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Influence of Dzyaloshinskii–Moriya 
interaction and perpendicular 
anisotropy on spin waves 
propagation in stripe domain 
patterns and spin spirals
Pawel Gruszecki 1* & Jan Kisielewski 2

Texture-based magnonics focuses on the utilization of spin waves in magnetization textures to 
process information. Using micromagnetic simulations, we study how (1) the dynamic magnetic 
susceptibility, (2) dispersion relations, and (3) the equilibrium magnetic configurations in periodic 
magnetization textures in a ultrathin ferromagnetic film in remanence depend on the values of the 
Dzyaloshinskii–Moriya interaction and the perpendicular magnetocrystalline anisotropy. We observe 
that for large Dzyaloshinskii–Moriya interaction values, spin spirals with periods of tens of nanometers 
are the preferred state; for small Dzyaloshinskii–Moriya interaction values and large anisotropies, 
stripe domain patterns with over a thousand times larger period are preferable. We observe and 
explain the selectivity of the excitation of resonant modes by a linearly polarized microwave field. We 
study the propagation of spin waves along and perpendicular to the direction of the periodicity. For 
propagation along the direction of the periodicity, we observe a bandgap that closes and reopens, 
which is accompanied by a swap in the order of the bands. For waves propagating in the perpendicular 
direction, some modes can be used for unidirectional channeling of spin waves. Overall, our findings 
are promising in sensing and signal processing applications and explain the fundamental properties of 
periodic magnetization textures.

Magnetic texture-based  magnonics1–3 is a subfield of  magnonics4 focused on spin wave (SW) dynamics in non-
uniform magnetization textures, such as single domain  wall5–8,  skyrmion9, or periodic magnetization textures 
such as skyrmion  lattices10,11 or stripe domain  patterns12–15. The primary advantages of using magnetization 
textures as a medium for SW propagation with respect to uniformly magnetized nanofabricated films are (1) no 
need for complex nanostructuring and reduced impact of defects, (2) reprogrammability, and (3) the ability to 
couple magnetization dynamics with the magnetization textures. The latter one enables the emission of short-
wavelength  SWs16–21 and nonlinear interactions of SWs with the texture  itself22–25. Magnetic domain walls can 
be used as ultra-narrow  waveguides7,8,26–28, phase  shifters6,29–32, or  polarizers33. The SW dispersion relation in 
periodic magnetic textures is also  periodic34 and may possess  bandgaps12,14,35, therefore, periodic magnetization 
textures can serve as magnonic  crystals36,37 with lattice constants down to tens of nanometers that are unattain-
able by other  techniques12,13,38. These systems are also of great interest from a fundamental point of view, e.g., 
Goldstone and Higgs modes can be found  there39.

Basic magnetic parameters determining the internal structure and chirality of magnetization textures are film’s 
thickness, quality factor (Q) being the ratio of the perpendicular magnetocrystalline anisotropy (PMA) to demag-
netization energies, and the Dzyaloshinskii–Moriya  interaction40,41 (DMI). Together with the exchange constant 
and the saturation magnetization, these parameters determine the periodicity of magnetization  textures38,42. 
Besides, DMI also influences SW flow in uniformly magnetized thin films introducing  nonreciprocity43–46.

Spin spirals are type of the fundamental magnetic configurations in thin films with DMI and PMA through 
which SWs can  propagate47,48. Spin spirals, due to the chiral nature of DMI, are characterized by a continuous 
chiral rotation of magnetization in the plane parallel to the direction of periodicity. Intriguingly, the spatial 
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distribution of spin spiral, in which magnetic moments rotate in a plane parallel to the direction of propagation, 
resembles the profile of Damon–Eshbach SWs in ultra-thin films. Although the spectrum of resonance modes 
in periodic stripe domain patterns has been studied for  years49–52, spin spirals, through which SWs can also 
propagate, have not been extensively studied as one-dimensional magnonic crystals.

In this paper, we study how spin spirals’ and stripe domain patterns’ static and dynamic properties depend on 
DMI and PMA and show transition between the two states. We analyze the influence of DMI and PMA changes 
on the resonance spectrum. We focus on the selectivity of the excitation of resonances, analyze the propagation 
of SWs, show the prospects of using spin spirals as magnonic crystals, and reveal the fundamental properties 
of magnetization disturbances propagation in such systems. We conclude this paper by analyzing the propaga-
tion along the domains, in particular focusing on unidirectionally propagating waves we found in our system.

