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Improving the efficiency of using 
multivalued logic tools
Ibragim E. Suleimenov 1, Yelizaveta S. Vitulyova 2, Sherniyaz B. Kabdushev 1,3 & 
Akhat S. Bakirov 2*

Multivalued logics are becoming one of the most important tools of information technology. They are 
in great demand for creation of artificial intelligence systems that are close to human intelligence, 
since the functioning of the latter cannot be reduced to the operations of binary logic. At the same 
time, the problem of improving the efficiency of using the results of research in multivalued logics, 
as well as the problem of interpreting variables of multivalued logic, is acute. These problems create 
certain interdisciplinary barriers and make it difficult to implement the results of research in the 
field of multivalued logics in other fields of knowledge. It is shown that the problem of interpreting 
multivalued logic variables can be removed by establishing correspondence with fuzzy logic variables. 
Improving the efficiency of using of operations of multivalued logics and their variables can be 
provided by using their close connection to Galois fields. This connection, among other things, makes 
it possible to reduce any operations of multivalued logics, the number of variables in which is equal 
to a prime number, to algebraic functions whose arguments take values in Galois fields. This allows, 
among other things, to eliminate the very cumbersome constructions used in works on multivalued 
logic and make its apparatus convenient for use in related scientific disciplines in information 
technology. Direct verification of the adequacy of algorithms based on the use of Galois fields can 
be carried out by means of radio-electronic circuits, examples of which are presented in the present 
paper.

The emergence of non-Aristotelian logics (in particular, Lukasevich’s  logic1 N. Vasiliev’s "imaginary logic"2) at the 
beginning of the twentieth century was obviously connected with the transformation of the general situation in 
the philosophy of mathematics and the discussions concerning the problems of justification of mathematics and 
logic as  such3. As  noted2, N. Vasiliev proposed a project of non-Aristotelian logic built without using the law of 
contradiction, proceeding from the analogy with the non-Euclidean geometry of N. Lobachevsky, which excludes 
the use of the fifth postulate of Euclid, who also initially called his geometry "imaginary". The construction of 
logics that partially or completely refuse to use the law of the excluded third ("every statement is either true or 
false", to use the simplest version of the interpretation) has subsequently led to a great variety of multivalued 
 logics4,5, including paraconsistent  logics6, paracomplete  logics7, etc.

De facto, there are currently a huge number of varieties of multivalued logics, but the question of how exactly 
they are applicable to the description of the laws of thought remains  open8.

In this respect, it is worth pointing out that, in accordance with the tradition going back to Aristotle, logic 
was viewed as a science of how to correctly reason, as a science of the laws of thinking. This is the way J.W. Bull 
interpreted it. In a famous monograph on the history of  mathematics3 the following passage from one of J. Boole’s 
main works, "Investigation of the laws of thought", is given to illustrate exactly this approach, which prevailed 
then in the field of logic creation:

"In the treatise before us we intend to investigate the fundamental laws of those operations of the mind 
by which thinking is effected, in order to express them in the symbolic language of calculus, and on this 
basis to construct the science of logic and its method."

Obviously, most modern works on multivalued logics have departed far enough from this tradition, otherwise 
the problem of interpretation of multivalued logics and their classification would not be so acute.

The problem of applicability of multivalued logics to the reflection of laws of thought is most closely related 
to the problem of interpreting the variables of multivalued logic, which remains relevant at  present9,10. Whereas 
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within binary logic, its variables can be uniquely associated with the notion of truth, such uniqueness is lost for 
multivalued logics, which determines the relevance of research in the philosophy of multivalued logics, which 
is currently being actively  pursued11,12.

However, we must admit that a full-fledged return to the tradition that considers logic as a reflection of the 
laws of thinking, obviously, cannot be realized otherwise than on an interdisciplinary basis. This, in turn, requires 
overcoming pronounced interdisciplinary barriers. The language in which the works on multivalued logics are 
written remains difficult to comprehend for a large part of specialists in other fields of knowledge, in particular 
in information technologies.

A definite step towards overcoming the interdisciplinary barriers is knowingly solving the problem of visibility 
of variables of multivalued logics touched upon  in13,14.

