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The effects of spin‑orbit coupling 
on optical properties of monolayer 
MoS

2
 due to mechanical strains

H. Rezania 1*, M. Abdi 2, B. Astinchap 2,3 & E. Nourian 2

We have studied the optical conductivity of a quasi two‑dimensional MoS
2
 in the presence of external 

magnetic field and spin‑orbit coupling. Specially, we address the frequency dependence of optical 
conductivity due to spin‑orbit interaction. Using linear response theory the behavior of optical 
conductivity has been obtained within Green’s function method. We have also considered the effects 
of uniaxial and biaxial in‑plane strain on the optical absorption of MoS

2
 layer. In the absence of 

external magnetic field with negative uniaxial strain parameter, optical conductivity includes Drude 
weight at zero frequency limit while Drude weight vanishes for MoS

2
 layer under positive uniaxial 

strain. Our results show that the increase of uniaxial positive strain parameter causes to move the 
position peak to the higher frequencies. In contrast to uniaxial strain case, the Drude weight in optical 
conductivity appears at positive biaxial strain value 0.15. Also we have studied the effects of magnetic 
field, electron doping, hole doping in the presence of spin‑orbit coupling on frequency dependence of 
optical conductivity of MoS

2
 in details. The magnetic field dependence of optical absorption shows a 

monotonic decreasing behavior for each value of temperature in the absence of strain parameter.

Graphene was synthesized as the first two-dimensional nanostructure in 2004  year1,2, due to its attractive physi-
cal  properties3,4, which led to the attention of other 2D-nanostructures such as transition metal dichalcogenides 
(TMDs)5,6,  Phosphorene7,8,  Silicene9,  Germanene10, and  Stanene11, etc.12,13. One of the most important groups of 
2D-nanostructures is TMDs, which include two groups of a transition metal atoms (Mo, W, etc.) and chalcogen 
atoms (S, Se, etc.). TMDs due to their very interesting and great promise properties have made it possible to use 
them in electronic and spintronic  applications14,15. One of the most important members of this group is MoS2 . 
MoS2 bulk has an indirect bandgap of 1.3 eV, and the monolayer is of a direct bandgap of 1.8  eV16,17. The MoS2 
monolayer has a honeycomb lattice structure in which each Mo atom is covalently sandwiched between two layers 
of S atoms. Recently, MoS2 is more appropriate for use in transistor field  effect18–20,  photovoltaic21,  spintronic22, 
and valleytronic  devices23,24. A series of theoretical studies on the electronic band structure of MoS2 have been 
done by using first-principle  calculations25,26. Researchers have shown that applying strain to the monolayer 
MoS2 changes its band-gap transition from direct to  indirect27–29. In semiconductors such as MoS2 , excitons are 
formed because electron-hole pairs interact with each other by Coulomb attraction, that excitons determine the 
optical properties of MoS2

30–32. For instance, experimentations like  photoluminescence33 and second harmonic 
 generation34,35 are strongly impressed by excitons. Jia et al. studied the structural and optical properties of 
multilayer MoS2 by using the first-principles method. They showed that the increased number of layers leads to 
small changes in the direct energy gap near point K (weak interlayer coupling) and larger changes near point Ŵ 
(stronger interlayer coupling). Therefore caused a small redshift in the threshold energy and a noticeable redshift 
at the end of total joint density of  states36. In recent years, the optical properties of MoS2 have been studied by 
 experimental37,38 and  theoretical39–41 methods. The results show that MoS2 has significant applications in the 
optoelectronics  industry42,43.

The intrinsic spin-orbit coupling plays an important role on the topological and thermal properties of honey-
comb structures such as MoS2 plane. Such coupling arises from perpendicular electric field or interaction with a 
substrate. Based on extensive theoretical studies, opening a bulk gap in band structure of MoS2 plane originates 
from both spin orbit coupling and exchange field factors so that leads to the quantum spin hall  effect44,45. In 
the presence of spin-orbit coupling, a compressive biaxial in-plane strain and perpendicular tensile strain can 
lead even to a topological phase  transition46. The strong spin-orbit coupling indeed leads to a different spin-
polarization of the valence band. Thus several degrees of freedom are strongly entangled in  TMDs47,48. Tuning the 
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spin-orbit coupling of mechanical deformation has been explored in conventional GaAs based semiconductors 
and quantum wells where a linear strain dependence is found in the presence of this  coupling49,50.

Strain effects have been studied to other 2D crystals and recently the possibility to tune the band gap with 
strain has been experimentally proven for MoS2

51,52. The piezoelectricity phenomenon have been investigated 
for monolayer MoS2

53 so that it seems to require a deeper understanding of the effect of external nonuniform 
strain on the physical properties of semiconductor TMDs.

The purpose of this paper is to provide a Slater Koster tight binding  model26,48 including intrinsic spin-orbit 
interaction for studying the optical properties of MoS2 monolayer in the presence of magnetic field perpendicular 
to the plane. Firstly, we introduce the Hamiltonian of the monolayer MoS2 by tight-binding and then the Green’s 
function has been obtained using the calculated energy levels. We will examine the results of optical absorption 
under electron/hole doping, external magnetic field, strain, and temperature. The effects of homogenous strains 
on the optical properties of MoS2 plane are investigated using linear response theory. In other words, the effects 
of these strains on frequency dependence of optical absorption of MoS2 layer are investigated in details. Using 
the suitable hopping integral and strain parameters, the band dispersion of electrons on the structure has been 
calculated. For calculating the optical absorption we have exploited the linear response theory in the context of 
Kubo formula. Green’s function approach has been exploited to obtain the optical absorption of MoS2 monolayer. 
The effects of external magnetic field, biaxial strains and spin-orbit coupling strength on the frequency behavior 
of optical absorption of MoS2 monolayer have been studied. Also we discuss and analyze to show how spin orbit 
coupling, longitudinal magnetic field and biaxial strain values affect the photon frequency behavior of optical 
absorption of MoS2 plane. Finally the dependence of optical absorption on biaxial strain values and spin-orbit 
coupling is addressed.