Results
Static magnetic configuration in dependence on DMI and PMA. Let us consider a 2 nm thick Co 
film (the saturation magnetization MS = 1420 kA/m and the exchange constant Aex = 13 pJ/m ) in the rema-
nence (at zero external magnetic field) and analyze how the magnetic configuration depends on the DMI and 
PMA values. We use micromagnetic  simulations53 to determine the magnetic configuration [ M = (Mx ,My ,Mz) , 
where z is perpendicular to the film’s surface, and x is the direction of periodicity] corresponding to the mini-
mum energy density of the system. Figure 1(left panel) shows the colormap with isolines depicting the lattice 
constant (A) of magnetization textures as a function of PMA (represented as Q) and DMI (D) (see “Methods” 
for more details). Overall, depending on the interplay between these parameters, we observe the in-plane phase 
(the white region in the plot), spin spiral, or a stripe domain pattern with Néel- or Bloch-type domain walls. 
Exemplary magnetic configurations for points marked by ‘X’ in Fig. 1(left panel) are shown in the right panel of 
Fig. 1. It is visible that the period varies by more than three orders of magnitude depending on D and Q. In the 
case of D = 0 , we obtain stripe domains with Bloch domain walls (the out-of-plane phase) for Q ≥ 1 and the 
in-plane phase for Q < 1 . It shows the physical meaning of Q (the ratio of PMA to demagnetization energies), 
confirming that the out-of-plane phase is obtained for Q > 1 in the limit of thickness approaching 0. The periods 
are relatively large, A = 250 nm for Q ≈ 1 , A = 1230 nm for Q = 1.1 , and tens of micrometers for Q � 1.4.

Let’s examine how the magnetic configuration changes along the white path in Fig. 1(left panel). The changes 
of A and 〈M2

z 〉 are depicted in Fig. 2d. Firstly, while DMI increases at constant Q, the period decreases. For the 
second part of the path at fixed D = 6mJ/m2 , the period is equal to A = 27 nm (see exemplary configurations 
in Fig. 1b,c). For Q = 1.1 and decreasing value of D, A increases by a few orders of magnitude, and since 〈M2

z 〉 
increases, the up and down domains become distinguishable (compare Fig. 1d–f). Finally, with decreasing D, 
classical stripe domain patterns are established, with up and down domains and narrow domain walls (compared 
to domain size). The walls are firstly of the Néel type, followed by the Bloch type for D approaching 0, with some 
mixed Bloch–Néel configuration in between (see Fig. 1e). Overall, for most of this path, the spin spiral state with 
different lattice constant is the equilibrium magnetic configuration (see Fig. 1a–c).
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Figure 1.  (Left panel) Color map and isolines representing the lattice constant (A) of periodic magnetic 
textures as a function of DMI (D) and PMA (Q) values. The presented simulations are done with a Q step 
of 0.05 and a D step of 0.25 mJ/m2 . The white color denotes the in-plane phase in the remanence. The 
white line marks the trajectory in the (D, Q)-space for which the dynamics is studied. The red “X” symbols 
indicated combinations of (D, Q) for which special emphasis in the analysis is given. (Right panel) Magnetic 
configurations for the points marked in (left panel) as (a–f), i.e., (a) Q = 0.7 , D = 5 mJ/m2 , A = 33 nm , (b) 
Q = 0.74 , D = 6mJ/m2 , A = 27 nm , (c) Q = 1.0 , D = 6mJ/m2 , A = 27 nm , (d) Q = 1.1 , D = 3mJ/m2 , 
A = 57 nm , (e) Q = 1.1 , D = 0.4mJ/m2 , A = 960 nm , and (f) Q = 1.1 , D = 0 , A = 1230 nm . The red, green, 
and blue lines correspond to Mx , My , and Mz components of the reduced magnetization, respectively. For a 
more illustrative representation of the magnetic configurations, we have visualized them using arrows in the 
gray stripes on top of each plot. These arrows depict the cross-sectional view ( (x, z)−plane ) of the magnetic 
configuration.
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SW resonances in dependence on DMI and PMA. The excitation of resonances by a spatially uniform 
microwave field is fundamental from the application point of view. We analyze how the dynamic  susceptibility50 
Imχln changes while following the trajectory marked in Fig. 1, where l, n ∈ x, y, z . Imχln represents the response 
of ml component of dynamic magnetization ( �m� ≪ MS ) to the excitation by a microwave field polarized along 
the n-axis.

Separate simulations for x-, y-, and z-polarized microwave fields are performed (see “Methods”), and simu-
lated spectra are shown in Fig. 2a–c, respectively. The figures utilize the RGB color model, where the response 
of each component of the dynamical magnetization corresponds to one of the primary colors that are additive. 
Namely, red, green, and blue correspond to the space-averaged response of mx , my , and mz , respectively. These 
three plots are combined in Fig. 2d. We can see that the x-polarized microwave field excites only one band, which 
has red color. Similarly, the z-polarized microwave field excites only one blue band, whereas, the y-polarized 
field excites two green bands. What is important from the application point of view (e.g., in sensing) in an ideally 
aligned magnetization pattern, using linearly polarized microwaves we can selectively excite different resonant 
modes. The explanation of this selectivity of excitation will be provided in the subsequent subsection.

