hao, Y., Wang, B. A fault classification method of photovoltaic array based on probabilistic neural 
network. In 2019 Chinese Control And Decision Conference (CCDC), 5260–5265 https:// doi. org/ 10. 1109/ CCDC. 2019. 88323 38 
(2019).

 31. Han, Y., Wu, X., Wu, J., Jia, R., Zhang, B. & Yao, X. A New Algorithm for Knowledge Reduction Based on Neighborhood Rough 
Set. In 2010 International Conference on Artificial Intelligence and Computational Intelligence, 15–18 https:// doi. org/ 10. 1109/ 
AICI. 2010. 10 (2010).

 32. Bunte, K., Haase, S., Biehl, M. & Villmann, T. Stochastic neighbor embedding (SNE) for dimension reduction and visualization 
using arbitrary divergences. Neurocomputing 90(8), 23–45 (2012).

 33. Rassokhin, D. N. & Agrafiotis, D. K. A modified update rule for stochastic proximity embedding. J. Mol. Graph. Model. 22(2), 
133–140 (2004).

 34. Liu, C., Li, X. & Yang, Y. Text classification algorithm based on neighborhood component analysis. Comput. Eng. 38(15), 139–141. 
https:// doi. org/ 10. 3969/j. issn. 1000- 3428. 2012. 15. 038 (2012).

 35. Sumarsono, A. & Supatman, S. Imagery identification of tomatoes which contain pesticides using learning vector quantization. J. 
Tek. Inform. (Jutif) 2(1), 9–16. https:// doi. org/ 10. 20884/1. jutif. 2021.2. 1. 15 (2021).

 36. Murty, E. M. Prediksi pengadaan dan pengelolaan inventori jaringan syaraf tiruan algoritma backpropagation pada perum bulog. 
Komputek 5(1), 1 (2021).

 37. Yi, J. X., He, L. W., Min, T. Z. & Shang, L. Minimum cost attribute reduction in decision-theoretic rough set models. Inform. Sci. 
219, 151–167. https:// doi. org/ 10. 1016/j. ins. 2012. 07. 010 (2013).

 38. Ya, L. S., Hua, C. Z, Jing, L. & Fei, Z. Z. A medical diagnosis model based on Pnn-Cadaboost algorithm. In 2018 11th International 
Conference on Intelligent Computation Technology and Automation (ICICTA), 1–4 https:// doi. org/ 10. 1109/ ICICTA. 2018. 00008. 
(2018).

Acknowledgements
This research was funded by the grant of major science and technology program of Anhui province, Grant Num-
ber No. 201903a07020013; the New Generation of Information Technology Innovation Project, Grant Number 
No.2019ITA01010; Demonstration project of science popularization innovation and scientific research education 
for College Students, Grant Number No. KYX202117; University-level Key Projects of Anhui University of Sci-
ence and Technology, Grant Number No. xjzd2020-06; the National Key Research and Development Program 
of China, Grant Number No. 2018YFC0604503.

Author contributions
Conceptualization, K.X. and Z.M.; methodology, K.X. and Z.M.; software, K.X. and B.K.; validation, K.X., B.K., 
L.W. and H.F.; formal analysis, K.X. and D.R.; investigation, K.X. and Y.J.; resources, K.X. ; data curation, K.X.; 
writing—original draft preparation, K.X. and B.K.; writing—review and editing, K.X.; visualization, K.X. and 

https://doi.org/10.3390/electronics9111966
https://doi.org/10.3390/electronics9111966
https://doi.org/10.1109/DeSE.2009.31
https://doi.org/10.1109/JPROC.2019.2950187
https://doi.org/10.1109/JPROC.2019.2950187
https://doi.org/10.1109/ICCDW45521.2020.9318635
https://doi.org/10.1109/IHMSC.2017.164
https://doi.org/10.1109/IHMSC.2017.164
https://doi.org/10.3389/fgene.2020.566057
https://doi.org/10.1177/11769351221124205
https://doi.org/10.1177/11769351221124205
https://doi.org/10.3390/cancers14040934.PMID:35205681;PMCID:PMC8870306
https://doi.org/10.3390/cancers14040934.PMID:35205681;PMCID:PMC8870306
https://doi.org/10.1109/ICMLC.2009.5212452
https://doi.org/10.1016/S0167-8655(02)00196-4
https://doi.org/10.2991/ijcis.d.210106.003
https://doi.org/10.1016/j.ins.2020.05.039
https://doi.org/10.1016/j.eswa.2011.02.179
https://doi.org/10.1016/j.knosys.2018.03.015
https://doi.org/10.1016/j.ins.2020.05.124
https://doi.org/10.1109/ICOSEC49089.2020.9215424
https://doi.org/10.1109/CoDIT.2019.8820385
https://doi.org/10.1109/CoDIT.2019.8820385
https://doi.org/10.1016/j.oceaneng.2020.107193
https://doi.org/10.1109/CCDC.2019.8832338
https://doi.org/10.1109/AICI.2010.10
https://doi.org/10.1109/AICI.2010.10
https://doi.org/10.3969/j.issn.1000-3428.2012.15.038
https://doi.org/10.20884/1.jutif.2021.2.1.15
https://doi.org/10.1016/j.ins.2012.07.010
https://doi.org/10.1109/ICICTA.2018.00008


12

Vol:.(1234567890)

Scientific Reports |         (2023) 13:4386  | https://doi.org/10.1038/s41598-023-28316-6

www.nature.com/scientificreports/

B.K.; supervision, K.X.; project administration, K.X. and B.K.; funding acquisition, Z.M. , B.K., K.X. All authors 
have read and agreed to the published version of the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to X.K.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2023

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Research on SPDTRS-PNN based intelligent assistant diagnosis for breast cancer
	Methods and materials
	Main contents. 
	Data description. 
	Selection of training set and test set. 
	Dimension reduction algorithm and Classification algorithm. 
	SPDTRS algorithm. 
	PNN algorithm. 

	Results
	Model selection. 
	Optimization of SPDTRS-PNN model. 

	Discussion
	Conclusions
	References
	Acknowledgements


