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Artificial intelligence‑based 
radiomics for the prediction 
of nodal metastasis in early‑stage 
lung cancer
Yoshihisa Shimada 1*, Yujin Kudo 3, Sachio Maehara 3, Kentaro Fukuta 3, Ryuhei Masuno 2, 
Jinho Park 2 & Norihiko Ikeda 3

We aimed to investigate the value of computed tomography (CT)‑based radiomics with artificial 
intelligence (AI) in predicting pathological lymph node metastasis (pN) in patients with clinical 
stage 0–IA non‑small cell lung cancer (c‑stage 0–IA NSCLC). This study enrolled 720 patients who 
underwent complete surgical resection for c‑stage 0–IA NSCLC, and were assigned to the derivation 
and validation cohorts. Using the AI software Beta Version (Fujifilm Corporation, Japan), 39 AI imaging 
factors, including 17 factors from the AI ground‑glass nodule analysis and 22 radiomics features from 
nodule characterization analysis, were extracted to identify factors associated with pN. Multivariate 
analysis showed that clinical stage IA3 (p = 0.028), solid‑part size (p < 0.001), and average solid CT 
value (p = 0.033) were independently associated with pN. The receiver operating characteristic analysis 
showed that the area under the curve and optimal cut‑off values of the average solid CT value relevant 
to pN were 0.761 and ‑103 Hounsfield units, and the threshold provided sensitivity, specificity, and 
negative predictive values of 69%, 65%, and 94% in the entire cohort, respectively. Measuring the 
average solid‑CT value of tumors for pN may have broad applications such as guiding individualized 
surgical approaches and postoperative treatment.

Abbreviations
AI  Artificial intelligence
AUC   Area under the curve
CI  Confidence interval
CT  Computed tomography
GGN  Ground-glass nodule
HR  Hazard ratio
HU  Hounsfield units
NPV  Negative predictive value
NSCLC  Non-small cell lung cancer
OS  Overall survival
PET  Positron emission tomography
RFS  Recurrence-free survival
ROC  Receiver-operating characteristics
SD  Standard deviation
3D  Three-dimensional

Pathological lymph node status is considered one of the most important prognostic factors in patients with 
early-stage non-small cell lung cancer (NSCLC)1. There is an approximately 15–20% risk of occult lymph node 
metastasis in patients with stage I  disease2–5. The 5-year overall survival rates of patients with pathological N1, 
N2, and N3 NSCLC were 49%, 36%, and 20%,  respectively1. Given that pathological lymph node metastasis (pN) 
is a substantial threat to survival, identifying the relevant clinical factors is highly beneficial when considering 
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surgical approaches, the indication of adjuvant chemotherapies, optimal postoperative surveillance, and the 
prediction of prognostic outcomes in clinical stage IA NSCLC.

Various techniques, such as imaging and endoscopic modalities, have been reported to enable the stratification 
of patients with NSCLC according to their  prognosis6–8. Our recent report showed that quantitative computed 
tomography (CT) histogram analysis of lung tumors obtained by extracting voxel values enables the non-invasive 
prediction of pN in patients with clinical stage 0–IA  NSCLC8. Cho et al. showed that radiological pure solid tumor 
and solid-part size were associated with pN1 and N2 lymph node metastases in patients with stage I  NSCLC3. 
Furthermore, we conducted an artificial intelligence (AI) analysis of three-dimensional (3D) lung tumor imag-
ing, showing that solid-part volume calculated using AI software was associated with an unfavorable prognosis 
in patients with radiologically solid-predominant  NSCLC9.

Radiomics is a high-throughput quantitative tool that converts medical images into a large amount of pre-
defined computational data. The potential application of radiomics in predicting lymph node metastasis, treat-
ment response, and clinical outcomes of patients with lung cancer has recently attracted much  attention10–14. 
Radiomics-based approaches coupled with AI may serve as non-invasive and personalized decision support 
methods to identify prognostically high-risk cohorts with early-stage NSCLC. The purpose of our study was to 
evaluate CT-based radiomics analysis to preoperatively predict pN in patients with clinical stage 0–IA NSCLC.