The parts remained of this article is planned as follows. In “Model Hamiltonian and formalism” section, 
we determine the tight-binding model and the Green function for the MoS2 monolayer in the presence of the 
Zeeman effect, spin-orbital coupling and biaxial strain. We express our calculation of the optical absorption in 
Section ”Optical absorption of single layer MoS2”. Numerical results of the optical absorption under the influence 
of various factors are present in Discussion and conclusion. In Section "Discussion and conclusion", includes a 
summary of the results and discussions.

Model Hamiltonian and formalism
MoS2 monolayer consists of one layer of Mo atoms surrounded by two layers of S atoms in such a way that each 
Mo atom is coordinated by six S atoms in a trigonal prismatic geometry and each S atom is coordinated by three 
Mo atoms. The side and top views of the lattice structure where Mo atom is surrounded by six S atoms unit cell 
of MoS2 has been indicated in Fig. 1a also we have sketched a top view of the crystal structure of MoS2 in Fig. 1b.

In order to investigate the effect of homogenous strain and spin-orbit coupling on the electronic band struc-
ture and optical properties of monolayer MoS2 , we apply a Slater Koster tight binding  model54 for describing 
the electron dynamics in the structure. This tight binding model Hamiltonian contains the relevant orbital 
character in the valence and conduction band. Also this model apllied for the single layer MoS2 uses an orbital 
basis which includes d3z2−r2 , dxy and dx2−y2 orbitals of the Mo, and px , py and pz orbitals of the atom S. In 
order to clarify the symmetric and antisymmetric hybridization of p-orbitals of S atoms localized on up and 
down layers, we use the definitions pSx = 1/

√
2(pux + pbx) , pSy = 1/

√
2(puy + pby) and pAz = 1/

√
2(puz − pbz ) . The 

relevant physics of monolayer MoS2 around the gap is covered by a smaller subspace, which can be obtained by 
performing an appropriate unitary transformation that transform the P orbitals of the top and bottom S layers 
into their symmetric and antisymmetric combinations with respect to the z axis. For the single-layer case, the 
resulting 11-band model can be decoupled in six bands with even symmetry under inversion transformation 
z to −z , and five bands with odd  symmetry26,55,56. Therefore, the conduction band minimum is mainly formed 
from orbitals d3z2−r2 of Mo atoms and the valence band maximum is constructed from orbitals dx2−y2 and dxy of 

Figure 1.  Left panel: A top view schematic of single layer MoS2 lattice structure. Blue(red) circles indicate 
Mo(S) atoms. bi=1,2,3 show the vectors connecting next nearest neighbor lattice sites while δi=1,2,3 show vectors 
connecting nearest neighbor lattice sites. Right panel: Side view of the lattice structure are seen where Mo atom 
is surrounded by six S atoms.
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Mo atoms with mixing of orbitals px , py from S  atoms57,58 in both cases. Therefore we can consider the following 
basis orbitals for making Hilbert space as

The tight-binding model for MoS2 monolayer in second quantizaton representation is given by

where a†i,α creates an electron in the atomic orbital α = p
Sym
x , p

Sym
y , pAntiz  of S atom located in the ith unit cell. Also 

b†i,β implies the creation operator of electron in the atomic orbital β = d3z2−r2 , dx2−y2 , dxy of Mo atom located in 
the ith unit cell. tMo−Mo

ij,ββ ′  introduces the hopping amplitude of electron between two Mo atoms that are located 
in next nearest neighbor lattice sites with atomic orbitals β ,β ′ . tS−S

ij,αα′ introduces the hopping amplitude of elec-
tron between two S atoms that are located in next nearest neighbor lattice sites with atomic orbitals α,α′ . tMo−S

ij,αβ  
denotes hopping amplitude of electron between Mo and S atoms that are located in nearest neighbor lattice sites 
with atomic orbitals α,β . Also we have introduced 〈i, j〉 and 〈〈i, j〉〉 for nearest neighbor and next nearest neighbor 
lattice sites respectively. ǫSi,α refers to on-site energy of electron with atomic orbital α of S atom located in i th 
lattice site. In other hand, on-site energy of electron with atomic orbital β of Mo atom located in i th lattice site 
is presented by ǫMo

i,β .
The parameters ǫMo

i,β  in Eq. 2) with different atomic orbital basis, i.e. β = d3z2−r2 , dx2−y2 , dxy are the matrix 
elements of a diagonal 3 × 3 matrix, ǫMo

i  . This diagonal matrix is given by

Also the parameters ǫSi,α in Eq. 2) make the following matrix presentation for ǫSi

where t⊥xx = Vppπ , t
⊥
yy = Vppπ , t

⊥
zz = Vppσ are the perpendicular hopping amplitudes of electron between S atoms 

on two different layers. A note is in order here. When we express p orbitals in terms of symmetric and antisym-
metric forms, i.e. pSx , pSy , pAz  , , Hamiltonian matrix elements of S orbitals will be different from the 11-band model. 
Under these transformations that we did, the numerical values of Vppπ and Vpdπ , which are calculated within the 
density functional theory method, do not  change59,60. Now we define the suitable expression for each hopping 
parameter in Eq. 2). All parameters in Eqs. 3,4) is given in Tables 1, 2. According to Fig. 1b, we have three nearest 
neighbor unit cells with connecting vectors δl=1,2,3 ≡ Rjl − Ri so that Ri is the position vector of ith unit cell and 
Rjl denotes the position vector of lthe nearest neighbor unit cell. In a similar interpretation, we have three next 
nearest neighbor unit cells with connecting vectors bl=1,2,3 ≡ Rjl − Ri so that Ri is the position vector of ith unit 
cell and Rjl denotes the position vector of lthe next nearest neighbor unit cell. Depending the position vector of jl 
with l = 1, 2, 3 , we have three different expressions for tMo−S

