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Artificial intelligence for automated 
detection of large mammals 
creates path to upscale drone 
surveys
Javier Lenzi 1*, Andrew F. Barnas 1,2, Abdelrahman A. ElSaid 3, Travis Desell 4, 
Robert F. Rockwell 5 & Susan N. Ellis‑Felege 1

Imagery from drones is becoming common in wildlife research and management, but processing 
data efficiently remains a challenge. We developed a methodology for training a convolutional neural 
network model on large‑scale mosaic imagery to detect and count caribou (Rangifer tarandus), 
compare model performance with an experienced observer and a group of naïve observers, and discuss 
the use of aerial imagery and automated methods for large mammal surveys. Combining images 
taken at 75 m and 120 m above ground level, a faster region‑based convolutional neural network 
(Faster‑RCNN) model was trained in using annotated imagery with the labels: “adult caribou”, “calf 
caribou”, and “ghost caribou” (animals moving between images, producing blurring individuals 
during the photogrammetry processing). Accuracy, precision, and recall of the model were 80%, 
90%, and 88%, respectively. Detections between the model and experienced observer were highly 
correlated (Pearson: 0.96–0.99, P value < 0.05). The model was generally more effective in detecting 
adults, calves, and ghosts than naïve observers at both altitudes. We also discuss the need to improve 
consistency of observers’ annotations if manual review will be used to train models accurately. 
Generalization of automated methods for large mammal detections will be necessary for large‑scale 
studies with diverse platforms, airspace restrictions, and sensor capabilities.

Drones offer a variety of advantages that make them a powerful tool for wildlife  ecologists1,2. In the past, it has 
been challenging to obtain data of animal counts spatially and temporally because aircraft missions and satel-
lite images are expensive, and ground-based surveys in many cases are restrictive in terms of accessibility to 
sites, the areas that could be covered, and the low cost-effectiveness ratio. More recently, drones have emerged 
as a highly cost-effective tool that allows researchers to reduce survey costs, notably increasing the amount of 
high-quality  information3–5. Additionally, drones can offer a non-invasive technique that reduces disturbance 
in comparison with traditional  approaches6,7. For these reasons, this technology is being increasingly adopted 
by wildlife ecologists.

Studies about species detection, abundance, distribution, behavior, and reproduction of terrestrial and marine 
vertebrates have been growing in the past 2 decades using drone  technology3,4,8,9. In particular, studies using 
drones have been carried out in terrestrial mammals, mostly on large  herbivores10–18. Most of these studies have 
been conducted in African ecosystems, like the savannas; however, studies on terrestrial mammalian herbivores 
in the wild are still lacking in Arctic and sub-Arctic ecosystems. These are logistically and financially challenging 
 regions19, where the survey area needed to be covered is usually very large, and weather conditions make occu-
pied survey flights  dangerous20 and satellites  unreliable21. Fortunately, drones can ameliorate all three of those 
problems, and could be used for conservation, research, and monitoring in these challenging environments.

One species of conservation interest is caribou (Rangifer tarandus) where population declines appear associ-
ated with human activities along its distributional  range22. Available methodologies used to monitor caribou 
populations such as collaring or monitoring with occupied aircrafts, although useful, could be disruptive to 
individuals, financially challenging, and certainly logistically  intensive23. The use of alternative methodologies, 
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such as drones, to study caribou in sub-Arctic habitats of northern North America, has been assessed by Patter-
son et al.24. These authors evaluated the use of drones as a methodology to manually detect and count surrogate 
caribou in natural habitats. However, to our knowledge drone technology has not been empirically evaluated with 
wild caribou. Additionally, the generation and management of large amounts of raw data and manual counting 
from imagery are still time consuming, inefficient, and error-prone, decreasing the benefits of the  technology25,26. 
Therefore, efficient and cost-effective approaches to detect and count wild caribou could be advantageous, because 
its broad distribution requires access to remote locations and to cover extensive (in the range of millions of  km2) 
sections of  land27. This situation imposes a challenge for researchers in their efforts to acquire and rapidly analyze 
data. As a result, monitoring that incorporates drones also requires the development of automated procedures 
to provide accurate and timely information for wildlife  managers23.

One approach to facilitate detection and counting of individuals from aerial imagery is machine learning, 
and in particular the development of convolutional neural networks (CNNs), which are highly successful for 
computer vision tasks. CNNs are a type of deep neural network useful for image classification and recognition, 
which are composed by two elements: feature extraction and classification. The purpose of feature extraction is to 
produce feature maps, which is carried out by processes called  convolutions28. Convolutions consists of applying 
of a filter that slides over an input image (or other feature map) combining the input value and the filter value to 
produce another feature map. The process is repeated multiple times with different layers of convolutional filters 
resulting in multiple layers of feature maps of progressively smaller sizes, where the final layer is a vector of single 
values, as opposed to tensors of feature  maps29. Then, the classification part takes this final layer and adds a small 
number of fully connected layers, similar to a regular feed forward neural  network28,30. The end of the classifica-
tion part is a loss function, typically softmax for classification tasks, which provides a predicted probability for 
each of the target objects. Applications of CNNs to drone imagery have been growing during the past  decade31. 
For instance, in koalas (Phascolarctus cinereus)32,  cetaceans33, olive ridley sea turtles (Lepidochelys olivacea)34, 
kiang (Equus kiang)35,  birds36–40 and a set of African terrestrial  mammals41–43. Depending on the quality of the 
imagery and the amount of training data, evidence shows that precision and accuracy of detections using CNNs 
can be high, in some cases better than human  counts25. As a result, there are opportunities to develop CNNs for 
a host of different wildlife surveys, including methods to count large mammals in remote locations, such as the 
challenge caribou pose.