Patients and methods
Patients. There were 1692 patients who underwent pulmonary resection for lung cancer between January 
2008 and December 2015. The following exclusion criteria were applied: lung cancer other than NSCLC, clinical 
stage IB–IV, incomplete surgical resection, wedge resection, no mediastinal lymph node dissection, and pre-
operative induction treatment. The remaining patients were those with clinical stage 0–IA NSCLC who under-
went radical anatomical resection (lobectomy or segmentectomy) and systemic lymph node dissection at Tokyo 
Medical University Hospital. Among them, 233 patients were excluded because the AI imaging features of their 
lesions could not be processed. Low-fidelity CT images due to a limited number of CT slices and existing normal 
lung structures and non-malignant lesions resembling tumors cause the AI’s misrecognition to a target tumor. 
Finally, 720 patients for whom AI processing using their chest CT was successfully performed were enrolled 
in this study. We randomly assigned 480 and 240 patients to the derivation and validation sets to balance the 
proportions of patients with pN, respectively. A consort diagram of patients included in the study was shown 
in Fig. 1. We reviewed the medical records of each patient for preoperative clinical information including TNM 
stage. The TNM stage was determined according to the eighth edition of the TNM classification of malignant 
tumors. The comorbidities included diabetes mellitus, cardiovascular disease, chronic obstructive pulmonary 
disease, cerebral disease, autoimmune disease, interstitial pneumonia, and asthma.

Figure 1.  Consort diagram of patients included in the study. NSCLC—non-small cell lung cancer; ND—node 
dissection; AI—artificial intelligence.
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Patient follow‑up. Patients were examined at the 6-month intervals for the first 2 years and 1-year intervals 
on an outpatient basis, with the aim of continuing follow-up for 10 years after resection. Follow-up evaluations 
included physical examinations, chest radiography, and blood tests. Chest and abdominal CT scans were per-
formed every 6 months in the first 2 years and annually from the third year. Further evaluations, including brain 
magnetic resonance imaging and bone scintigraphy, were performed when the symptoms or signs of recurrence 
were observed. Positron emission tomography/computed tomography (PET/CT) was performed when appro-
priate. The date of recurrence was defined as the date of histologic proof or the date of identification based on 
clinicoradiologic findings by a physician.

Radiological evaluation of primary tumor. All patients in this study underwent preoperative high-
resolution CT and three-dimensional CT lung modeling. Helical CT images (1.25-mm-thick) were obtained 
from the whole lung. The whole tumor and solid-part sizes were preoperatively measured by two experienced 
thoracic radiologists (Dr. R.M. with 14 years and Dr. J.P. with 30 years of experience in chest CT interpretation, 
respectively). The solid-part size was defined as the maximum diameter of the solid component of the lung win-
dow, excluding the ground-glass nodules.

Radiomics and AI imaging analysis of CT images. After the lung CT Digital Imaging and Communi-
cations in Medicine (DICOM) format data were transmitted to the Synapse Vincent system (Fujifilm Corpora-
tion, Tokyo, Japan), the AI software Beta Version (AI software; Fujifilm Corporation) in the system automatically 
detected and segmented lung nodules in the bilateral lungs and reconstructed the 3D images of the lungs and 
nodules. This segmentation algorithm was based on the 3D-Convolutional Neural Network using a modified U-
Net architecture. The network consisted of 17 convolutional layers. The system separated the solid-part of lung 
nodules from non-solid-parts (ground-glass nodules; [GGNs]), and determined the size, volume, and ratio of 
solid-part, non-solid-part, and whole tumor lesions, as well as CT histogram features. The total of 39 AI imag-
ing features included 22 radiomics features and 17 features from the GGN analysis (Supplemental Table 1), and 
the radiomics features were automatically extracted and displayed as a score from 0 to 1 using a feature analysis 
function. The 22 radiomics features were based on the labeling of 5118 tumors, and the datasets of the develop-
mental process were divided into training, validation, and test sets. The trained model gave a mean area under 
the curve (AUC) score of 0.93 for all features on the test dataset based on the information of radiological and 
histological diagnoses of tumor and non-tumor lesions (data not shown). This AI lung nodule analysis model 
uses a convolutional neural network based on VGG-16 and consists of 12 layers of convolution, with four layers 
removed from the output side of the VGG-16. To extract 3D radiomics features, 3D convolution was used for 
all the convolution layers. The 3D software automatically generated the 17 features from the GGN analysis. The 
software determined the volumes of the GGNs, radiologically solid lesions and whole tumor lesions, the ratios of 
GGNs or the radiologically solid lesions, and CT histograms data by the feature analysis function.