Let us analyze how the frequencies of the presented bands changes with D and Q. For constant Q = 0.7 , while 
the DMI increases, the frequencies of the blue and red bands increase since the lattice constant A decreases. 
The horizontal green low-frequency band, independent of Q and D corresponds to the Goldstone  mode39. The 
origin of the green color of this band will be discussed later in the paper when analyzing the dispersion rela-
tions for waves propagating along the x axis. For constant D = 6mJ/m2 and Q increasing from 0.7 up to 1.1, 
we can observe that the blue and red bands swap order, i.e., the frequencies of the blue band decreases, whereas 
the frequencies of the red band grows. It leads to the crossing of the red and blue bands at D = 6mJ/m2 and 
Q = 0.74 . Interestingly, there is no signature of the interaction between these modes, since they degenerate. A 
significant change of the frequencies of the blue and red bands is surprising since the lattice constant does not 
change, A = 27 nm . The only visible difference occurring in the spin texture for this segment is a slight increase 
of the value of 〈M2

z 〉 due to the increase of PMA strength. We will explain the different monotonicity of frequency 
changes of the red and blue bands in the next subsection. Finally, for the last segment where D decreases from 
6mJ/m2 down to zero at Q = 1.1 , we observe that A and 〈M2

z 〉 increase (cf. in Fig. 2d). It corresponds to the 
gradual transition of the spin spiral into a stripe domain pattern with narrow domain walls separating flat up 
and down domains. As expected, we observe that the frequencies of the resonant modes decrease. Moreover, at 
D ≈ 4mJ/m2 , we notice the presence of a new green band, whose frequencies also decrease with a decrease of 
D and an increase of the lattice constant. Finally, the frequency of the blue band drops to zero as D approaches 
zero and the frequencies of the red and the higher green bands become very close to each other.

Resonance mode profiles. To understand better this spectrum, we analyze the mode profiles for four combina-
tions of (D, Q) indicated in Fig. 2 by the vertical lines. The points a–d, marked by ‘X’ in the left panel of Fig. 1 are 
shown in Fig. 3a–d, respectively. We will call the modes by a color (red, green, and blue) according to the color 
of the band in Fig. 2 they originate from. The profiles of the red and blue modes for Q = 0.7 and D = 5mJ/m2 
are shown in Fig. 3a. For the red mode at f = 21.7 GHz , mx , and my have a twice greater period than mz , and the 
amplitude of all three dynamical components are comparable. The mx component oscillates in-phase; therefore, 
it does not average to zero, whereas the space average of my and mz is equal to zero. It explains the red color of 
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Figure 2.  Resonance spectrum in dependence on D and Q calculated separately for the excitation by microwave 
field polarized along (a) the x-axis, (b) the y-axis and, (c) the z-axis (see graphical representation in top left 
corners of each subplot). The calculations are done along the path marked in Fig. 1. The intensity of red, green, 
and blue colors correspond to the intensities of the space-averaged dynamic components of the dynamical 
magnetization |�mx�(f )| , |�my�(f )| , and |�mz�(f )| , respectively. Therefore, plots (a–c) represent all components of 
dynamical susceptibility. (e) Combined results from (a–c). The vertical lines labeled by bold letters a–d indicate 
the parameters selected for further simulations shown in Figs. 3 and  4 and denoted there by the same letters. (d) 
The lattice constant (the empty black squares) and space averaged square of the out-of-plane component of the 
magnetization 〈M2

z 〉 (the red dots) in the dependence on D and Q plotted along the path marked in Fig. 1.
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this band in Fig. 2. The amplitudes are concentrated only in regions where Mz  = 0 . In the case of the blue mode 
( f = 25.4 GHz ), the my amplitude is much higher than of the other components, and it is concentrated at the 
regions where Mz is close to zero. However, it averages to zero. By contrast, the much smaller amplitude of the mz 
component (the blue line) does not average to zero since it does not cross zero, whereas �mx� = 0 . This explains 
the blue color of the band. It may also suggest a weaker efficiency of the excitation of the blue mode than the red 
mode. Furthermore, the mx component changes with doubled spatial frequency of my and mz.

Different monotonicity of frequency changes of red and blue modes and their crossing for D = 6 mJ/m2 
can be explained by analyzing the resonant mode profiles. As described earlier, the red mode has its amplitude 
concentrated near the regions of the texture, where Mz  = 0 while the blue mode is around areas with Mz = 0 . 
Thus, as the contribution of PMA increases, the 〈M2

z 〉 increases, and the spin spiral slowly transforms towards a 
stripe domain pattern, i.e., the regions with |Mz | ≈ 1 flatten out. As the value of PMA increases, the energy of 
oscillation of deviations from the perpendicular direction increases, which explains the increase in the frequency 
of the red band when Q increases and the value of the lattice constant is maintained. In contrast, the energy of 
the domain-wall localized blue mode decreases as a result of the increase of the PMA trying to direct magnetic 
moments in a perpendicular direction. Consequently, the increase of Q and the flattening of magnetic domains 
leads to a scenario typical of stripe domains: modes located in domain walls have lower frequencies than modes 
located in magnetic  domains7.