The objectives of this study were to train a CNN to detect and classify caribou from large-scale drone imagery, 
as most modern CNN architectures are not capable of dealing with huge input images (e.g., mosaics exceeding 
sizes of 50 k by 50 k pixels). Our aim was to develop an efficient and cost-effective approach to provide accurate 
and timely information for researchers and wildlife managers. Additionally, in studies where automatic detection 
and classification algorithms are developed, manual classification is employed for two reasons: first, to train and 
develop algorithms and secondly for  validation44. Both processes could be carried out by expert and/or naïve 
observers (besides citizen science ventures). In this study, we use an expert observer (who was involved in the 
field data collection) and a team of qualified naïve observers (some of which are experienced image analysts in 
other contexts) to manually classify detections of different types of caribou (see “Manual counts” section for 
caribou type details). The experienced observer classifications are used to train and test the CNN model. In addi-
tion, annotations of naïve observers are used to mimic a lifelike scenario, where a qualified team of volunteers 
is employed to generate training data for algorithms in large-scale contexts, from detections and classifications 
of terrestrial mammals in drone imagery. Thus, our second objective was to compare the CNN model’s detec-
tions and classifications to the detections and classifications provided by our team of naïve observers. Finally, we 
discuss the limitations and what is needed to scale up our approach for large-scale studies required to address 
populations of large terrestrial mammals.

Methods
Study area. We conducted drone surveys on 18 July 2016 within the braided delta of the Mast River in 
Wapusk National Park, Manitoba, Canada (Supplementary Fig. S1.1 online). The study area where imagery was 
collected is 1  km2 (Supplementary Information). It consists primarily of small dwarf willow-dominated (Salix 
sp.) islands (approximately 1–300  m2), open graminoid meadows, and river habitat. For an in-depth geophysi-
cal and biological description of the study area  see45–48. The Cape Churchill sub-population present in the study 
area was estimated in 2937 individuals in 2007 and is part of the Eastern Migratory caribou population, recently 
designated as  Endangered27.

Drone surveys. During drone surveys of nesting common eiders (Somateria mollissima)49, a herd of caribou 
moved into the study area and remained bedded down or mostly sedentary for several hours. We opportunisti-
cally collected imagery of the entire herd during our eider survey. Flights were performed with small fixed-wing 
drone (Trimble UX5), which contained a 16.1 MP optical camera in the nadir position. Images of caribou were 
collected during four flights between 09:08 and 12:41, at altitudes of 120 m (2 flights) and 75 m (2 flights) above 
ground level (AGL). Following surveys, individual images from each flight were stitched together using Pix4D 
v. 3.1.22 to create four georeferenced orthomosaic TIFF images (ground sampling distance: 3.7 at 120 m and 
2.4 cm at 75 m), which were subsequently used to perform manual and automated counts. For further details 
such as payload, sensor, data collection, data post-processing, permits, regulations, training, and quality reports 
of this study, see the Drone Reporting Protocol in the Supplementary  Information50.

Methods were planned in accordance with the relevant guidelines and regulations. The study was designed 
considering the potential impacts on target and non-target species. Thus, we flew no less than 75 m above ground 
level to reduce disturbance on caribou and other biodiversity, as well as were the lowest altitude threshold the 
Trimble fixed-wing drone could fly. Also, according to national regulations for drone operations, 122 m is the 
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maximum height that we were authorized to fly, so to stay below this threshold we restricted our maximum 
altitude to 120 m. Data collection and field procedures were authorized by Canadian Wildlife Service Research 
and Collection Permit 16-MB-SC001, Wapusk National Park WAP-2005-18760 and WAP-2015-18846, UND’s 
Institutional Animal Care and Use Committee #A3917-01 (protocol 1505-2), UND’s Unmanned Aircraft System 
Research Compliance Committee reviewed human privacy and data management projects (approved April 10, 
2015), and a Special Flight Operations Certificate (File: 5812-11-302, ATS: 17-18-00008,40, RDIMS: 13138829).

Manual counts. Manual counts of caribou on each of the four mosaics, were performed by six observers. 
One (AFB) is an experienced observer who participated in the field work activities and is acquainted with the 
behavior and spatial distribution of this caribou herd. The rest of the five observers (naïve observers) lacked 
experience with the species, although some are experienced image analysts in other settings. All naïve observers 
were specifically trained in the counting procedure. To perform the identification and classification, all observers 
used the platform Open UAS Repository—OUR (https:// digit alag. org/ our/). OUR is a web-based infrastructure 
that allows users to upload, share, and collaborate in the analysis of large-scale UAS imagery. Mosaics were 
uploaded to this repository for the observers to search and count caribou individuals with the aid of a 50 × 50 m 
grid overlay across the image.