Statistical analysis. Overall survival (OS) was measured from the day of surgery to the day of death from 
any cause or the day on which the patient was last known to be alive. Recurrence-free survival (RFS) was meas-
ured as the interval between the date of surgery and date of recurrence, date of death from any cause, or date 
the patient was last known to be alive. OS and RFS curves were plotted using the Kaplan–Meier method, and 
differences in variables were determined using the log-rank test. Univariate and multivariate logistic regression 
analyses were performed to identify the factors associated with pN using a Cox proportional hazards model. A 
backward stepwise selection method was used to build logistic regression models, and variables with a threshold 
of p < 0.15 were adopted for the stepwise model selection procedure to prevent overlooking relevant factors. We 
conducted univariate and multivariate analyses separately using the 39 AI imaging features and other clinical 
factors. Pearson’s chi-square test (for categorical data) and Student’s t test (for continuous data) were used to 
compare two groups of data. Receiver operating characteristics (ROC) curves for lymph node metastasis and 
early recurrence were constructed, and the optimal cut-off values were determined using the AUC. All tests were 
two-sided, and statistical significance was set at p < 0.05. The SPSS statistical software package (version 28.0, 
DDR3 RDIMM; SPSS Inc., Chicago, IL, USA) was used for statistical analysis. Violin plots were constructed 
using the R package (version 4.0.5).

Ethical statement. The authors are accountable for all aspects of the work in ensuring that questions 
related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. All proce-
dures performed in this study involving human participants were performed in accordance with the Declaration 
of Helsinki (as reserved in 2013). The study was approved by the institutional review board of Tokyo Medical 
University (SH3951). Informed consent for the use and analysis of clinical data was obtained preoperatively for 
each patient.

Results
Patient characteristics are shown in Table 1. The derivation cohort included 236 men (49%) and 244 women 
(51%), while the validation cohort included 122 men (51%) and 118 women (49%). There were no significant 
differences between the two cohorts, except for surgical procedures. Segmentectomy was performed in 50 patients 
(10%) in the derivation cohort and in 11 patients (5%) in the validation cohort (p = 0.008).

Fifty-six patients (12%) in the deviation cohort and 27 patients (11%) in the validation cohort were found 
to have positive lymph nodes. Kaplan–Meier curves showed that pN status was significantly associated with OS 
and RFS in the derivation cohort (5-year OS rate 92.4% vs. 63.8%, p < 0.001, Fig. 2A; and 5-year RFS rate 84.5% 
vs. 40.1%, p < 0.001, Fig. 2B), the validation cohort (5-year OS rate 92.3% vs. 63.8%, p < 0.001, Fig. 2C; and 5-year 
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Table 1.  Patient characteristics. SD standard deviation; FEVforced expiratory volume.

Variable Derivation cohort n = 480 (%) Validation cohort n = 240 (%) p value

Age, years (mean ± SD) 23–86 (66 ± 10) 38–87 (67 ± 10) 0.245

Sex, male 236 (49) 122 (51) 0.673

Any smoking history 271 (57) 146 (61) 0.262

Comorbidities, present 227 (47) 132 (55) 0.051

FEV1.0, L (mean ± SD) 0.98–4.93 (2.36 ± 0.67) 0.89–4.93 (2.28 ± 0.64) 0.125

FEV1.0% (mean ± SD) 39–96 (73 ± 9) 35–93 (73 ± 10) 0.795

Clinical stage

(0-IA2 vs. IA3)
0.163

0 32 (7) 13 (6)

IA1 94 (20) 43 (18)

IA2 201 (42) 95 (40)

IA3 153 (32) 89 (37)

Pathological stage

(I vs. II-III)
0.234

IA 312 (65) 164 (68)

IB 92 (19) 46 (19)

II 40 (8) 16 (7)

III 36 (8) 14 (6)

Histology

0.274Adenocarcinoma 422 (88) 204 (85)

Others 58 (12) 36 (15)