ijl ,αβ
 in Eq. 2) as i, jl are nearest neighbor lattice sites. The 

matrix presentation of tMo−S
δl

 with elements of tMo−S
ijl ,αβ

≡ tMo−S
δl ,αβ

 for different atomic orbital basis α,β is given by

(1){|d3z2−r2 �, |dx2−y2 �, |dxy�, |p
Sym
x �, |pSymy �, |pAntiz �}.

(2)

HTB =
∑

i,α

ǫSi,αa
†
i,αai,α +

∑

i,β

ǫMo
i,β b†i,βbi,β +

∑

�i,j�,α,β
tMo−S
ij,αβ a†i,αbj,β +

∑

��i,j��,β ,β ′

tMo−Mo
ij,ββ ′ b†i,βbj,β ′

+
∑

��i,j��,α,α′
tS−S
ij,αα′a

†
i,αaj,α′ + h.c.,

(3)
ǫMo
i =

(
�0 0 0

0 �1 0

0 0 �2

)
,

�0 ≡ǫMo
i,β=d

3z2−r2
, �1 ≡ ǫMo

i,β=dx2−y2
, �2 ≡ ǫMo

i,β=dxy

(4)
ǫSi =




�p + t⊥xx 0 0

0 �p + t⊥yy 0

0 0 �z − t⊥zz


,

�p + t⊥xx ≡ǫS
i,α=p

Sym
x

, �p + t⊥yy ≡ ǫS
i,α=p

Sym
y

, �z − t⊥zz ≡ ǫSi,α=pAntiz

Table 1.  On-site energy parameter values in Eqs. (3, 4) for monolayer MoS2. All terms are in units of eV.

�0 �1 �2 �p �z

−1.512 0.0 −3.025 −1.276 −8.236

Table 2.  Slater-Koster tight binding parameters in Eqs. (5–7) for monolayer MoS2. All terms are in units of eV.

Vppσ Vppπ Vpdσ Vpdπ Vpdδ Vddδ Vddπ

0.696 0.278 −2.619 −1.396 −0.933 −0.442 0.478
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as the values of parameters in Eq. 5) are provided in Table. 2. In other hand, the position index i, jl in the matrix 
elements tMo−Mo

ijl ,ββ ′  (according to Eq. 2)) are related to the next nearest neighbor lattice sites. The matrix presenta-

tion of tMo−Mo
bl

 with elements of tMo−Mo
ijl ,ββ ′ ≡ tMo−Mo

bl ,ββ
′  for different atomic orbital basis β ,β ′ is given by

The matrix presentation of tS−S
bl

 with elements of tMo−Mo
ijl ,ββ ′ ≡ tMo−Mo

bl ,αα
′  for different atomic orbital basis α,α′ is 

given by

The hopping amplitudes and on-site energies have been calculated in the context of Slater-Koster  scheme26,48,52 
and the values of the parameters are given in Tables 1, 2.

Local spin-orbit interaction can be as well included in a suitable  way48. The large spin-orbit in MoS2 can be 
approximately understood by intra atomic contribution HSO ∝ S · L . The final results for nonzero matrix ele-
ments of HSO in Hilbert space introduced in Eq. 1) get the following relations

where s = ± indicates the spin angular momentom quantum number of electrons, �Mo = 86  meV and 
�S = 52 meV imply the spin-orbit coupling strength of electron for Mo and S atoms respectively. In Eq. 8), |i,β , s� 
with β = dx2−y2 , dxy describes the electron quantum state located on Mo atom in lattice site i with spin s in the 
atomic orbital labeled by β . Moreover |i,α, s� with α = p

Sym
y , p

Sym
x  describes the electron quantum state located 

on S atom in lattice site i with spin s in the atomic orbital labeled by α . It is worthwile to some comments about 
only coupling between dx2−y2 and dxy in Mo, and px and py orbitals are not considered here. Also the d3z2−r2 and 
pz orbitals are not involved in matrix elements of HSO . This fact can be demonstrated based on the expansion 
of |dx2−y2 � , |dxy� and |d3z2−r2 � in terms of eigenvectors of z-component of angular momentum Lz , i.e. |l,ml� in 
which l denotes the quantum number of total angular momentum and ml = −l,−l + 1, ...,+l refers to quantum 
number of operator Lz . We have the following expansions for Mo atoms

(5)

tMo−S
δ1

=
√
2

7
√
7




−9Vpdπ +
√
3Vpdσ − Vpdσ + 3

√
3Vpdπ 12Vpdπ +

√
3Vpdσ

3Vpdσ + 5
√
3Vpdπ 9Vpdπ −

√
3Vpdπ 3Vpdσ − 2

√
3Vpdπ

−Vpdπ − 3
√
3Vpdσ 3Vpdσ + 5

√
3Vpdπ − 3

√
3Vpdσ + 6Vpdπ


,

tMo−S
δ2

=
√
2

7
√
7




0 2Vpdσ − 6
√
3Vpdπ 12Vpdπ +

√
3Vpdσ

0 − 6Vpdπ − 4
√
3Vpdσ − 6Vpdσ + 4

√
3Vpdπ

14Vpdπ 0 0


,

tMo−S
δ3

=
√
2

7
√
7




9Vpdπ −
√
3Vpdσ − Vpdσ + 3

√
3Vpdπ 12Vpdπ +

√
3Vpdσ

−3Vpdσ − 5
√
3Vpdπ 9Vpdπ −

√
3Vpdπ 3Vpdσ − 2

√
3Vpdπ

−Vpdπ − 3
√
3Vpdσ − 3Vpdσ − 5

√
3Vpdπ 3

√
3Vpdσ − 6Vpdπ


,

(6)

t
Mo−Mo

b1
=
1

4




Vddσ + 3Vddδ

√
3

2
(−Vddδ + Vddσ ) − 3

2
(Vddδ − Vddσ )√

3

2
(−Vddδ + Vddσ )