For the mode crossing at Q = 0.74 and D = 6mJ/m2 shown in Fig. 3b, we had to prepare separate simulations 
for the microwave field polarized along either the primary directions. It allowed us to separately visualize two 
degenerated modes at the same frequency. It is visible that for the first mode, the amplitude of mx component 
does not average to zero, whereas, for the second mode, the amplitude of mz does not average to zero. This is an 
important result because it shows that even for degenerated modes, we can decide which mode will be excited 
by choosing the polarization of the microwave field. Moreover, this clearly confirms that the red and blue modes 
do not interact with each other. Interestingly, in the simulation where we assumed the linear polarization of the 
microwave field along the diagonal axis [1, 1, 1], only the red mode was visible, which confirms that it is much 
easier to be excited.

For the third set of parameters ( Q = 1 and D = 6mJ/m2 ) shown in Fig. 3c, the blue mode swaps order with 
the red mode. However, the mode profiles do not change significantly with respect to Fig. 3a. Finally, for the 
fourth set of parameters depicted in Fig. 3d, we observe similar profiles of the first two modes as in the previ-
ous set of parameters. This spatial distribution is slightly modified due to the flattening of the regions where 
|Mz | ≈ 1 , see Fig. 3d. Moreover, a new green mode appears in the considered frequency range. It is a mode with 
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the amplitude concentrated within the up and down domains and quantized across the domain widths. Therefore, 
its frequency is much greater than 65 GHz for smaller lattice constants. In the case of this mode, only my does 
not average to zero, which explains its green color in the spectrum.

The mode profiles for the blue band are characterized by large amplitude oscillation of my and much weaker 
oscillations of mx and mz (cf. Fig. 3, the only exception is visible for the point of crossing visible in Fig. 3c). There-
fore, one might see the resemblance of dynamic magnetization distribution corresponding to the blue band and 
Bloch-type domain walls. This is particularly intriguing since the frequencies of the blue band for D approach-
ing 0 drop down to f = 0 , and it coincides with the emergence of Bloch-type domain walls with magnetization 
rotated towards y-axis (with My = ±1 ) separating up and down domains. It may suggest a close connection of 
this mode with the Bloch-type domain wall; however, this topic requires further study.

Dispersion relations. Let us focus on the propagation of SWs in these textures for two basic propagation 
directions, i.e., along the x- and y-axis. Noteworthy, the presented before mode profiles can be understood as 
SWs with wavevector k = 0 . The dispersion relation dependencies on kx and ky displayed in Fig. 4 are computed 
for the same sets of parameters as the mode profiles shown in Fig. 3. Here, again, we utilize the same RGB color 
model to depict oscillations of the |mx| , |my| , and |mz | . The intensity of the absolute value of each component is 
related to the amplitude of the corresponding primary color (see “Methods” for details).

Propagation along the y‑axis (along domains). For the propagation of SWs along the y-axis, we see that the dis-
persion relation is reciprocal similarly as in weak stripe domain  patterns12,28. We see that the hue of the three low-
est bands differs, and we can distinguish magenta, yellow and cyan bands. For higher frequencies, the magenta 
band turns pale cyan or white, and the yellow and cyan bands swap order (cf. Fig. 4a–c) similar to the red and 
blue bands in Fig. 2. The hue indicates the type of the mode. The yellow band result from the dominating oscil-
lations of the mx and my components of magnetization and, therefore, it is mostly concentrated in the regions 
with |Mz | approaching 1. The cyan band is related to the oscillation of my and mz , thus, it is mostly concentrated 
in the regions with |Mx| approaching 1. Finally, the lowest band turns magenta for low frequencies (oscillations 
of mx and mz ). Since for k = 0 the frequency is equal to zero, the origin of this mode can be understood as the 
domain wall flexure oscillation. One can think about this mode as a counterpart of the Winter’s  magnons5 for 
the magnetic moments rotating in the (x, z)−plane similarly as a Néel-type domain wall. Furthermore, compar-
ing Figs. 2 and  4 we can conclude that the two lowest bands for D < 1 mJ/m2 merge at f = 0 and represent an 
oscillation of Bloch-type domain wall, i.e., classical Winter’s  magnon5.

To better understand the nature of these three bands, let us analyze the mode profiles of SWs with ky > 0 
at frequency 20 GHz for the system with D = 3 mJ/m2 and Q = 1.1 , see Fig. 5. The first mode profile represent 
SWs with the amplitude concentrated in regions with Mz  = 0 , cf. Fig. 5a–d. We can see that the amplitude of 
this mode in the RGB representation turns yellow. It occurs because in the regions where Mz  = 0 , the amplitude 
of mx and my is substantially larger than the amplitude of mz . It also explains the yellow color of the band in the 
dispersion relation. The second and the third modes, shown in Figs. 5e–h and 5i–l, respectively, depicts SWs 
concentrated in regions around Mz = 0 . For the sake of simplicity and consistency with stripe up and down 
domains, let us call these regions domain walls. We can observe that the amplitudes of these modes are localized 
in every second domain wall (different for the second and third modes). It is an analogous observation as in the 
case of weak stripe domain  patterns2,14,28, where the unidirectionality was found for thicker films without DMI 
and caused by the complex corkscrew type internal structure of domain walls and dipole interactions. Finally, 
in the RGB representation of the SW amplitude, we can see that these unidirectional modes are blue-dyed. It 
agrees with the color of the cyan band in the dispersion relation.