Pathological lymph-node status

(N0 vs. N1-3)
0.869

N0 420 (88) 213 (89)

N1 25 (5) 13 (5)

N2 31 (7) 14 (6)

N3 4 (1) 0

Surgical procedure

0.008Lobectomy 430 (90) 229 (95)

Segmentectomy 50 (10) 11 (5)

Figure 2.  Overall survival and recurrence-free survival of clinical stage 0–IA patients according to status of 
lymph node metastasis status. (A) Overall survival and (B) recurrence-free survival of patients in the derivation 
cohort. (C) Overall survival and (D) recurrence-free survival of patients in the validation cohort. (E) Overall 
survival and (F) recurrence-free survival of patients in the entire cohort. pN0—pathological lymph node 
negative; pN + —pathological lymph node positive.
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RFS rate 83.7% vs. 40.4%, p < 0.001, Fig. 2D), and in the entire cohort (5-year OS rate 92.4% vs. 65.5%, p < 0.001, 
Fig. 2E; and 5-year RFS rate 84.2% vs. 40.2%, p < 0.001, Fig. 2F).

The p-value significance of the correlations between the 39 AI imaging features and the pN is shown in Fig. 3, 
and 17 factors were found to be significant in both cohorts. Univariate analyses of RFS in the derivation using 
clinical factors such as age, sex, smoking habit (presence versus absence), FEV1.0%, comorbidities (presence 
versus absence), solid-part size, clinical stage (0–IA2 versus IA3), and surgical procedure (lobectomy versus seg-
mentectomy) showed that larger solid-part size (hazard ratio [HR] 2.82, 95% confidence interval (CI) 1.98–4.02, 
p < 0.001) and clinical stage IA3 (HR 2.36, 95%CI 1.49–3.76, p < 0.001) were found to be significant unfavorable 
RFS factors (Table 2). Solid-part size (HR 7.96, 95%CI 3.26–19.48, p < 0.001) and clinical stage IA3 (HR 3.23, 
95%CI 1.13–9.19, p = 0.028) were also independently associated with poor RFS on multivariate analysis (Table 2). 
Among the AI imaging features, the average solid CT value (HR 1.01, 95%CI 1.00–1.02, p = 0.033) was the only 
independent factor associated with unfavorable RFS on multivariate analysis (Table 2).

To investigate the effect of the statistically significant predictive factors, solid-part size, and average solid 
CT value on pN, we calculated ROC curves in the derivation cohort (Supplementary Figure. 1). The AUC and 
optimal cut-off values relevant to pN were 0.754 and 1.83 cm for solid-part size and 0.761 and − 103 Hounsfield 
units (HU) for the average solid CT value.

Violin plots were constructed to visualize the comparative distributions of the solid-part size of the valida-
tion (Fig. 4A) and the entire cohort (Fig. 4B), and the average solid CT value of the validation (Fig. 4C) and the 
entire cohort (Fig. 4D) to analyze the association with pN. Significant differences were observed in the solid-
part size in the validation (p = 0.021) and the entire cohort (p < 0.001), and in the average solid CT value in the 
validation (p < 0.001) and entire cohort (p < 0.001). Patients in the derivation, validation, and entire cohorts 
were dichotomized at 1.83 cm of solid-part size, which showed pN ratios of 23% and 4% (p < 0.001), 15% and 
8% (p = 0.114), and 20% and 6% (p < 0.001) for the high- and low-risk cohorts, respectively. Those in the deriva-
tion, validation and entire cohorts were dichotomized at − 103 HU of the average solid CT value, showing a pN 
ratio of 22% and 6% (p < 0.001), 17% and 7% (p = 0.011), and 20% and 6% (p < 0.001) for the high and low-risk 
cohorts, respectively (Table 3). The threshold provided sensitivities of 70%, 67%, and 69%, specificities of 68%, 

Figure 3.  Heat map showing the p-value significance of correlations between the 39-feature signatures and 
pathological lymph node metastasis. Artificial intelligence imaging analysis indicates the signatures related to 
lymph node metastasis in the derivation and validation cohorts.
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59%, and 65%, and negative predictive values of 94%, 93%, and 94% in the derivation, validation, and entire 
cohorts, respectively (Table 3).