To solve this problem, it is reasonable to use the correspondence between multivalued logics and alge-
braic structures, such as Galois fields, which are widely used in modern information technologies, especially in 
 cryptography15–17. This correspondence can be most easily established when the number of variables of a par-
ticular multivalued logic is equal to the degree of the prime number p. In this case, a Galois field element GF(pn) 
can be assigned to each value of a variable of multivalued logic in a one-to-one correspondence.

For Galois fields, in turn, the following illustrative interpretation can be proposed. As  emphasized18,19, the 
standard model of a signal is a function taking values on a set of real numbers. However, in the case when the 
signal is reduced to a certain set of discrete levels that fit into a finite range of amplitude measurements, this 
approach is not mandatory. A function taking values in any finite algebraic structure, such as Galois fields, can 
also be used as a signal model. The simplest kind of Galois fields GF(p) is formed through a homomorphism of 
a ring of integers to a ring of classes of deductions modulo p , where p is a prime number.

In this paper, we show that the problem of interpreting the variables of multivalued logic can be solved, for 
example, by establishing a correspondence between the variables of multivalued logic and the variables of fuzzy 
logic. Variables of multivalued logic can also be assigned to the levels of the digitized signal in the case when 
the signal model is a function that takes values in Galois fields. More broadly, the variables of multivalued logic 
can be interpreted through the establishment of links between concepts (e.g., philosophical categories). In all 
these cases, it is important to have a tool that allows you to bring logical relationships to an algebraic form. For 
the case when the set of variables of multivalued logic can be assigned to the field GF(pn) , this problem is solved 
through an analogue of the algebraic normal form presented in this paper.

Section 1 shows that the use of multivalued logic variables can be made explicit, including by mapping to 
multivalued logic variables.

Section "Visualization of the variables of multivalued logic" shows that for the case when the number of vari-
ables is equal to a prime number, instead of the truth tables traditionally used in works on multivalued logic, it 
is also possible to use an analog of the algebraic normal form (the Zhegalkin polynomial).

Section "Reduction of multivalued logic operations to algebraic ones" provides a specific example showing that 
multivalued logic operations can be performed using electronic devices built on typical binary logic components.

Visualization of the variables of multivalued logic
Clear illustrations for the practical use of variables of multivalued logics are easiest to offer, focusing on the 
approaches used in fuzzy logic. As is known, fuzzy logic establishes a certain correspondence between ranges of 
continuously varying parameters and linguistic variables marking  them20. Simplifying, the apparatus of linguis-
tic variables allows to "transform into words" the values of parameters, which, under certain conditions, can be 
quantitatively measured with high accuracy.

It is interesting to note that linguistic variables were introduced in practice long before fuzzy logic was cre-
ated. For example, in maritime, there has traditionally been a set of commands "full astern, … slow astern, …, 
slow ahead, …, full ahead." A similar conclusion is also valid in relation to the compass rose (Fig. 1), which is 
also traditionally used in maritime affairs.

Figure 1 emphasizes that the 8-element compass rose can be used to visually interpret the variables of 9-digit 
logic.

The variables of such a logic can be put in correspondence with elements of the Galois field GF(32) , which, 
in turn, can be constructed as an algebraic extension of the field GF(3).

Recall that the method of algebraic extensions can be viewed as a generalization of the method by which 
complex numbers are constructed. Let us demonstrate the fact on a simple example of the construction of the 
field GF(32).

The field GF(3) contains three elements. They can be chosen as (−1, 0, 1) by setting the following addition 
rules.

According to the method of algebraic extensions, an additional element θ , which is the root of an equation 
irreducible (having no solutions) in this field, is attached to this (or any other) field.

where f (x) is a polynomial of degree n, x is a variable that takes values in GF(3).
In the special case where n = 2 such irreducible equation is the equation that allows one to construct complex 

numbers

(1)1+ 1 = −1;−1− 1 = 1

(2)f (x) = 0

(3)x2 + 1 = 0
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Then the element θ can be treated as a logical imaginary unit, and the elements of the field GF(32) can be 
represented as

where variables a0, a1 belong to the main field.
In this case, we can perform algebraic operations with elements of the form (4) according to formulas (1) 

and (3). For example,

The rules of multiplication remain the same as in the classical use of complex numbers, in particular,

The elements of this field are listed in Table 1.
In general, any element of the field GF(3n) can be represented as a linear combination of powers of θ.

where θ is a primitive element, aj are coefficients from the main field of GF(3) , and n is the degree of the poly-
nomial f (x) generating the element θ.