1

4
(Vddδ + 3Vddσ + 12Vddπ )

√
3

4
(Vddδ + 3Vddσ − 4Vddπ )

− 3

2
(Vddδ − Vddσ )

√
3

4
(Vddδ + 3Vddσ − 4Vddπ )

1

4
(3Vddδ + 9Vddσ + 4Vddπ )


,

t
Mo−Mo

b2
=
1

4




Vddσ + 3Vddδ

√
3(Vddδ − Vddσ ) 0√

3(Vddδ − Vddσ ) Vddδ + 3Vddσ 0

0 0 4Vddπ


,

t
Mo−Mo

b3
=
1

4




Vddσ + 3Vddδ

√
3

2
(−Vddδ + Vddσ )

3

2
(Vddδ − Vddσ )√

3

2
(−Vddδ + Vddσ )

1

4
(Vddδ + 3Vddσ + 12Vddπ ) −

√
3

4
(Vddδ + 3Vddσ − 4Vddπ )

3

2
(Vddδ − Vddσ ) −

√
3

4
(Vddδ + 3Vddσ − 4Vddπ )

1

4
(3Vddδ + 9Vddσ + 4Vddπ )


,

(7)

tS−S
b1

=
1

4




3Vppπ + Vppσ

√
3(Vppπ − Vppσ ) 0√

3(Vppπ − Vppσ ) Vppπ + 3Vppσ 0

0 0 4Vppπ


,

tS−S
b2

=




Vppσ 0 0

0 Vppπ 0

0 0 4Vppπ


,

tS−S
b3

=
1

4




3Vppπ + Vppσ −
√
3(Vppπ − Vppσ ) 0

−
√
3(Vppπ − Vppσ ) Vppπ + 3Vppσ 0

0 0 4Vppπ


,

(8)�i, dxy , s|HSO|i, dx2−y2 , s� = i�Mos, �i, pSymy , s|HSO|i, p
Sym
x , s� = i

�Ss

2
,

(9)

|dx2−y2 � =
1
√
2

(
|l = 2,ml = 2� + i|l = 2,ml = −2�

)
, |dxy� =

1
√
2

(
|l = 2,ml = 2� − i|l = 2,ml = −2�

)

|d3z2−r2 � =|l = 2,ml = 0�.
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Since the spin-orbit coupling model is given by the operator form HSO ∝ S · L ∝ SzLz and also the matrix ele-
ments of operator Lz are obtained as �l,ml|Lz |l′,ml′ � = mlδl,l′δmlml′ , we can expect that only the non zero matrix 
elements of Lz are �dx2−y2 |Lz |dxy� and �dxy|Lz |dx2−y2 � . In fact |d3z2−r2 � includes only |l = 2,ml = 0� in its series 
expansion in terms of eigenvectors of Lz , spin-orbit coupling model, i.e. SzLz , has no coupling between d3z2−r2 
and dxy . In a similar reason there is no coupling between d3z2−r2 and dx2−y2 . In other words �dx2−y2 |Lz |d3z2−r2 � 
and �d3z2−r2 |Lz |dxy� get zero value. Also we have the following expressions for S atoms

Because |pz� includes only |l = 1,ml = 0� in its series expansion in terms of eigenvectors of Lz , spin-orbit coupling 
model, i.e. SzLz , has no coupling between pz and px . In a similar reason there is no coupling between pz and py . 
In other words �pz |Lz |px� and �pz |Lz |py� get zero value.

In the presence of applied magnetic field perpendicular to the plane of MOS2 layer with strength B, the Zee-
man splitting takes place. Based on matrix form of tight binding model Hamiltonian in Eqs. (3–7) and nonzero 
matrix elements of spin-orbit coupling model Hamiltonian, the model Hamiltonian for electrons with spin 
quantum number s = ± can be expressed in a more compact form once written in the k space:

so that g ≈ 2.0 is the gyromagnetic constant and µB describes the Bohr magneton constant. Also in above equa-
tion, 1 implies 3 × 3 unit matrix. Moreover the nearest ( δj ) and the next nearest ( bj ) neighbor vectors have been 
shown in Fig. 1a and can be written as

that b0 = 2.41A0 denotes the interatomic distance between Mo and S atoms. b = 3.16A0 is the binding distance 
for Mo-Mo and θB = acos(

√
4
7
).