The counting procedure involved the identification of three types of targets: “adult caribou”, “calf caribou”, 
and “ghost caribou” that are the product of the image mosaic processing. Although adult caribou were dominant 
in the images and their body size was variable, calves (smaller individuals) could be distinguished based on 
their size (Fig. 1a). “Ghosts”, however, could be of either size and appeared as blurred or even transparent in the 
images (Fig. 1a). Because individuals move during image collection, they become visible in multiple images as 
“ghosts” that appear in one image but from an overlapping image they are not present, which causes a challenge 
for the mosaicking process and ultimately the automated recognition algorithms. Thus, we decided to include 
this category in the classification in order to account for this potential source of error.

During the classification process, the observer used the labeling tool of the Open UAS Repository to draw a 
rectangle or bounding box surrounding each individual identified (Fig. 1b). Each rectangle contains the actual 
caribou or ghost including all the pixels and the least possible amount of background (Fig. 1b). After the process 
of labeling, each classified image box was logged into a text file containing information of the type of label and 
a list of vertex coordinates (pixel coordinates) of the rectangles for all classified caribou. In addition to labeling, 
observers were asked to record the time they spent in processing each image, for further comparisons with the 
automatic detection algorithm.

Automatic detections: faster‑RCNN. We trained a Faster-RCNN (faster region-based convolutional 
neural network)  model51 with the goal to be independent of the image resolutions of the sensors or flight charac-
teristics, such as altitude, that impact pixel sizes and ultimately ground sampling distance. To utilize the captured 
large-scale mosaics as training data, these mosaic images were cut into smaller pieces or “tiles” to train and test 
the  model52,53. Tiling is a useful method when computer memory limits the training of large data sets. Thus, the 
four orthomosaic files (120 m AGL: 845 MB and 980 MB, 75 m AGL: 1.77 GB and 1.88 GB), were tiled to 1000 
pixels × 1000 pixels images. Occasionally, as a product of the tiling process, individual caribou (adults, calves, 
or ghosts) could be cut off and split into two consecutive tiles. To avoid losing or double counting split animals, 
tiles were overlapped by 100 pixels on the right and lower borders, so that if an animal is located on an edge, it 
was counted in the following tile (see Supplementary Fig. S2.1 online). Finally, to evaluate the performance of 

Figure 1.  (A) Examples of adult (red circle), calf (blue circle), and ghost (yellow circle) caribou that observers 
classified at the Open UAS Repository—OUR (https:// digit alag. org/ our/). (B) Adults (red rectangles), calves 
(blue rectangles), and ghosts (yellow rectangles) after the classification in the repository. Figure was assembled 
using Affinity Designer v 1.9.1.979 (https:// affin ity. serif. com/).

https://digitalag.org/our/
https://digitalag.org/our/
https://affinity.serif.com/
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the Faster-RCNN independent of the ground sampling distance, the tiles of the four orthomosaics were shuffled 
for training.

A total of 2,148 tiles were produced and split into a training data set of 1607 tiles (75%; Mosaic 1 at 120 m 
AGL: 271 tiles, Mosaic 2 at 120 m AGL: 288 tiles, Mosaic 3 at 75 m AGL: 548 tiles, and Mosaic 4 at 75 m AGL: 
500 tiles) and a testing data set of 541 tiles (25%, including tiles with no caribou on them as negative examples; 
Mosaic 1 at 120 m AGL: 80 tiles, Mosaic 2 at 120 m AGL: 105 tiles, Mosaic 3 at 75 m AGL: 173 tiles, Mosaic 4 at 
75 m AGL: 183 tiles; Fig. 2). The training data set was employed to train the Faster R-CNN model (Fig. 2) using 
 TensorFlow54. One NVIDIA GPU and one Intel(R) Xeon(R) CPU at 2.2 GHz were used in the training/testing of 
the model. The training took a week and performed 20,000 epochs of backpropagation using stochastic gradient 
decent. During the model training, and at fixed intervals (30 training epochs), the model was assessed using the 
testing data set. When the training learning curve of the  model55,56 was flat, the threshold was reached and the 
training was concluded (see Fig. 2). The model was compared against our experienced observer to determine its 
performance. Using this approach, we assumed that the experienced observer did not miss any individual and 
correctly classified all the adults, calves, and ghosts.

The performance of the Faster-RCNN model was evaluated estimating accuracy, precision, and recall. Accu-
racy was defined as the proportion of true positives in relation to the experienced observer. Precision was 
defined as the proportion of true positives predicted by the model that were actually correct. Recall was defined 
as the proportion of true positives in relation to all the relevant elements. Accuracy, precision, and recall were 
estimated as follows:

Figure 2.  Flowchart of the steps followed to train and test the Faster R-CNN model from the expert observer 
counts. Results of the trained detection model were then used for comparisons with the experienced observer 
counts.
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Accuracy, precision and recall were estimated for caribou as a species, and for the caribou categories: adults, 
calves, and ghosts, and for each of the four mosaic at 120 m and 75 m AGL. Using the testing data set and 
comparing the tiles classified by the Faster-RCNN model with those classified by our experienced observer, 
we proceeded to estimate true positives, false positives, and false negatives as follows. First, we counted all the 
individual caribou identified by the Faster-RCNN model that matched our experienced observer and classified 
them as true positives. Then, in relation to our experienced observer, we counted the caribou that were missed 
as false negatives, and those that were misclassified (birds, rocks, trees, and trunks classified as caribou) as false 
positives (Fig. 3). Second, we counted all the caribou categories separately: adults, calves, and ghosts identified by 
the Faster-RCNN model that matched our experienced observer and classified them as true positives. Then, we 
estimated the adults, calves, and ghosts missed by our model as false negatives, and those that were misclassified 
(calves classified as adults or ghosts, adults as calves or ghosts, ghosts as adults or calves; birds, rocks, trees, and 
trunks classified as any of these caribou categories) as false positives (Fig. 3). To estimate accuracy, we did not 
use true negatives because our approach did not consider classifying the absence of caribou in the images, and 

(1)Accuracy =
true positives

true positives + false positives + false negatives

(2)Precision =
true positives

true positives + false positives

(3)Recall =
true positives

true positives + false negatives

Figure 3.  Example of comparison of experienced observer counts (A, C) with the Faster-RCNN (B) and naïve 
observers (D). Blue arrows indicate misclassifications and yellow arrows missed individuals. Note that at the 
Faster-RCNN image, detection of an adult and a ghost are overlapped. Counted adults are the true positives, 
misclassifications are false positives, and missed individuals are false negatives. Figure was assembled using 
Affinity Designer v 1.9.1.979 (https:// affin ity. serif. com/).

https://affinity.serif.com/
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Faster-RCNN is an object detection model which only draws bounding boxes (detections) on classes of interest. 
For such models, true negatives are typically not calculated.

Comparison between the Faster‑RCNN model and naïve observers’ classifications. Compari-
sons between the Faster-RCNN model counts and naïve observers counts were established in relation to our 
experienced observer. First, from each tile used for testing, we counted all the individual caribou predicted by 
the Faster-RCNN model output that matched the experienced observer (true positives). Then, we counted the 
caribou that were missed (false negatives) and those that were misclassified (rocks, birds, trees, and tree trunks; 
Fig. 3). Secondly, we repeated this procedure incorporating the categories adults, calves, and ghosts. To estimate 
accuracy, precision, and recall we employed Eqs. 1–3, respectively. In addition, we estimated the percentage dif-
ference (i.e., the proportion of detections and classifications in relation to the true positives) to evaluate how the 
Faster-RCNN model and naïve observers counts compared with the experienced observer. A graphical compari-
son of the counts in each tile of the experienced observer with the Faster-RCNN model was implemented, and 
Pearson correlation coefficients estimated. Also, we assessed the amount of time allocated to image classification 
by all the observers and the time the Faster-RCNN took to produce the outputs, to compare how time-consum-
ing both approaches are. Finally, we evaluated the proportion of misclassifications and missed individuals of the 
Faster-RCNN model and naïve observers in relation to the true positives for each of the mosaics and caribou 
class (adults, calves, and ghosts).

Results
Faster‑RCNN performance. Overall accuracy of the Faster-RCNN model was 80%, precision 90% and 
recall 88%. The model performed better at higher altitudes, with accuracies between 80 and 88% at 120 m AGL, 
and between 75 and 76% at 75 m AGL (Table 1). When the performance of the Faster-RCNN model was ana-
lyzed by caribou classes and altitudes, the model was more efficient in detecting adults and calves than ghosts at 
both 120 m AGL mosaics (Table 2). At 75 m AGL, accuracy and precision of adults were higher than calves and 
ghosts in the first mosaic, although recall of adults was lower than calves and ghosts. In the second 75 m mosaic, 
the highest accuracy was detected in calves, followed by adults and decreasing markedly in ghosts (Table 2). 
However, precision for ghosts was higher than adults, although lower than calves in this mosaic, and recall was 
higher in adults, followed by calves and ghosts (Table 2).

Faster‑RCNN versus manual counts. The counts of the Faster-RCNN and experienced observer per tile 
for each of the mosaics showed high correlation at 120 m and 75 m (Fig. 4). Overall, most of the detections of 
the Faster-RCNN model seem overestimated in relation to the experienced observer (Fig. 4), and the percentage 
difference between both confirms an overestimation between a minimum of + 8.2% (at 120 m) and maximum 
of + 63.5% (at 75 m, Table 1).

Faster-RCNN and the experienced observer counts per tile and per caribou class for each of the mosaics, 
showed in general high correlations for adults, calves, and ghosts (Fig. 4). In most cases, the Faster-RCNN over-
estimated the count of adults, calves, and ghosts (Fig. 4, Table 2). The percentage difference for adults ranged 
between + 19.5% (at 75 m) and + 36.2% (at 75 m). For calves, this percentage oscillated between − 7.4% (at 120 m) 
and + 52.6% (75 m), and for ghosts, between -12.0% (120 m) and + 140.0% (120 m) (Table 2).