The field GF(32) contains eight non-zero elements (Table 1). Using the notation (4) as a logical coordinate 
representation, these eight elements can be assigned to the directions of compass roses, which is shown in Fig. 1.

In this example there is a one-to-one correspondence between the elements of multivalued logic, linguistic 
variables, and elements of the Galois field. More precisely, the elements of the compass rose allow all the above 
interpretations, which are in a mutually unambiguous correspondence.

Thus, the problem of interpreting multivalued logic variables can be removed if these variables are inter-
preted through correspondence to fuzzy logic variables. Such an approach, as shown in Section "Reduction of 

(4)A = a0 + ia1,

(5)i + i = −i;−i − i = i;−i + i = i − i = 0,

(6)i
2 = −1; i · (a1 + ia2) = ia1 − a2,

(7)A =

n−1∑

0

θ jaj

Figure 1.  8-wind compass rose (Image was generated in Paint 22H2 https:// apps. micro soft. com/ store/ detail/ 
paint/ 9PCFS 5B6T7 2H? hl= ru- ru& gl= ru).

Table 1.  Elements of the Galois field GF(32) in the used representation.

a a2 = −1 a2 = 0 a2 = 1

a1 = −1 −1− i −1 −1+ i

a1 = 0 −i 0 i

a1 = 1 1− i 1 1+ i

https://apps.microsoft.com/store/detail/paint/9PCFS5B6T72H?hl=ru-ru&gl=ru
https://apps.microsoft.com/store/detail/paint/9PCFS5B6T72H?hl=ru-ru&gl=ru
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multivalued logic operations to algebraic ones", is generalizable. Namely, in this interpretation, rather a wide 
range of different terms (including philosophical categories) can be used instead of fuzzy logic variables. Obvi-
ously, it is not the specific set of sounds or symbols that represent them that gives meaning to natural language 
words, but the fact that each of these words is built into the overall structure of the language. Therefore, the 
meaning of terms is actually determined by the connections between them. The "True—False" opposition, which 
forms the methodological basis of binary logic, is only the simplest form of such a connection.

Let us show that for the case when the number of variables of multivalued logic is equal to a prime number, 
any operations in such logic can be reduced to operations of addition and multiplication in the Galois field.

Reduction of multivalued logic operations to algebraic ones
The operations of multivalued logic are usually displayed in the form of truth tables. So, the following Table 2 
are reflecting the operations of the logic of paradoxes by G.  Priest21.

In these tables, symbols "0", "1" and "2" are denoting logical variables. The interpretation of the variables of 
ternary logic as "Truth", "False", "Uncertainly" dates back to the works of Lukasiewicz. The interpretation of such 
operations (disjunction, conjunction, negation, etc.) as applied to ternary logic can be different, likewise, the use 
of specific symbols in such tables is nothing more than a matter of agreement.

Such a tabular representation is not always convenient. Operations on logical variables, to which elements 
of the Galois field are assigned, can be reduced to algebraic ones. For clarity, this can be done, for example, as 
follows.

To avoid cluttering the notes, we will consider the case of an arbitrary function f (x, y) , taking values in the 
field GF(p) , where x, y are elements of the same Galois field. This function corresponds to a truth table given by 
an ordered enumeration of elements f (xi , yj) , i, j = 0, 2 . . . p− 1.

Consider the following expression

where xi is a fixed element of the field GF(p).
It is known from Galois field theory that all nonzero elements of the field GF(p) are roots of the equation

That is, any nonzero element of the field GF(p) , if raised to the p− 1 st power, gives one.
Consequently, the functions gi(x) have the following property

This allows us to treat them as a logical analogue of the δ-function.
Let us form the following polynomial

where the values f (xi , yj) form a truth table like the Table 2.
When a particular pair of xi0 , yj0 values of logical variables (or more exactly, their corresponding Galois field 

elements) is substituted into expression (11), all summands appearing in the sum in the right part of formula (11) 
turn to zero because of relation (8) except the summand for which i = i0, j = j0 is satisfied. Hence, it follows that

We see that the polynomial (11) performs the same functions for multivalued logic as the Zhegalkin polyno-
mial for binary logic, i.e., relation (11) indicates a specific algebraic function which realizes a given truth table. 
It is also seen that relation (11) admits a generalization to the case of an arbitrary number of logical variables.