The Slater-Koster tight-binding method has been applied when lattice deformations, like strain, are con-
sidered. Hence the effect of strain is driven by the dependence of tight-binding amplitudes on the interatomic 
distance. In the present study, the varying the interatomic bond length, as a result of applied strain, leads to the 
strain effects. Up to the linear order, the hopping matrixes in Eqs. (5,6,7) have been modified in the presence of 
strain effects  as61,62

where δi =
√

7
12
b with i = 1, 2, 3 is the distance in the equilibrium positions between two nearest neighbor Mo 

and S atoms (Mo-S bonding length), δ̃i with i = 1, 2, 3 describes the distance in the presence of strain. bi = b 
with i = 1, 2, 3 denotes the distance in the equilibrium positions between two next nearest neighbor atoms (in-
plane Mo-Mo and S-S bonding lengths). Moreover b̃i is the distance between next nearest neighbor atoms in the 
presence strain. According to the definition of the electron-phonon coupling constant, the parameters β1,β2,β3 
are obtained for pp, pd, dd hybridization, respectively. The values of these parameters are β1 = 3,β2 = 4,β3 = 5 . 
In order to study the effects of strain on the electronic properties of MoS2 , it is necessary to express the deformed 

(10)

|px� =
1
√
2

(
|l = 1,ml = 1� + |l = 1,ml = −1�

)
, |py� =

1
√
2

(
− |l = 1,ml = 1� + |l = 1,ml = −1�

)

|pz� =|l = 1,ml = 0�.

(11)

H = HTB +HSO =
�

HMo−Mo(k) HMo−S(k)

(HMo−S(k))† HS−S(k)

�
,

HMo−Mo(k) =ǫMo
i +

�
0 0 0

0 0 − i�Mos
0 i�Mos 0

�
+ 2

�

j=1,2,3

tMo−Mo
bj

cos(k · bj)− sgµBB1,

HS−S(k) =ǫSi +




0 − i�Mos
2

0
i�Mos
2

0 0

0 0 0


+ 2

�

j=1,2,3

tS−S
bj

cos(k · bj)− sgµBB1

HMo−S(k) =
�

j=1,2,3

tMo−S
δj

eik·δj ,

(12)

δj=1 =b0

(
−

√
3

2
cos(θB),−

1

2
cos(θB), sin(θB)

)

δj=2 =b0

(
0, cos(θB), sin(θB)

)

δj=3 =b0

(√3

2
cos(θB),−

1

2
cos(θB), sin(θB)

)

bj=1 =b(1, 0), bj=2 = b
(
−

1

2
,

√
3

2

)
, bj=3 = b

(
−

1

2
,−

√
3

2

)
,

(13)

tMo−S

δ̃i
=tMo−S

δi

(
1− β2

(
δ̃i

δi
− 1

))
, tS−S

b̃i
= tS−S

bi

(
1− β1

(
b̃i

bi
− 1

))

tMo−Mo

b̃i
=tMo−Mo

bi

(
1− β3

(
b̃i

bi
− 1

))
,
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bond lengths in terms of strain parameter and equilibrium bond lengths. We assume a general form of homog-
enous deformation with a large wavelength inhomogeneous strain. This strain can be considered as a powerful 
tool to locally manipulate the electronic structure of two-dimensional electronic systems even in atomic scale. 
To consider such deformation, we use the following relations for the bond lengths, i.e. b̃i with i = 1, 2, 3 and δ̃i 
with i = 1, 2, 3

For homogenous biaxial strain we consider εxx = εyy = ε . Under applying the uniaxial strain to the MoS2 plane, 
we have εxx = −0.125ε and εyy = ε so that ε describes the strain  parameter54. Using the relations in Eq. 14), the 
deformed bond lengths, i.e. δ̃i and b̃i , are expressed in terms of strain parameter ε and undeformed bond length 
b. Under substitutions tMo−S

δi
−→ tMo−S

δ̃i
 , tS−S

bi
−→ tS−S

b̃i
 and tMo−Mo

bi
−→ tMo−Mo

b̃i
 in matrix representation of 

Hamiltonian in Eq. 11), we obtain the effects of strain on electronic properties of MoS2 layer.
Using the Hamiltonian in Eq. 11) with redefined hopping parameters in Eq. 13), the band structure of elec-

trons with spin s of strained MoS2 layer has been found by solving equation det
(
H − Esη(k)1

)
= 0 where 

η = 1, 2, ..., 6 denotes the quantum number of band structure and 1 introduces 3 × 3 unit matrix. In the presence 
of magnetic field perpendicular to the plane of MoS2 layer, the final results for electronic band structure of MoS2 
for spin s are numerically found and are named by Esη(k).

Using band energy spectrum, the Hamiltonian in Eq. 11) can be rewritten by

where cs
η,k

 defines the creation operator of electron with spin s in band index η at wave vector k . The electronic 
Green’s function can be defined using the Hamiltonian in Eq. (15) as following expression

where τ is imaginary time. Using the model Hamiltonian in Eq. (15), the Fourier transformations of Green’s 
function is given by

Here ωn = (2n+ 1)πkBT denotes the fermionic Matsubara frequency in which T is equilibrium temperature. 
Total electronic density of states of MoS2 due biaxial strains and under applying external magnetic field can be 
obtained by electronic band structure as

Summation over wave vectors have been performed into first Brillouin zone of honeycomb lattice. The density 
of states includes prominent asymmetric peaks due to the band edge of parabolic subbands. The peaks positions 
arise from the band edge state energies and the density of states heights are proportional to inverse square root 
of the subband curvature and band degeneracy. For determining the chemical potential, µ , we use the relation 
between concentration of electrons ( ne ) and chemical potential. This relation is given by

Based on the values of electronic concentration ne , the chemical potential, µ , can be obtained by means Eq. (19).