Figure 4.  Dispersion relations for SWs propagation along the y-axis ( ky , left panels) and along the x-axis ( kx , 
right panels) for the selected sets of parameters used in Fig. 3 and kept numeration of subplots. The RGB color 
model is utilized to depict the oscillation’s amplitudes of |mx| (red color), |my| (green color), and |mz | (blue color). 
Thus, cyan, magenta, and yellow (as additive mixtures of RGB components) depict dominating oscillations of my 
and mz , mx and mz , mx and my , respectively. White color indicates oscillations of all three components. The gray 
horizontal bars denote positions of bandgaps.
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Propagation along the x‑axis (across domains). For the propagation along the x-direction (right panels in 
Fig. 4a–d), we observe that the dispersion is periodic, as in the case of magnonic crystals. However, unlike for 
weak stripe  domains12,14, here, all the bands change monotonically within one Brillouin zone. We can distin-
guish two colors of the bands, green (oscillations of my ) and magenta (oscillations of mx and mz ). These bands 
look similar; however, the green bands are shifted by 2π/A with respect to magenta bands. The periodicity 
of the green and magenta bands in the reciprocal space equals 4π/A , i.e., it is twice greater than the texture’s 
periodicity in the real space suggests. These are similar results as reported in the case of weak stripe domain 
 patterns12. It is caused by the symmetry of the mode profiles. For instance, the Goldstone  mode12 for mx and mz 
correspond in the spectrum to the points (f = 0, k = 2π(2n+ 1)/A) (for n = 0,±1,±2, . . . ), whereas for my 
to (f = 0, k = 4πn/A) . As a side note, the fact that the purely green band descends to zero frequency at kx = 0 
also explains the green color of the band for f = 0 in the resonance spectrum shown in Fig. 2 since at f = 0 
with k = 0 only my oscillates. In general, all green bands are shifted along the kx-axis with respect to the magenta 
bands. A simplified explanation of this effect on the example of a fundamental mode can be found in the sup-
plementary materials of Ref.35. A similar effect occurs in the frequency domain for elliptical precession, where 
different temporal frequencies of oscillations of different magnetization components are present. This effect is 
used in parametric parallel  pumping54, where the magnetization component aligned with the effective field oscil-
lates with twice greater temporal frequency than the orthogonal  components55. Here, we observe an equivalent 
effect in the wavevector-space where the spatial frequency is different for my than for mx and mz.

Discussion
The results of our numerical study have many important implications. Let us first discuss the merging of the two 
lowest bands for Q > 1 and low DMI values visible for both FMR spectra dependence on D and for dispersion 
relations, cf., Figs. 2 and  4, respectively. Similarly, as for the propagation along the y-axis, the two lowest bands 
for Q = 1.1 drops to f = 0 for D approaching 0. This is caused by very large separations between domain walls 
which, therefore, decrease the strength of the coupling between them. Moreover, the lowest two bands do not 
backfold at the boundary of the Brillouin zone. It further confirms our interpretation of the origin of the first 
two bands as magnetization texture oscillations originating from the Goldstone mode. For all the higher bands, 
the backfolding occurs at the boundary of the Brillouin zone; thus, we associate them with typical SW excita-
tions. Accordingly, we can distinguish two types of bandgaps, (1) between the texture’s and SW’s bands and 
(2) bandgaps resulting from the interaction of SWs. Since there is no interaction between SWs and the texture 
oscillations, the first bandgap closes in Fig. 4b.
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Let us now discuss the propagation of SWs along the y-axis in the range of parameters where the first two 
bands degenerate at ky = 0 and f = 0 , which corresponds to the stripe domain patterns characterized by larger 
lattice constants. Here, we focus on the propagation along the y-axis for Q = 1.1 and two values of DMI, i.e., 
D = 0.4 and D = 0 mJ/m2 . These combinations of D and Q correspond to the magnetic configurations shown in 
Fig. 1e,f that are characterized by lattice constants being tens of times larger than for the system previously used 
to calculate dispersion relations. In order to reduce the required resources to run the simulation, we performed 
simulations for a single lattice constant with assumed periodic boundary conditions (see details in “Methods”). 
This assumption forced a robust period of the simulated system. Figures 6 and 7 show the dispersion relations 
and mode profiles for the first four bands for D = 0 and D = 0.4 mJ/m2 , respectively. These two dispersion rela-
tions are very similar to each other. It can be seen that the first two bands for ky = 0 are degenerated at f = 0 
and represent waves located in the domain walls. For D = 0 the higher frequency bands representing SWs 
(from the third band up) are more closely packed than for D = 0.4 mJ/m2 . It can be seen that a wave localized 
in and propagating along a domain wall have different wavelengths depending on the direction of propagation, 
cf. Figs. 6b,c and 7b,c (it is a similar result as for spin spirals, see Fig. 5). The third and higher bands represent 
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successive modes localized in magnetic domains that differentiate by quantization, see Figs. 6d,e and 7d,e. At 
ky = 0 , the third and fourth bands correspond to the red and green bands in the resonance spectrum, cf. Fig. 2e.