(8)gi(x) = 1− (x − xi)
p−1

(9)θp−1 − 1 = 0

(10)gi(x) =

{
1, x = xi
0, x �= xi

(11)F
(
x, y

)
=

i,j=p−1∑

i,j=0

f
(
xi , yj

)
gi(x)gj

(
y
)

(12)F
(
xi0 , yj0

)
= f

(
xi0 , yj0

)

Table 2.  Values of the logical function corresponding to the operations of disjunction and conjunction in the 
logic of paradoxes by G. Priest.

F
(

x, y
)

= ∨ y = 0 y = 1 y = 2

x = 0 0 1 2

x = 1 1 1 2

x = 2 2 2 2

F
(

x, y
)

= ∧ y = 0 y = 1 y = 2

x = 0 0 0 0

x = 1 0 1 1

x = 2 0 1 2
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Note that control methods based on fuzzy logic are currently being actively  developed22,23. There are known 
works, in which such methods are proposed to be used for correcting the course of  ships24.

Obviously, if a one-to-one correspondence is established between linguistic variables and Galois field ele-
ments, then all "commands" and "data" transformed to such variables can be further processed using algebraic 
functions, which can be constructed knowingly by the method described above.

Of course, for real problems, the number of variables corresponding to an 8-element compass rose is insuf-
ficient, but this is not an obstacle.

For example, starting from the field GF(7), the elements of which can be chosen as (−3,−2,−1, 0, 1, 2, 3) , 
we can construct the field GF(72).

The elements of this field are also representable in the "two-coordinate" form (4), where the coefficients a0, a1 
belong to the field GF(7).

The entry (4) in this case, for clarity, can be interpreted, for example, as a discrete representation of the velocity 
vector (in the plane), which fully corresponds to the traditional complex representation of vectors. The difference 
is that using the field GF(72) , the velocity components are discrete, and they can be assigned to seven linguistic 
variables "full astern, half astern, small astern, stop engine, small ahead, half ahead, full ahead".

The use of such a field also allows us to map the linguistic variables corresponding to the 16-item compass 
rose, Fig. 2.

Namely, the number of non-zero elements of the field GF(72) is 48. Consequently, they are all roots of the 
equation

Formula (13), among other things, shows that among the elements of the field GF(72) there are 16 elements 
that satisfy the equation

These 16 elements can be viewed as roots of the 16th degree from one, and they form a group by multiplica-
tion. Consequently, they can be assigned linguistic variables corresponding to the 16-element compass rose.

Thus, the mutually unique correspondence between multivalued pn-logics, where p is prime number, n is 
integer and Galois fields GF(pn) creates all preconditions for making operations on variables of multivalued 
logic as clear as possible.

It can be argued that visualization in this respect is provided not so much for variables of multivalued logic 
as for elements of Galois fields. However, the visual representation of operations on the variables of multivalued 
logic mapped through Galois fields has also a philosophical aspect directly related to the problem of interpreta-
tion of the values of the mentioned variables and to the problem of correlation of laws of thinking and multi-
valued logics touched upon  in8.

(13)x48 − 1 =
(
x16

)3
− 1 =

(
x16 − 1

)(
x32 + x16 + 1

)
= 0

(14)x16 − 1 = 0

Figure 2.  16-element compass rose (Image was generated in Paint 22H2 https:// apps. micro soft. com/ store/ 
detail/ paint/ 9PCFS 5B6T7 2H? hl= ru- ru& gl= ru).

https://apps.microsoft.com/store/detail/paint/9PCFS5B6T72H?hl=ru-ru&gl=ru
https://apps.microsoft.com/store/detail/paint/9PCFS5B6T72H?hl=ru-ru&gl=ru
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Namely, the meaning of the variables of binary logic relates to the philosophical category of truth. This cat-
egory belongs to the number of basic concepts, the question about the nature of which is closely related to the 
problem of the existence of undefined concepts. Indeed, to "define" means to reveal the meaning of one term 
through others. Trying to reveal all the terms available in a language in this way leads knowingly to a vicious 
circle.