Optical absorption of single layer MoS
2

The optical conductivity is obtained as the response of the electrical current ( Je ) to an external electrical field. 
Imposing the continuity equation for the charge density ρ , i.e. ∂

∂t ρ +∇ · Je = 0 , the explicit form of the electrical 
current operator can be calculated. This calculation has been done for a bilinear Hamiltonian describing Fermi-
onic  system63 and we can exploit this result for model Hamiltonian in Eq. (15). The operator form of electrical 
current operator Je for itinerant electrons of MoS2 layer is given by
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so that vs,η(k) = ∇kE
s
η(k) denotes the group velocity of electrons with spin s at band structure η . The linear 

response theory is implemented to obtain the optical conductivity under the assumption of a low dynamical 
electric field (as a perturbing field). The Kubo formula gives the transport coefficient σ(ω) in terms of a correla-
tion function of electrical current operators

where it is assumed that electrical current flows along zigzag direction, i.e. x direction in Fig. 1,. By implementing 
Wick’s theorem, we can calculate the correlation function between current operators in Eq. (21) as Applying the 
Wick’s theorem leads to the following expression for energy current correlation function as

By substituting Eq. (22) into Eq. (21) and using Fourier transformation of bosonic Green’s function, i.e. 
Gσ
η (k, τ) = kBT

∑
m e−iωmτGσ

η (k, iωm) , optical conductivity σ(ω) can be expressed in terms of bosonic Green’s 
function as

According to the Lehmann  representation63, the imaginary part of retarded Green’s function and Matsubara 
form of Green’s function are related to each other as

Using Lehmann representation, the expression for optical conductivity σ(ω) in Eq. (23) is given by

After summation over Matsubara’s fermionic frequency ωm and some algebraic calculations, the final result form 
for optical conductivity of MoS2 layer is given by

where nF(x) = 1

ex/kBT+1
 is the Fermi-Dirac distribution function and T denotes the equilibrium temperature. 

Substituting electronic Green’s function presented in Eq. (17) into Eq. (26) and performing the numerical inte-
gration over wave vector through first Brillouin zone, the results of optical absorption in terms of photon fre-
quency ω have been obtained. Here, the contribution of both inter and intra band transitions on the optical 
conductivity in Eq. (26) has been considered. The imaginary part of dielectric function corresponding to the 
rate of photon absorption by gapped graphene is related to dynamical electrical conductivity via

The numerical results of optical absorption of single layer MoS2 in the presence of strains and magnetic field are 
presented in the next section.

Discussion and conclusion
In this section, we have presented the numerical results of optical absorption rate of electromagnetic waves in 
MoS2 monolayer in the presence of magnetic field, spin-orbit coupling and homogenous strain effects. We 
investigate the frequency dependence of optical conductivity Im(ǫ(ω)) of MoS2 layer due to variation of physical 
parameters. Using dimensionless homogenous strain parameter ε , the amounts of redefined hopping amplitudes 
of MoS2 layer, i.e. tMo−S

δ̃i
, tS−S

b̃i
, tMo−Mo

b̃i
 , have been obtained by Eqs. (14, 13). With redefination of hopping ampli-

tudes of strained MoS2 layer in matrix MoS2 = representation of Hamiltonian in Eq. (11), we can obtain the band 
structure of MoS2 layer in the presence of strain, spin-orbit coupling effects and external applied magnetic field. 
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Using the electronic band structure of MoS2 monolayer, we can obtain the electronic Green’s function in Eq. (17). 
It should be noted that the variation of chemical potential µ leads to various electronic concentration according 
to Eq. (19). Afterwards density of states, dynamical electrical conductivity σ(ω) are found by substitution of 
Green’s function into Eq. (26) so that optical absorption rate can be found by Eq. (27). In our numerical results 
we assume the polarization of electric field of electromagnetic wave is along the zigzag direction according to 
Fig. 1. Both inter and intra band transitions contribute to the results of optical properties of MoS2 monolayer. 
The distance between two next nearest neighbor atoms in the atomic structure of the MoS2 layer is assumed to 
be b = 1.

The frequency dependence of optical absorption of single layer undoped MoS2 in the absence of strain for 
different values of magnetic field has been shown in Fig. 2. The temperature has been fixed at amount kBT = 0.1 
eV. Based on this figure, it is clearly observed that the Drude weight value increases with magnetic field so that the 
Drude weight for gµBB = 0.3 eV gets around normalized value 15. The origin of this Drude weight or the zero 
frequency limit of optical absorption comes from intraband transition of electrons due to classical behavior of 
them in this limit. In other hand the peak in optical absorption for all amounts of magnetic field appears at finite 
frequency ω ≈ 2.5 eV. The height of this peak decreases with magnetic field. Such peak arises from interband 
transition of electrons. An additional peak appears in optical conductivity for magnetic fields gµBB = 0.2, 0.3 
eV. This additional peak is located at higher frequencies rather than first peak position. The frequency position of 
second peak in optical conductivity for gµBB = 0.2 eV ( gµBB = 0.3 eV) is found around ω ≈ 2.85 eV ( ω ≈ 3.1 
eV). Also the optical absorption decreases with frequency in the region ω > 3.25 eV.

Figure 3 shows the dependence of optical absorption Im(ǫ) on magnetic field gµBB for different values of 
temperature kBT at fixed frequency ω = 2.5 eV in the absence of any type of strain, i.e. ε = 0.0 . A monotonic 
decreasing behavior for magnetic field dependence of optical absorption for each value of temperature is clearly 
observed. It can be understood from this point that increasing magnetic field leads to enhance the band gap in 
density of states and consequently optical absorption of single layer MoS2 decreases with magnetic field. At fixed 
magnetic field in the region gµBB > 0.8 eV, the increase of temperature leads to enhance the transition rate of 
electrons so that optical absorption rises in this magnetic field region. Also Fig. 3 implies at fixed magnetic field 
in the region gµBB < 0.8 eV, the increase of temperature reduces the optical absorption of MoS2 layer due to 
scattering rate of electrons. Moreover the optical absorption curves for kBT = 0.05 eV, 0.07 eV, 0.1 eV fall on 
each other at magnetic fields above 2.0 eV.