For the range of D values for which the resonance frequencies of the first two bands degenerate at f = 0 
(see Fig. 2), we were unable to determine dispersion relations for the propagation along the x-axis (the result-
ing images were very noisy without visible magnonic bands). This was because the magnetic configuration 
was slightly changing during the simulation, although the average period remained the same as in our static 
simulations. We interpret this result that in ultra-thin films, DMI stabilizes regular magnetic textures with a 
constant period similar to the dipole interactions in the case of thicker layers and  multilayers12,13. This result 
seems intuitive because, looking at the dispersion relations for propagation along the x-axis, one can see that as 
DMI decreases, the frequencies of the first two bands decrease. This indicates that for a value of D for which the 
resonant frequency of the second mode (waves at k = 0 ) drops to zero, the first two bands merge at f = 0 in the 
whole ky range. Our interpretation indicates that the magnetic texture for this scenario is not stable enough to 
allow us to determine a clear dispersion relation and thus cannot be applicable as a magnonic crystal. This is an 
intriguing subject that requires further research in the future.

The behavior of SWs at Q = 0.74 and D = 6mJ/m2 is particularly interesting. For the propagation along the 
x-axis, there is a linear band crossing of the second and third band at k = 0 with no sign of hybridization. At 
this point occurs the swap of the bands order of modes associated with SWs and texture oscillations, i.e., this 
is the point where the order of the cyan and yellow bands changes for the propagation along the y-axis and the 
blue and red bands swap in FMR spectrum (cf. Fig. 2). Changing the order of the bands for the set of parameters 
when the linear crossing of the bands occurs is a typical feature of the topological transition  point56. It indicates 
a very interesting direction of further research in magnonics and the topological properties of our system will 
be studied in details in the future.

Different colors of the bands for propagation along domains (the y-axis) in Fig. 4 suggest the possibility of 
selective excitation of waves depending on the polarization of the locally applied microwave field. Accordingly, 
let us analyze the influence of the polarization of a locally applied microwave field on the emission of SWs 
propagating along the y-axis. Instead of studying the eigensolutions of the system as previously, let us examine 
the system’s response after a certain time of continuous SW emission. In our case, 0.52 ns is long enough to 
achieve the steady-state. SWs are excited by a locally applied microwave field in the region of a width of w = 10 
nm centered at y = 0 indicated by the red color in Fig. 8 where the amplitude distribution of the my component 
of magnetization is shown. The simulations are performed for Q = 1 and D = 6 mJ/m2 and for three different 
polarizations of the microwave field. Namely, we use the microwave field at the frequency f0 with the distribu-
tion described by the function hc(t, y) = h0sin(2π f0t)rect(y/w)�jδcjej , where rect is the rectangular function, 
µ0h0 = 10 µ T, c ∈ {x, y, z} denotes the component of magnetization, δcj is the Kronecker delta, and ec is the 
c-th unit vector. The results for the microwave field polarized along the x-, y-, and z-axis and shown in the left, 
central, and right columns in Fig. 8.

Analysis of Fig. 8 reveals that the x-polarized microwave field excites the mode with amplitude of my con-
centrated in regions where Mz  = 0 . This mode corresponds to the yellow band in Fig. 4. On the other hand, 
microwave field polarized along the y- or z-axis excites both modes with amplitude of my concentrated in regions 
where Mz = 0 . The unidirectionality of the propagation is well visible for these two bands. For each domain wall 
(the region where Mz = 0 ), we have different wavelengths for waves propagating along the +y and −y direc-
tions. Moreover, this picture changes in every second domain wall. Shorter wavelengths alternately rotate in 
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Figure 8.  Simulations of the excitation of SWs propagating along the y-axis for Q = 1 and D = 6 mJ/m2 for 
three different polarizations of the microwave field obtained after 0.52 ns of continuous excitation of SWs. 
(Upper row) Cross-sectional view of the magnetic configuration. (Bottom row) Colormaps representing my for 
the SWs excited by the microwave field applied in the regions indicated by the red line for (1) the x-polarized 
microwave field (left column), (2) the y-polarized microwave field (central column), and (3) the z-polarized 
microwave field (right column). The vertical black lines denote the regions where Mz = 0.
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successive domain walls along the −y and +y directions, while longer wavelengths propagate along the +y and 
−y directions. This observation is in agreement with the mode profiles shown for positive ky in Fig. 5. Similar 
effect was also observed for weak stripe  domains2,14,28. Furthermore, as shown in Fig. 4c,d, the second and third 
bands (bulk- and DW-type) cross without hybridization because they have different origins and do not interact 
with each other. It indicates that there is no energy transfer between them. It is important from an application 
point of view and suggests that transmission of information using these two modes without crosstalk between 
these two channels is possible.