Objective dialectics finds a way out by defining the basic categories through the oppositions "quantity–qual-
ity," "content–form," etc. Such an approach, in particular, was  used13,25 in order to reveal as correctly as possible, 
the meaning of the category "information", which it was suggested to consider as a philosophical category paired 
with the category of matter.

The problem of adequate interpretation of the concept "information" as emphasized  in26,27 becomes more 
and more relevant in connection with the research in the field of artificial intelligence, but for the purposes of 
our article the approach of "definition through contraposition" itself is more important.

Namely, it shows that for the definition of basic notions the most important is the structure of relations 
between them, and contraposition is only one of the forms of such relations, and the one that knowingly cor-
responds to binary logic and Galois binary fields. Obviously, other forms of connections between basic concepts 
cannot be reduced to a simple contraposition.

This indicates for example the existence of a pronounced methodological (philosophical) aspect of the devel-
opment of command languages (even at the level of specific technical systems), which constitute a closed whole 
at the expense of relations written in algebraic form. Moreover, it is extremely difficult to develop closed "lan-
guage" systems at the level of abstraction. It is much more convenient (and illustrative) to do this by solving 
specific problems, for example, those related to control of moving vehicles, in terms of fuzzy logic converted 
into algebraic form.

This formulation of the question makes it even more urgent to ensure the visibility and usability of multivalued 
logics. The following section deals with specific computational tools oriented to the use of logics corresponding 
to the fields GF(7n).

This example allows you to clearly demonstrate that it is possible to implement various kinds of devices that 
perform calculations in terms of multivalued logic, but at the same time built on the basis of typical electronic 
components using binary logic.

Computational implementation of seven-digit logic operations
Currently, algorithms and schemes of radioelectronic devices that perform calculations modulo are widely 
represented in the literature. Thus, such algorithms are used in encryption, coding devices, in compression and 
transmission of information, in automation  devices28–30.

As shown above, any functions whose arguments are variables taking values in the Galois field can be explicitly 
reduced to algebraic expressions which involve only multiplication and addition operations modulo p.

Consequently, multipliers and adders modulo p are the basis for automating any operations on logical (lin-
guistic) variables. Devices of this type can be implemented by rather simple means, as it is proved below.

The block diagram of the multiplier of the considered type is presented in Fig. 3. The scheme includes adders 
(marking on the scheme is � ), which count the number of units on the inputs ai corresponding to the number 
representation in binary form. It is supposed, that on the input of the system no signals corresponding to number 
7 or number 0 are input. This is acceptable, since when calculating modulo 7, 7 ≡ 0(7) takes place, therefore, in 
this case, the calculated product is equal to zero. In this case �ai can take values 1 or 2, as in the binary notation 
of numbers that vary from 1 to 6, there are at least one and at most two units.

Then

where ai are characters in the binary notation of the number, a bar over the character means the inversion opera-
tion, i.e., 0 changes to 1 and vice versa.

Due to the associativity of multiplication modulo, the product of any two non-zero elements of the field GF(7) 
can be reduced to the multiplication of two numbers in binary representation, and in both of these numbers only 
one of the symbols ai will be non-zero.

Correspondent operation is realized by the inverter block (the standard inverter designation is used in the 
scheme) controlled by the signal taken from � elements. If logical zero is formed on the output of these elements, 
signals ai and bi remain unchanged, if logical one, they take inverse values.

The signal sets ãi and b̃i , reduced to a format in which only one of the variables of these sets is non-zero, are 
fed to the direct multiplier block (schematic designation—⊗).

The signal set c̃i from the output of the direct multiplier is fed to the output inverter block, which operates in 
the same way as the input inverter block.

The schematic diagram of the direct multiplication block is shown in Fig. 4.
This block works as follows.
The prime number 7 is a special case of prime Mersenne numbers, represented in the form pm = 2n − 1 . 

Such numbers have the following property. Multiplication of any number by 2 modulo pm results is a cyclic 
permutation of symbols. For example,

where ai are binary characters.
Let us consider the product of two numbers B · A written in binary notation. We have

(15)6 · a3a2a1=(7)a3a2a1

(16)2 · a2a1a0=(7)a1a0a2
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According to formula (16), products 2m · A may be written through cyclic permutations, i.e. the product 
calculated modulo 7, is the sum of the following three numbers written in binary form as

where only one of the bi values is 1, and the rest are 0.
Each of the binary three-digit numbers appearing in formulas (18)–(20) can also be written in powers of two.
Consequently, the result of multiplication in calculations modulo 7 can be written as

where

Since inverters are used in the circuit under consideration, in formula (22)–(24) only one of the values ai 
and only one of the values bi is equal to 1, the rest are equal to 0. Consequently, among all the values ci only one 
is also equal to 1, and the rest are 0.