The behavior of chemical potential dependence of optical conductivity of doped MoS2 layer for different 
photon frequencies, namely ω = 0.5, 1.0, 1.5, 2.0 , has been shown in Fig. 4. The temperature has been fixed at 
kBT = 0.1 eV and any type strain parameter value is assumed to be zero. This figure implies that there is a peak 
in chemical potential dependence of Imε(ω) for frequency value ω = 0.5 . At chemical potential values µ > 0.8 
eV for ω = 0.5 , the increase of chemical potential leads to enhance the electronic concentration so that the 
scattering rate between electrons rises and consequently Im(ǫ) reduces with µ in this region. In other hand at 
chemical potentials below 0.8 eV, the increase of µ causes to the transition rate of electrons from ground state to 
excited ones. This fact denotes the increase of optical absorption with chemical potential in the region µ < 0.8 
at ω = 0.5 . However there is no peak in optical absorption for the other frequency values, i.e. ω = 1.0, 1.5, 2.0.

We have also studied the effects of temperature on chemical potential dependence of Im(ǫ(ω)) . In Fig. 5, 
we have presented the behavior of optical absorption of doped MoS2 layer in terms of µ in the absence of any 
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Figure 2.  Optical absorption, Im(ǫ) , of undoped MoS2 layer as a function of photon frequency in the absence 
of homogenous strain , i.e. εx = εy = 0 , for different values of applied magnetic field gµBB at fixed temperature 
kBT = 0.1 eV.
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strain parameter for different values of temperature. The photon frequency has been fixed at ω = 2.5 eV. This 
plot indicates a monotonic decreasing behavior for each value of temperature. It can be understood from the 
fact that the increase of chemical potential leads to enhance the electronic concentration. Thus the scattering 
rate between electrons rises which reduces the optical conductivity. Another feature is pronounced in this fig-
ure. For fixed chemical potential below 0.8 eV, Im(ǫ(ω)) decreases with temperature according to Fig. 5. Higher 
temperatures cause more scattering of electrons which reduces the optical conductivity. However for chemical 
potentials above 0.8 eV, the increase of temperature leads to enhance the transition rate of electrons between 
quantum energy levels. This fact implies optical conductivity increases with temperature in the chemical potential 
region above 0.8 eV.

We have studied the effect of in-plane uniaxial strain along armchair direction with strain parameter ε on 
frequency dependence of Im(ǫ) for undoped single layer MoS2 structure in Fig. 6. In this figure, the effects of 
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Figure 3.  Optical absorption, Im(ǫ) , of undoped MoS2 layer as a function of magnetic field gµBB at fixed 
photon frequency ω = 2.5 eV for different values of temperature in the absence of strain.
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different positive uniaxial strain, namely ε = 0.0, 0.05, 0.1, 0.15 , on behavior of Im(ǫ) of MoS2 layer as a function 
of frequency have been shown. The applied longitudinal magnetic field is assumed to be zero and temperature 
has been fixed at kBT = 0.1 eV. In the absence of strain parameter, a peak appears at finite frequency ω = 2.4 
eV due to interband transition effects of electrons. For finite non zero strain parameter, two peaks in optical 
absorption appear at finite frequencies. According to Fig. 6, the intensity of optical absorption at peak frequency 
position decreases with uniaxial strain. Also the distance between two peaks in Im(ǫ) at finite uniaxial strain 
parameter increases with ε as shown in Fig. 6. Moreover the figure indicates that the optical absorption vanishes 
in frequency region ω < 1.5 for all values of ε . Also there is no Drude weight at zero frequency limit of optical 
absorption for all uniaxial strains due to band gap in excitation spectrum of the electronic band structure. In 
fact, the intraband transition in the presence of uniaxial strain has no considerable contribution to the electronic 
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Figure 5.  Optical absorption, Im(ǫ) , of doped MoS2 layer as a function of chemical potential µ at fixed 
frequency ω = 2.5 eV for different values of temperature, namely kBT = 0.1 eV, 0.2 eV, 0.3 eV, 0.4 eV , in the 
absence of strain.
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Figure 6.  Optical absorption, Im(ǫ) , of undoped MoS2 layer as a function of photon frequency in the presence 
of positive uniaxial strain for different strain parameter , namely ε = 0.0, 0.05, 0.1, 0.15 , in the absence of 
magnetic field at fixed temperature kBT = 0.1 eV.
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transition and consequently there is no Drude weight in optical absorption of MoS2 under these conditions. This 
fact shows that MoS2 in the presence of uniaxial strain and in the absence of magnetic field behaves as a metal.