Table 1.  Comparison between the Faster-RCNN model, expert observer (AFB), and naïve observers counts 
(raw counts, and true positives: TP, false positives: FP, false negatives: FN, accuracy, precision, recall, and 
percentage difference: % diff.) of caribou for each of the mosaics at 120 m and 75 m AGL in Wapusk National 
Park, Manitoba, Canada.

Mosaic Raw counts TP FP FN Accuracy Precision Recall % diff

Experienced observer

 Mosaic 1 (120 m) 95

 Mosaic 2 (120 m) 109

 Mosaic 3 (75 m) 63

 Mosaic 4 (75 m) 136

Model

 Mosaic 1 (120 m) 114 91 16 3 0.88 0.91 0.97 + 20.0

 Mosaic 2 (120 m) 118 101 24 20 0.80 0.95 0.83 + 8.2

 Mosaic 3 (75 m) 103 56 22 1 0.75 0.76 0.98 + 63.5

 Mosaic 4 (75 m) 168 129 24 28 0.76 0.91 0.82 + 23.5

All observers
Avg ± S.D

 Mosaic 1 (120 m) 99.2 ± 9.7 28.0 ± 20.9 3.6 ± 4.1 2.5 ± 2.6 0.81 0.88 0.92 + 4.0

 Mosaic 2 (120 m) 114.4 ± 8.2 33.9 ± 16.6 4.3 ± 3.4 2.1 ± 1.5 0.84 0.89 0.94 + 4.3

 Mosaic 3 (75 m) 67.7 ± 15.9 18.3 ± 16.0 1.9 ± 1.9 1.4 ± 1.7 0.83 0.89 0.93 + 5.9

 Mosaic 4 (75 m) 150.1 ± 14.8 54.1 ± 18.6 4.4 ± 3.7 3.6 ± 5.0 0.84 0.90 0.92 + 9.3
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Overall, naïve observers showed relatively high accuracy and precision in each of the mosaics (Table 1); 
when adults, calves, and ghosts were analyzed independently, accuracy and precision ranges were more vari-
able, especially because ghosts were detected and classified with higher error (Table 2). Percentage difference at 
120 m ranged between − 9.7% and + 63.6%, and at 75 m varied between − 12.9% and + 38.2% (Table 1). Adults 
percentage difference varied between − 12.9% at 75 m and + 1.6% at 120 m, while calves varied between − 26.9% 
at 120 m and + 18.2% at 75 m. Ghost was the most variable category with percentage differences between − 10.0% 
at 75 m and − 63.6% at 120 m.

In relation to time spent by the human observers for the classification of the images, it took on average 
121.6 ± 45.9 min for the first 75 m mosaic, 103.8 ± 66.1 min for the second 75 m mosaic, 59.2 ± 20.3 min for the 
third mosaic at 120 m, and 51.9 ± 42.5 min for the last 120 m mosaic. Not considering the training phase of the 
Faster-RCNN model that took 1 week, the time that it took the model to process the testing set was 19.8 min.

Table 2.  Comparison between the Faster-RCNN model, expert observer (AFB), and naïve observers 
counts (raw counts, true positives: TP, false positives: FP, false negatives: FN, accuracy, precision, recall, and 
percentage difference: % diff.) of adults, calves, and ghosts caribou for each of the mosaics at 120 m and 75 m 
AGL in Wapusk National Park, Manitoba, Canada.

Mosaic Class Raw counts TP FP FN Accuracy Precision Recall % diff

Experienced observer

 Mosaic 1 (120 m)

Adults 62

Calves 29

Ghosts 4

 Mosaic 2 (120 m)

Adults 59

Calves 25

Ghosts 25

 Mosaic 3 (75 m)

Adults 44

Calves 9

Ghosts 10

 Mosaic 4 (75 m)

Adults 77

Calves 25

Ghosts 34

Faster RCNN model

 Mosaic 1 (120 m)

Adults 77 65 10 0 0.87 0.87 1.00 + 19.5

Calves 27 24 1 2 0.89 0.96 0.92 − 7.4

Ghosts 10 6 5 1 0.50 0.55 0.86 + 140.0

 Mosaic 2 (120 m)

Adults 70 51 13 5 0.74 0.80 0.91 + 15.7

Calves 26 19 5 3 0.70 0.79 0.86 + 3.8

Ghosts 22 16 6 12 0.47 0.73 0.57 − 12.0

 Mosaic 3 (75 m)

Adults 69 48 12 1 0.79 0.80 0.98 + 36.2

Calves 19 11 6 0 0.65 0.65 1.00 + 52.6

Ghosts 15 12 4 0 0.75 0.75 1.00 + 33.3

 Mosaic 4 (75 m)

Adults 102 78 17 0 0.82 0.82 1.00 + 24.5

Calves 29 22 2 2 0.85 0.92 0.92 + 13.8

Ghosts 37 31 5 26 0.50 0.86 0.54 + 8.1

All observers
(Avg ± S.D.)