Therefore, the result of the product corresponds to the three outputs of the circuit, on which the logical vari-
ables ci are formed.

Since of all the values bi only one is equal to 1, then three options are possible.
If b1 = 1 , then

(17)B · A=(2)b3 · 2
2 · A+ b2 · 2

1 · A · +b1 · 2
0 · A

(18)b1 · a3a2a1

(19)b2 · a2a1a3

(20)b3 · a1a3a2

(21)B · A=(2)c3 · 2
2 + c2 · 2

1 · +c1 · 2
0
,

(22)c3 = b1a3 + b2a2 + b3a1

(23)c2 = b1a2 + b2a1 + b3a3

(24)c1 = b1a1 + b2a3 + b3a2

Σ 

Σ 

Σ 

Figure 3.  Block diagram of the modulo multiplier by seven (Image was generated in PowerPoint Microsoft 365 
https:// www. micro soft. com/ en- ww/ micro soft- 365/ power point).

https://www.microsoft.com/en-ww/microsoft-365/powerpoint
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If b2 = 1 , then

If b3 = 1 , then

If b1 = 1 , then the state of outputs c_i repeats the state of inputs ai , if b2 = 1 , then there is a cyclic permutation 
one position to the right, and if b3 = 1 , then one position to the left.

A scheme that provides such a permutation can be implemented in various ways. One of them is based on a 
set of operations, which can be represented schematically as follows.

These notations imply that the NO and OR operations are applied to each of the boolean variables appearing 
in the sequences. Formulas (28) and (29) show only a particular case; they obviously remain valid for cyclic 
permutations as well.

From these formulas it follows that the permutation corresponding to formulas (25)–(27) can also be imple-
mented in the way that is implemented by the scheme of Fig. 4.

(25)(c3, c2, c1) = (a3, a2, a1)

(26)(c3, c2, c1) = (a2, a1, a3)

(27)(c3, c2, c1) = (a1, a3, a2)

(28)NO[(0, 1, 0)OR(0, 0, 1)] → NO(0, 1, 1) → (1, 0, 0)

(29)(0, 1, 0)OR(0, 0, 0) → (0, 1, 0)

& 

& 

& 

& 

& 

& 

1 

1 

1 

1 

1 

1 

Figure 4.  Schematic diagram of a direct multiplier (Image was generated in PowerPoint Microsoft 365 https:// 
www. micro soft. com/ en- ww/ micro soft- 365/ power point).

https://www.microsoft.com/en-ww/microsoft-365/powerpoint
https://www.microsoft.com/en-ww/microsoft-365/powerpoint
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In this case, if b1 = 0 , an additional inversion of the signal is performed, which corresponds to the execution 
of operation (28). According to the diagram in Fig. 4 this operation is performed by the adder, the output of 
which is connected to the output inverter.

The complete scheme, made in the NI Multisim  application31, is shown in Fig. 5.
As follows from the above description of the multiplier, its scheme takes into account the most important 

specific features of computational systems carrying out operations in Galois fields, which are directly connected 
with operations of multivalued logic.

Conclusion
This paper shows that the problem of interpreting the variables of multivalued logic does not necessarily have 
to be solved through the involvement of the philosophical category of truth. A possible option is to use a close 
connection between the variables of multivalued logics, whose number of elements is equal to the degree of a 
prime number, with Galois fields. In this case it is possible, among other things, to establish a connection between 
the variables of multivalued logic and the linguistic variables used in fuzzy logic. In addition, this relationship 
allows to reduce any operations on variables of multivalued logic to the calculation of algebraic functions whose 
arguments take a value in the Galois field. Otherwise, any operations of multivalued logics of the specified type 
can be reduced to the operations of addition and multiplication modulo the degree of a prime number.

Such operations, in their turn, can be realized by means of radio electronic circuits assembled on typical 
elements, performing operations of binary logic. At the same time, as shown in the example of implementation 
of such circuits, they can be quite simple.
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