The behaviors of frequency dependence of optical absorption of undoped MoS2 layer for different negative 
uniaxial strains have been presented in Fig. 7. The temperature and magnetic field have been assumed to be 
kBT = 0.1 eV and gµBB = 0.0 eV. There are two peaks in optical absorption at finite frequency for each non 
zero strain parameter so that the distance between peaks increases with absolute value of ε . Only for ε = −0.15 , 
optical absorption gets the non zero value at zero limit frequency. In other words, there is non zero Drude weight 
in optical absorption for ε = −0.15 . Such fact demonstrates that intraband electronic transition contributes to 
the optical absorption and consequently the system behaves as a metal. MoS2 layer under negative biaxial strain 
behaves as a transparent media at frequencies ω > 4.0 eV so that optical absorption gets the zero value in this 
frequency region. Also Im(ǫ) vanishes for ε = 0.0,−0.05,−0.1 at frequencies ω < 0.7 eV.
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Figure 7.  Optical absorption, Im(ǫ) , of undoped MoS2 layer as a function of photon frequency in the presence 
of negative uniaxial strain for different strain parameter, namely ε = 0.0,−0.05,−0.1,−0.15 , in the absence of 
magnetic field at fixed temperature kBT = 0.1 eV.
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Figure 8.  Optical absorption, Im(ǫ) , of undoped MoS2 layer as a function of photon frequency in the presence 
of positive biaxial strain for different strain parameter , namely εx = εy = ε = 0.0, 0.05, 0.1, 0.15 , in the absence 
of magnetic field at fixed temperature kBT = 0.1 eV.
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The effects of in-plane biaxial strain εxx = εyy = ε with positive sign on behaviors of optical absorption have 
been studied in Fig. 8. We have plotted the frequency dependence of Im(ǫ(ω)) for different values of positive 
in-plane biaxial strain ε in the absence of magnetic field and temperature kBT = 0.1 eV in Fig. 8. The intraband 
band transition contributes to the optical absorption at zero frequency limit for ε = 0.15 so that Drude weight 
takes the remarkable value for this strain amount. In addition to the Drude weight in optical absorption, the 
finite frequency peaks in optical absorption curves are clearly observed. Such finite frequency peaks in optical 
absorption arises from electronic interband transitions. The frequency position of peak in optical conductivity 
moves to lower amounts with ε . This can be understood from this fact that the increase of ε causes the decrease 
of band gap in density of states. Thus the peak in Im(ǫ(ω)) appears at lower frequency with increase of strain 
parameter ε . Another novel feature in Im(ǫ(ω)) is pronounced in Fig. 8. The optical absorption gets the zero 
value at frequencies ω < 1.0 eV for ε = 0.0, 0.05 . The metallic property of MoS2 layer in the presence of strain 
value ε = 0.15 is considerable since the Drude weight in optical conductivity for strain parameter ε = 0.15 gets 
higher value in comparison with the other values of biaxial strain parameters.

The behaviors of frequency dependence of optical absorption of undoped MoS2 layer for different nega-
tive biaxial strains have been presented in Fig. 9. The temperature and magnetic field have been assumed to be 
kBT = 0.1 eV and gµBB = 0.0 eV. There is a finite frequency peak in optical absorption for each value of strain 
parameter so that the peak position tends to higher frequency with absolute value of ε . According to Fig. 9, 
Drude weight of MoS2 layer gets a very low value for all amounts in-plane biaxial strain. It can be justified from 
this point that intraband electronic transition gives no considerable contribution to the optical absorption and 
consequently the system behaves as a insulator. MoS2 layer under negative biaxial strain behaves as a transparent 
media at frequencies ω > 4.0 eV and ω < 1.5 since Im(ǫ) gets the zero value in these frequency regions.

We have studied the hole doping effects on the behavior optical absorption of MoS2 . For this purpose, the 
dependence of Im(ǫ(ω)) on the negative chemical potential µ for different frequencies ω at fixed temperature 
kBT = 0.1 eV in the absence of magnetic field has been plotted in Fig. 10. A considerable peak in optical conduc-
tivity MoS2 layer is clearly observed for ω = 0.5 eV. The chemical potential dependence for optical conductivity 
at ω = 2.0 eV indicates that Im(ǫ(ω)) shows a monotonic increasing behavior with decrease of absolute value 
in the region µ < −1.0 . Upon more increase of µ above −1.0 , optical conductivity for ω = 2.0 eV reaches a 
constant value according to Fig. 10.

In Fig. 11, we have presented the behavior of optical absorption of doped MoS2 layer in terms of negative 
chemical µ in the absence of any strain parameter for different values of temperature. The photon has been fixed 
at ω = 2.5 eV. This plot indicates a monotonic increasing behavior for each value of temperature. It can be under-
stood from the fact that the decrease of absolute value of chemical potential leads to reduce the hole concentra-
tion. Thus the scattering rate between holes decreases which increases the optical conductivity. Another feature 
is pronounced in this figure. For fixed chemical potential above −1.6 eV, Im(ǫ(ω)) decreases with temperature 
according to Fig. 5. Higher temperature causes more scattering of holes which reduces the optical conductivity. 
However for chemical potentials below -1.6 eV, the increase of temperature leads to enhance the transition rate of 
electrons from valence band to conduction one. This fact implies optical conductivity increases with temperature 
in the chemical potential region below −1.6 eV.

Finally we have plotted the electronic band structure of MoS2 monolayer in the absence strain parameters 
for various external magnetic fields in Fig. 12. This figure implies the increase of applied magnetic field leads 
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Figure 9.  Optical absorption, Im(ǫ) , of undoped MoS2 layer as a function of photon frequency in the presence 
of negative biaxial strain for different strain parameter , namely εx = εy = ε = 0.0,−0.05,−0.1,−0.15 , in the 
absence of magnetic field at fixed temperature kBT = 0.1 eV.
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Figure 10.  Optical absorption, Im(ǫ) , of doped MoS2 layer as a function of chemical potential µ at fixed 
temperature kBT = 0.1 eV for different values of frequency ω in the absence of strain.
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Figure 11.  Optical absorption, Im(ǫ) , of doped MoS2 layer as a function of chemical potential µ at fixed 
frequency ω = 2.5 eV for different values of temperature, namely kBT = 0.1 eV, 0.2 eV, 0.3 eV, 0.4 eV , in the 
absence of strain.
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to decrease distance between energy levels as the structure tends to metallic property with magnetic field. Such 
metallic property with magnetic field has been approved in Fig. 2 where the Drude weight in optical conductivity 
increases with magnetic field.
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The datasets used and analysed during the current study available from the corresponding author on reasonable 
request.
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