Discussion
In the present study, we found that the average solid-CT value of the tumor extracted from the AI imaging 
analysis as well as the clinical stage and the solid-part size of the tumor, were independently associated with pN 
in patients with clinical stage 0–IA NSCLC. The AUC of the average solid CT value for pN was 0.761, and the 
cut-off level was − 103 HU, which is a better threshold associated with pN than a solid-part size on chest CT 
based on the results of the pN ratio and accuracy.

Preoperative identification of the boundary between high- and low-risk populations on the pN is crucial for 
optimal surgical procedures, particularly in clinical stage I  NSCLC3,5,8,15. Cho et al. showed that higher clini-
cal stage and larger solid tumor size were associated with pN, consistent with our  results3. Koike et al. identi-
fied four significant predictive factors including CTR for pN in patients with stage IA  NSCLC4. Their patients 
were dichotomized at 0.89 of CTR, which showed a sensitivity of 98%, specificity of 43% and accuracy of 47%, 
 respectively4. Kaseda et al. demonstrated that the SUVmax of the tumor was independently associated with occult 
lymph node metastasis in patients with stage I NSCLC, and the thresholds of the SUVmax provided a sensitivity 
of 68%, specificity of 53% and accuracy of 55%,  respectively15. Even though those studies showed higher sen-
sitivities for pN, lower specificities ultimately led to lower accuracies than our results. We recently showed that 

Table 2.  Univariate and multivariate analyses of lymph node metastasis in the derivation cohort. 
CI confidence interval; FEV forced expiratory volume; AI artificial intelligence; CT computed tomography.

Factors among clinicopathological factors

Univariate analysis

Hazard ratio (95% CI) p value

Age 1.02 (1.00–1.04) 0.086

Sex (male vs. female) 1.45 (0.91–2.30) 0.118

Smoking 1.20 (0.78–1.86) 0.407

FEV1.0% 0.77 (0.55–1.07) 0.122

Comorbidities 1.36 (0.86–2.16) 0.191

Solid-part size 2.82 (1.98–4.02) < 0.001

Clinical stage (IA3 vs. 0-IA2) 2.36 (1.49–3.76) < 0 .001

Procedure (lobectomy vs. segmentectomy) 2.67 (0.82–8.73) 0.104

Factors among clinicopathological factors
Multivariate analysis

Hazard ratio (95% CI) p value

Solid-part size 7.96 (3.26–19.48) < 0.001

Clinical stage (IA3 vs. 0-IA2) 3.23 (1.13–9.19) 0.028

Procedure (lobectomy vs. segmentectomy) 3.34 (0.43–25.65) 0.247

Factors among AI imaging features
Multivariate analysis

Hazard ratio (95% CI) p value

Average solid CT value 1.01 (1.00–1.02) 0.033

Maximum solid CT value 1.00 (1.00–1.01) 0.084

Bronchus translucency 3.10 (0.80–1.90) 0.101

Figure 4.  Violin plots for the comparison of the distribution of solid-part size in the validation cohort (A) and 
entire cohort (B), and average solid CT value in the artificial intelligence in the validation cohort (C) and entire 
cohort (D). pN( +)—pathological lymph node positive; CT—computed tomography; HU—Hounsfield units.
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quantitative CT histogram analysis of lung tumors contributed to the noninvasive prediction of pN in patients 
with clinical stage IA  NSCLC8. Average solid CT value obtained in the current study is one of the CT histogram 
parameters, and growing evidence suggests that quantitative CT histogram analysis of lung cancer is helpful in 
detecting imaging variables associated with postoperative outcomes and histologic  invasiveness16–19. Numerous 
other studies have reported factors associated with pN, such as age, histology, maximum standardized uptake 
values on PET/CT, solid-part size, and the maximum consolidation diameter to the maximum tumor diameter 
(CTR) in early-stage  NSCLC20–23. The ratio of CTR and solid-part size seen on HRCT has a greater chance of 
identified a pathological invasive  component21,24. Patients with a larger proportion of solid-part size had a higher 
recurrence rate regardless of surgical  procedures24,25. The present study demonstrated that the solid-part size 
was significantly associated with pN. HRCT plays a vital role in the diagnosis, and clinical decision making, and 
predicting patient outcomes in early-stage NSCLC. However, it is important to note that lung lesions with an 
irregularly shaped solid-part in the greatest dimension sometimes cause inter- and intra-observer variability.