 Mosaic 1 (120 m)

Adults 56.6 ± 8.6 56.4 ± 8.7 3.2 ± 1.8 3.8 ± 3.8 0.89 0.94 0.93 − 9.7

Calves 27.6 ± 3.0 24.8 ± 2.9 2.8 ± 2.4 2.6 ± 2.3 0.83 0.89 0.91 − 6.9

Ghosts 11.2 ± 7.9 5.8 ± 3.1 5.4 ± 6.5 1.2 ± 1.1 0.50 0.59 0.83 + 63.6

 Mosaic 2 (120 m)

Adults 60.6 ± 5.9 55.0 ± 6.5 6.0 ± 1.9 2.4 ± 2.1 0.87 0.90 0.96 + 1.6

Calves 25.0 ± 3.9 21.2 ± 2.7 3.8 ± 2.8 1.6 ± 1.3 0.81 0.85 0.93 0.0

Ghosts 28.8 ± 10.1 25.6 ± 8.2 3.2 ± 4.5 2.4 ± 1.1 0.83 0.91 0.91 + 13.7

 Mosaic 3 (75 m)

Adults 41.5 ± 4.4 39.8 ± 4.5 1.2 ± 0.8 1.4 ± 1.3 0.94 0.97 0.97 − 6.8

Calves 11.4 ± 3.0 7.4 ± 1.5 4.0 ± 2.6 0.4 ± 0.5 0.64 0.67 0.95 + 18.2

Ghosts 9.2 ± 3.5 7.6 ± 2.5 1.6 ± 2.1 2.4 ± 2.3 0.67 0.86 0.76 − 10.0

 Mosaic 4 (75 m)

Adults 66.8 ± 8.3 63.0 ± 7.6 3.8 ± 2.5 6.2 ± 6.5 0.86 0.94 0.91 − 12.9

Calves 27.8 ± 3.9 24.6 ± 2.6 3.2 ± 2.9 1.0 ± 1.0 0.86 0.89 0.96 + 10.7

Ghosts 54.8 ± 16.6 47.8 ± 14.7 7.0 ± 4.8 3.8 ± 5.2 0.80 0.87 0.93 + 38.2
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Misclassifications and missing individuals. In the first 120 m mosaic, the Faster-RCNN missed less 
individuals and proportions of adults, calves, and ghosts than the naïve observers (Table 3, Supplementary Fig. 
S2.2 online). In the second 120 m mosaic, however, naïve observers detected more ghosts than the Faster-RCNN 
model, although calves and adults were better detected by the model (Table 3, Supplementary Fig. S2.2 online). 
In the first mosaic at 75 m, the Faster-RCNN model did not miss calves and ghosts and missed only one adult 
(Table 3, Supplementary Fig. S2.2 online). In the second mosaic at 75 m, the Faster-RCNN model did not miss 
adults, detected more calves and a much lower proportion of ghosts than observers (Table 3, Supplementary Fig. 
S2.2 online).

Faster-RCNN classified caribou better than the pool of observers in the first 120 m mosaic. Adults classified 
as ghosts, was the misclassification with the highest proportion for both, the Faster-RCNN model and observers 
(Table 4, Supplementary Fig. S2.3 online). In the second 120 m mosaic, Faster-RCNN classified equally or better 
than the pool of naïve observers, except for ghosts classified as adults that was higher for the model (Table 4, 
Supplementary Fig. S2.3 online). At 75 m, misclassifications of the Faster-RCNN model were overall lower than 

Figure 4.  Comparison between (A) the individual caribou counts and (B) caribou adults, calves, and ghosts of 
the experienced observer and the Faster-RCNN per tile for each mosaic. The diagonal 1:1 line indicates a perfect 
fit of the experienced observer and Faster-RCNN counts. Plots were created using R v 4.1.3 (R Core Team, 2022) 
and figure assembled using Affinity Designer v 1.9.1.979 (https:// affin ity. serif. com/).

https://affinity.serif.com/
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the observer’s misclassifications (Table 4, Supplementary Fig. S2.3 online). However, in the first mosaic the model 
misclassified more calves as adults and ghosts as calves. In the second 75 m mosaic, the model misclassified more 
calves as ghosts, and ghosts as adults (Table 4, Supplementary Fig. S2.3 online).

Naïve observers did not misclassify caribou as objects i.e., trees, trunks, rocks, or birds. However, the Faster-
RCNN model did misclassify caribou as objects in all the mosaics. At 120 m, 9 objects were misclassified as 
adults, 1 as a calf, and 1 as a ghost. At 75 m, 22 objects were misclassified as adults, 5 as calves, and 4 as ghosts.

Discussion
To the best of our knowledge, we present one of the first attempts to employ automated detection of large mam-
mals from drone-based imagery in North America. We have developed a method for training Faster-RCNN 
models given large-scale mosaic imagery to classify and count caribou adults, calves, and ghosts independent of 
the altitude and ground sampling distance of the collected imagery. After having compared the image detections 
and classifications of the Faster-RCNN model with those of an experienced observer on the same images, we 
noticed that the automatic detection and classification performance could be promising for future implementa-
tions. When the analysis was performed by mosaic and caribou class, the Faster-RCNN model performance was 
also promising, in some cases it accomplished better outcomes than the naïve observers. However, ghost was 
the category which detection and classification were both challenging by the Faster-RCNN and naïve observers. 
Adults and calves in some cases were better detected and classified by the Faster-RCNN model than the naïve 
observers. However, a high proportion of adults were misclassified as calves in all the mosaics, mostly by some 
naïve observers rather than the Faster-RCNN model. This study suggests that there is a need to improve consist-
ency among observers to better classify groups, required to train models accurately in large-scale studies. These 
types of studies are also challenged by double counting of individuals, a problem that needs to be overcome. Our 
study found that having trained the model from images with different ground sampling distances, detection and 
classification of caribou is satisfactory, opening new promising avenues for the implementation of large-scale 
studies and monitoring.