Summarizing, we have observed that the resonance frequencies change significantly due to DMI- and PMA-
induced changes in the magnetic configuration. We decided to analyze SW dynamics also in complete spin 
spirals, which required to analyze systems with DMI values up to 7 mJ/m2, although the experimentally obtained 
samples show DMI values not exceeding 2.5 mJ/m257, Nevertheless, even though some of the calculations were 
performed for large DMI values, most of the obtained effects should also occur for a smaller range of DMI val-
ues. We have observed and explained the selectivity of excitation of the resonance modes by spatially uniform 
microwave fields of various polarizations. We obtained dispersion relations characteristic for one-dimensional 
magnonic crystals with well-pronounced bandgaps and lattice constants unattainable by conventional methods. 
Our analysis revealed that the first two bands are associated with magnetization texture oscillations. In contrast, 
the remaining bands are associated with SWs, which explains no interaction between the modes and allows clos-
ing the first bandgap for a specific combination of DMI and PMA values. When the band gap is reopened, the 
bands between which the gap was formed change in order. This suggests the possibility of existence of interesting 
topological effects (e.g. topological transition points) related to SWs in spin spirals and stripe domain patterns. 
Our results indicate selective emission of different modes propagating along the domains. Particularly interest-
ing are unidirectionally propagating SWs along regions with zero out-of-plane magnetization components. By 
analyzing the dynamics of SWs, we also pointed out the role of DMI in stabilizing magnetic textures in ultrathin 
layers with a regular robust period. Overall, our study reveals fundamental properties of stripe domains and spin 
spirals, and suggests the potential of using these structures in sensing applications, as a medium for information 
transmission, or as a magnonic crystal.

Methods
We perform micromagnetic simulations by means of  mumax353 solving full Landau–Lifshitz equation using 
time-domain finite difference method to study the changes of the equilibrium magnetization configuration and 
magnetization dynamics in 2 nm thick Co film. In all the calculations we have used solver using Fehlberg method 
since it provided much better stability of the results than the default solver of mumax3. In the simulations, we 
use the following magnetic parameters: the saturation magnetization MS = 1420 kA/m and the exchange con-
stant Aex = 13 pJ/m , and damping constant α = 0.008 and varied values of interfacial Dzyaloshinskii–Moriya 
interaction strength (DMI, D) and quality factor Q = KPMA/(½µ0M

2
S ) where KPMA is the perpendicular mag-

netocrystalline anisotropy (PMA) constant. The simulated system is discretized by unit cells of size cx × cy × cz 
with cx = cy = 1 nm and cz = 2 nm. We assume periodic boundary conditions along the x and y axes. In sub-
sequent subsections, details of simulations used to prepare Figs. 1, 2, 3, 4 and 5 from the main part of the paper 
are described.

Simulations of static properties of the system. The aim of the static simulations is to find the equilib-
rium magnetic configuration and its lattice constant A (if the resulting texture is periodic) for each set of (D, Q). 
We perform the simulations for a system of size 10A× cy × cz . The algorithm for these simulations is as follows. 
For each combination (D, Q), we assume the initial magnetic configuration with the following dependence of the 
out-of-plane component of the reduced magnetization Mz = sin(2πx/A) , we relax it, and we analyze changes 
of the energy density for different values of A. We then choose the magnetic configuration corresponding to the 
minimum energy density and use it to prepare Fig. 1 and in all the further simulations as the initial magnetic 
configuration.

Simulations of the resonance spectrum. To calculate the resonance spectrum shown in Fig.  2, 
we use the system of size 40A× 8cy × cz , and for each set of parameters, we perform three separate simu-
lations for three different linear polarizations of the microwave field: (1) x-polarized microwave field 
hx = [h0sinc(2π fcut(t − t0)), 0, 0] ; (2) y-polarized microwave field hy = [0, h0sinc(2π fcut(t − t0)), 0] ; (3) 
z-polarized microwave field hz = [0, 0, h0sinc(2π fcut(t − t0))] , where µ0h0 = 10 µ T, fcut = 65 GHz is the cut-
off frequency, and t0 = 8/fcut is the time delay. The results of simulations are sampled with the sampling interval 
tsampling = 1/(2.2fcut) . Finally, we store a number of samples providing the spectral resolution down to 200 MHz.