Several studies have reported that radiomics approaches were highly useful for predicting pN in patients 
with  NSCLC13,26,27. Cong et al. established a radiomics model in predicting pN in early-stage NSCLC, and 
the predictive performance of their radiomics model was significantly better than that of clinical factor-based 
 model13. Radiomics implementation comprises several processes, such as imaging, feature extraction, feature 
selection, signature building, and analysis. Usually, the region of interest on CT images is manually outlined by 
experienced radiologists. By contrast, the current radiomics analysis demonstrated that 39 AI imaging features 
could be automatically extracted and displayed as measures and scores. We believe that our work may serve as a 
promising method for predicting pN in a non-invasive manner, allowing physicians without technical expertise 
in the context of image synthesis to easily conduct AI analysis to unravel tumor phenotypic characteristics.

This study has several limitations. First, it was a retrospective review of patients from a single institution, 
and inherent biases existed. Second, not all preoperative CT images from patients were successfully processed 
using our radiomics analysis. There were cases in which a radiomics signature could not be obtained because of 
low-fidelity CT images and target lesions unrecognized by the AI system. Third, our study only used CT imaging 
features. PET/CT is highly useful for predicting prognosis and detecting pathological invasive factors, includ-
ing lymph node metastasis, even though there are various causes of false-positive and false-negative  results6,23. 
However, 49% of patients were assessed using the same PET/CT setting, whereas the remaining were assessed 
by other scanners or had no PET/CT examinations in this study (data not shown). Therefore, we excluded data 
derived from PET/CT from the analyses. Fourth, the AI used in this study was specific to the software package 
used by our group. Applying these results to other centers would require the use of the same software. Therefore, 
external validation of this study outside our center could not be performed currently. Finally, the cut-off values 
from the ROC curves, such as − 103 HU on the average solid CT value and 1.83 cm on the solid-part size for pN 
were arbitrary. Hence, the results can vary depending on the number of patients or type of CT scanning protocol 
used although we performed the validation analyses to see if these thresholds were useful to predict pN.

In conclusion, AI software in CT-based radiomics provides significant imaging features for the prediction 
of pN in patients with clinical stage 0–IA NSCLC. Measuring the average solid CT value of tumors for pN may 
have broad clinical applications such as guiding surgical approaches and individualized postoperative treatment.

Data availability
The analyzed data in this article will be shared on reasonable request to the corresponding author, except for the 
deviation and validation dataset for the radiomics analysis by AI software.

Received: 17 September 2022; Accepted: 16 January 2023

Table 3.  Correlation between the significant values and lymph node metastasis. pN pathological lymph node 
metastasis; NPV negative predictive value; CT computed tomography; HU Hounsfield units.

Cohort Solid-part size pN (%) p value Sensitivity (%) Specificity (%) Accuracy (%) NPV (%)

Derivation
> 1.83 cm 44 (23)

< 0.001 44/56 (79) 278/424 (66) 322/480 (67) 278/290 (96)
< 1.83 cm 12 (4)

Validation
> 1.83 cm 16 (15)

0.114 16/27 (59) 121/213 (57) 137/240 (57) 121/132 (92)
< 1.83 cm 11 (8)

All
> 1.83 cm 60 (20)

< 0 .001 60/83 (72) 399/637 (63) 459/720 (64) 399/422 (95)
< 1.83 cm 23 (6)

Cohort Average solid CT value pN (%) p value Sensitivity (%) Specificity (%) Accuracy (%) NPV (%)

Derivation
>  − 103 HU 39 (22)

< 0.001 39/56 (70) 288/424 (68) 327/480 (68) 288/305 (94)
<  − 103 HU 17 (6)

Validation
>  − 103 HU 18 (17)

0.011 18/27 (67) 126/213 (59) 144/240 (60) 126/135 (93)
<  − 103 HU 9 (7)

All
>  − 103 HU 57 (20)

< 0 .001 57/83 (69) 414/637 (65) 471/720 (65) 414/440 (94)
<  − 103 HU 26 (6)
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