In applied contexts, the benefits of drone technology could be challenged by the high amount of informa-
tion collected by the sensors, which artificial intelligence is attempting to unravel. Given these extensive data 
sets, especially from highly mobile species as the one analyzed in this study, practitioners could be benefitted by 
using teams of human observers as ground truth for labeling and model training. In this scenario, a minimum 
level of consistency is desirable for successfully training algorithms from multiple  operators57, because accuracy 
of a model could be undermined by the high uncertainty of the observer  annotations58. Our study found that 

Table 3.  Number and proportion of caribou adults, calves, and ghosts that were missed by the Faster-RCNN 
and the pool of naïve observers (mean ± SD) per mosaic.

Mosaic Class Missing Proportion missing

Faster-RCNN model

 Mosaic 1 (120 m)

Adults 0 0.00

Calves 2 0.08

Ghosts 1 0.14

 Mosaic 2 (120 m)

Adults 5 0.09

Calves 3 0.14

Ghosts 12 0.43

 Mosaic 3 (75 m)

Adults 1 0.02

Calves 0 0.00

Ghosts 0 0.00

 Mosaic 4 (75 m)

Adults 0 0.00

Calves 2 0.08

Ghosts 26 0.46

Naïve observers

 Mosaic 1 (120 m)

Adults 3.8 ± 3.7 0.07

Calves 2.6 ± 2.3 0.09

Ghosts 1.2 ± 1.1 0.20

 Mosaic 2 (120 m)

Adults 2.4 ± 2.1 0.04

Calves 1.6 ± 1.3 0.07

Ghosts 2.4 ± 1.1 0.09

 Mosaic 3 (75 m)

Adults 1.4 ± 1.3 0.03

Calves 0.4 ± 0.5 0.05

Ghosts 2.4 ± 2.3 0.24

 Mosaic 4 (75 m)

Adults 6.2 ± 6.5 0.09

Calves 1.0 ± 1.0 0.04

Ghosts 3.8 ± 5.3 0.09
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detection and classification varied among observers, which opens questions on how to minimize this variability 
for further implementation of artificial intelligence in large-scale applied settings. Further, we propose the fol-
lowing actions when designing surveys to improve the quality of training data: (a) the expansion of the training 
phase and regular assessments of observers’ asymptotic learning curves; (b) working as a group to allow for 
collective and common learning conducive to a more standardized experience; (c) to provide observers with 
the same set of tools, such as screens sizes and resolutions, similar timelines with appropriate resting times, and 
other standard working conditions like light, temperature, and ventilation; and finally (d) aid observers with 
alternative tools such as GPS or radio tracked caribou to verify true positive detections. This way we might be 
able to account for inter-observer variation and train models from multiple observers in large-scale situations.

One benefit of mosaicking is the potential reduction of double counting when animals move across the land-
scape, since overlapped areas in the imagery are  excluded8,59; but the process is not perfect, and ghosts emerge 
are one drawback that we aimed to account for with our classification system. It is noteworthy that our Faster-
RCNN model had issues detecting ghosts in two mosaics, one at 120 m and one at 75 m AGL, which similarly 
happened with the naïve observers. The model had also difficulties to correctly classify ghosts that were mostly 
confounded with adults, although did better than some naïve observers. Considering that the movements of the 
caribou herd analyzed in this study were relatively slow, the question of if mosaicking reduce double counting 
would work with highly mobile species, arise and might be further assessed. To avoid the presence of ghosts in 
mosaics, it could be useful to use the original raw images or strip sampling as an  alternative59, although additional 
efforts should be allocated to reduce the number of double-counts. For instance, flying more than one drone 
simultaneously, similar to employ multiple field observers, could reduce double counts, although it could be 
costly. It may also be helpful to incorporate object tracking components from video footage into the CNN analysis 
method, to reduce double counts of the same individuals. In any case, it is important that flight plans consider 
minimizing behavioral responses to reduce the chances that animals do not move in reaction to the  aircraft59,60. 
Moreover, if we could design surveys to reduce double counting close to zero, we could be able to explore the use 
of hierarchical models to detect and classify individuals. It has been proposed that N-mixture models is a good 
method to estimate abundance from aerial  imagery59, although these models are very sensitive to violations of 
assumptions, i.e., observers do not double count individuals, counts are independent binomial random variables, 
detection probabilities are constant, abundance is random and independent, and the population is  closed61,62. 
Other approaches like a modification of the Horvitz–Thompson  method63 that combines generalized linear and 
additive models for overall probability of detection, false detection, and duplicate detection have been proposed 
as better alternatives to N-mixture  models64. This could be a promising avenue to couple models that account 

Table 4.  Counts and proportion of misclassifications of adults, calves, and ghosts of the Faster-RCNN and 
naïve observers (mean ± SD) per mosaic.