As a second step, for each simulation and for each component of magnetization, we calculate fast Fourier 
transform (FFT) over time of the space averaged magnetization,

where Ft denotes FFT operation over time implemented in  NumPy58,59, N is the number of samples processed, 
c ∈ {x, y, z} denotes component of magnetization, and p ∈ {x, y, z} denotes the polarization of the applied micro-
wave field. Since, to excite SWs we use microwave field with time dependence described by hp ∝ h0sinc(2π fcut) , 
its amplitude in the frequency space is h0 if f < fcut and 0 if f > fcut . Therefore, normalized m̃c,p(f ) can be 
understood as a dynamical susceptibility Imχc,p(f ) describing the dynamical response of c-th component on the 
excitation by microwave field polarized along the p-axis. For presentation, each spectrum Imχc,p(f ) for a given 
set of parameters (Q, D) is normalized to 1. Finally, we utilize the RGB color model where each component of 
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dynamical magnetization corresponds to one of the primary colors that are additive, i.e., the red, green, and blue 
color denotes the amplitude of Imχx,p(f ) , Imχy,p(f ) , and Imχz,p(f ) , respectively.

Resonance mode profiles. To obtain the mode profiles shown in Fig. 3, we have performed simulations 
using a spatially uniform microwave field linearly polarized along the axis [1, 1, 1]:

At the crossing point ( Q = 0.74 and D = 6 mJ/m2 ), in order to plot the profiles of degenerate modes separately, 
two independent simulations were performed for microwave fields polarized along the x-axis ( µ0h ∝ [1, 0, 0] ) 
and along the z-axis ( µ0h ∝ [0, 0, 1]).

To get the mode profiles, we calculate the pointwise FFT over time of each component of magnetization:

Subsequently, we visualize the real part of m̃c for subsequent resonance frequencies fresonance as the mode profiles, 
i.e., Real[m̃i(fresonance; x, y, z)].

Dispersion relations. To simulate the dispersion relation shown in Fig.  4, we use the system of size 
40A× 1000 nm× 2 nm . In order to determine the dispersion relation of SWs propagating along the y-axis with 
proper resolution, the modeled system needs to be sufficiently long. Namely, the length of the system along the y 
axis determines the resolution of ky (minimal resolved ky , whereas and the number of unit cells defines the maxi-
mal resolved ky after FFT. In the case of determining the spectrum, that is, the response of the system for ky = 0 , 
it was sufficient to model a much shorter system (8 nm) with periodic boundary conditions. To determine the 
dispersion relation of SWs propagating along the x-axis, we excite the magnetization dynamics with a microwave 
field linearly polarized along the axis [1, 1, 1]:

where µ0h0 = 10 µ T and kcut = 2π/(20 nm) is the cut-off wavevector. We use the same values of fcut and t0 as 
to calculate the resonance spectrum.

Subsequently, for each component of magnetization and each value of y (different slices of the modeled 
system corresponding to different values of y), we calculate 2-dimensional-FFT58,59 over the x-coordinate 
and time t, denoted by the operator Ft,x . This allows us to determine the three-dimensional complex matrix 
m̃c(y; f , kx) = Ft,x

[

mc(t; x, y)
]

 depending on the y-coordinate, frequency f, and wavevector kx . Next, we average 
over the y-coordinate the absolute value of the matrix m̃c : Sc(f , kx) = �|m̃c(y; f , kx)|�y . The resulting Sc(f , kx) 
matrices consist of positive real numbers and represent the dispersion relation computed for all magnetization 
components. Finally, we plot dispersion again utilizing the RGB color model in such a way that the amplitudes 
Sx , Sy , and Sz correspond to red, green, and blue colors, respectively.

Similarly, to simulate the dispersion relation for propagation along the y-axis, we use the following microwave 
field:

Subsequently, for each value of x and for each component of magnetization, we calculate 2-dimensional-FFT 
over the y-coordinate and time t to get m̃c(x; f , ky) . Finally, we average these matrices over the x-coordinate to 
get Sc(f , ky) = �|m̃c(x; f , ky)|�x and present this result using the RGB color model.

The dispersion relations determined in Figs. 6a and  7a were determined for systems with lattice constants 
equal to 960 nm and 1230 nm (which are significantly longer periods than for systems with dispersion relations 
shown in Fig. 4). Due to lower frequencies of the resonant modes, in these simulations, we used a lover value of 
the cut-off frequency, fcut = 10 GHz. For computational reasons, these calculations were performed for a single 
lattice constant in the x-direction and a length of 4 µm with periodic boundary conditions applied (64 repetitions 
of the system along the x-axis and 16 repetitions along the y-axis). The dispersion relations themselves shown 
in Figs. 6a and 7a represent S(f , ky) = Sx(f , ky)+ Sy(f , ky)+ Sz(f , ky).

In order to determine the mode profiles of a propagating wave with f = f0 and ky = ky0 , e.g., shown in Figs. 5, 
6 b – e ,  a n d  7 b – e ,  t h e  f o l l ow i n g  pro c e du re  i s  p e r f or m e d .  F i r s t ,  w e  d e t e r m i n e 
m̃c,f0,ky,0(x; ky) = m̃c(f = f0, x; ky)δ(ky − ky0) , where δ(ky − ky0) is the Dirac delta. Subsequently, we compute 
the inverse FFT of the result, ˜̃mc,f0,ky0 = F

−1
ky

[

m̃c,f0(x, ky)
]

 , and obtain the mode profile of a wave propagating 
with the frequency f0 and the wavevector ky0.
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The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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