Class Mosaic Faster-RCNN counts
Faster-RCNN 
proportions

Naïve observers 
counts

Naïve observers 
proportions

Adult as calf Mosaic 1 120 m AGL 1 0.04 2.6 ± 1.9 0.09

Adult as ghost Mosaic 1 120 m AGL 3 0.33 4.2 ± 5.5 0.34

Calf as adult Mosaic 1 120 m AGL 2 0.03 2.4 ± 1.3 0.04

Calf as ghost Mosaic 1 120 m AGL 1 0.14 1.2 ± 1.3 0.15

Ghost as adult Mosaic 1 120 m AGL 0 0.00 0.8 ± 8.3 0.02

Ghost as calf Mosaic 1 120 m AGL 0 0.00 0.2 ± 0.4 0.01

Adult as calf Mosaic 2 120 m AGL 3 0.14 3.2 ± 2.4 0.13

Adult as ghost Mosaic 2 120 m AGL 2 0.11 2.2 ± 2.8 0.06

Calf as adult Mosaic 2 120 m AGL 3 0.06 2.8 ± 0.8 0.05

Calf as ghost Mosaic 2 120 m AGL 1 0.06 1.0 ± 1.7 0.03

Ghost as adult Mosaic 2 120 m AGL 9 0.15 3.2 ± 1.9 0.06

Ghost as calf Mosaic 2 120 m AGL 1 0.05 0.6 ± 0.5 0.03

Adult as calf Mosaic 3 75 m AGL 0 0.00 3.4 ± 2.4 0.29

Adult as ghost Mosaic 3 75 m AGL 1 0.08 1.2 ± 1.8 0.10

Calf as ghost Mosaic 3 75 m AGL 0 0.00 0.4 ± 0.5 0.05

Calf as adult Mosaic 3 75 m AGL 2 0.04 0.2 ± 0.4 0.0

Ghost as calf Mosaic 3 75 m AGL 1 0.08 0.6 ± 0.9 0.08

Ghost as adult Mosaic 3 75 m AGL 0 0.00 1.0 ± 1.0 0.03

Adult as calf Mosaic 4 75 m AGL 1 0.04 2.0 ± 1.2 0.07

Adult as ghost Mosaic 4 75 m AGL 3 0.09 6.2 ± 4.1 0.10

Calf as adult Mosaic 4 75 m AGL 2 0.03 1.8 ± 1.9 0.03

Calf as ghost Mosaic 4 75 m AGL 1 0.03 0.8 ± 1.3 0.01

Ghost as adult Mosaic 4 75 m AGL 4 0.05 2.0 ± 0.7 0.03

Ghost as calf Mosaic 4 75 m AGL 1 0.04 1.2 ± 1.8 0.04
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for imperfect detection to train neural networks, especially in contexts where data sets are becoming large and 
difficult to process by human observers.

An algorithm able to learn and classify animals from imagery taken at different altitudes or ground sampling 
distances could be an advantage for generalizable  models65, especially useful for researchers and practitioners. 
Our Faster-RCNN model could be able to satisfactorily detect and classify caribou at both altitudes with different 
ground sampling distances. This might open further avenues to overcome difficulties that prevent combining 
different sources of data, especially when dealing with broadly distributed species. For example, different types 
of airspaces that constrain flights at certain altitudes could vary between countries and regions. Additionally, 
access to standardized platforms and sensors for long term and large-scale studies is a challenge, which could 
be overcome with algorithms like ours, potentially independent of ground sampling distances. Some success-
ful examples of this approach are present in the literature for the detection of  conifers66,  crops67, and large 
 mammals15. To achieve that, inter alia, we needed to assess what are the limits for algorithms to be trained with a 
range of ground sampling distances, able to accurately classify targets; in addition to evaluations under different 
whether conditions, backgrounds, and species. Ultimately, we could be able to generalize and optimize resources 
and data, to leverage the application of this technology for studying and managing wildlife.

To successfully apply drone technology to large-scale studies of large mammals, we need to scale up flights to 
larger landscapes rather than smaller areas. However, there are still technical and logistic limitations related to 
the use of beyond visual line of sight platforms (BVLOS) that facilitate larger areas surveys. A few examples of 
BVLOS use have been carried out in wildlife ecology, mostly in marine settings. For instance, Hodgson et al.68 
assessed the detection probability of a BVLOS drone platform to detect humpback whales (Megaptera novaean-
gliae) in Australia. Similarly, Ferguson et al.69 evaluated the performance of images taken from a drone platform 
in relation to direct surveys and imagery from manned aircraft, to detect and count marine mammals in Alaska; 
BVLOS platforms are promising although still expensive and less efficient than human observers onboard occu-
pied aircrafts, authors concluded. Isolated marine biodiversity such as marine mammals, seabirds, and tundra 
communities have successfully been surveyed on King George island in Antarctica using BVLOS  technology70. 
Nevertheless, a bigger problem BVLOS surveys have, would be the sheer amount of data collected, and concord-
antly with our findings, manual counts of wildlife are not scalable due to time  restrictions71.

Data availability
The data that support the findings of this study are available from the corresponding author upon request.
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