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Detecting type 2 diabetes mellitus 
cognitive impairment using 
whole‑brain functional connectivity
Jinjian Wu 1,2, Yuqi Fang 2, Xin Tan 1,3, Shangyu Kang 1, Xiaomei Yue 1, Yawen Rao 1, 
Haoming Huang 3, Mingxia Liu 2, Shijun Qiu 3* & Pew‑Thian Yap 2*

Type 2 diabetes mellitus (T2DM) is closely linked to cognitive decline and alterations in brain structure 
and function. Resting-state functional magnetic resonance imaging (rs-fMRI) is used to diagnose 
neurodegenerative diseases, such as cognitive impairment (CI), Alzheimer’s disease (AD), and vascular 
dementia (VaD). However, whether the functional connectivity (FC) of patients with T2DM and mild 
cognitive impairment (T2DM-MCI) is conducive to early diagnosis remains unclear. To answer this 
question, we analyzed the rs-fMRI data of 37 patients with T2DM and mild cognitive impairment 
(T2DM-MCI), 93 patients with T2DM but no cognitive impairment (T2DM-NCI), and 69 normal controls 
(NC). We achieved an accuracy of 87.91% in T2DM-MCI versus T2DM-NCI classification and 80% in 
T2DM-NCI versus NC classification using the XGBoost model. The thalamus, angular, caudate nucleus, 
and paracentral lobule contributed most to the classification outcome. Our findings provide valuable 
knowledge to classify and predict T2DM-related CI, can help with early clinical diagnosis of T2DM-MCI, 
and provide a basis for future studies.

Type 2 diabetes mellitus (T2DM), accounting for the highest percentage of adults with diabetes, is a series of 
chronic endocrine and metabolic abnormalities. T2DM is related to clinical complications such as cognitive 
impairment (CI) and dementia. T2DM patients are at a 1.5 times higher risk for dementia or cognitive decline 
than individuals without diabetes1,2. Patients with diabetes manifest brain atrophy and microvascular disease in 
magnetic resonance imaging (MRI) exams3. However, factors contributing to the onset and progression of brain 
complications in patients with T2DM remain unclear. Therefore, there is an urgent need to identify these factors 
and early detection as the prevalence of T2DM is rising with population aging.

Increasing evidence indicates that patients with T2DM present structural and functional brain pathological 
changes4. In China, the prevalence of mild cognitive impairment (MCI), the prodromal stage of Alzheimer’s 
disease (AD), is 45% (ranges from 21.8 to 67.5%) in older patients with T2DM, substantially higher than 14.71% 
in older populations without T2DM. Prevalence is higher in older women5–7. MCI can gradually develop into 
moderate or severe CI and even AD5. Since AD cannot be completely cured, early detection and pharmacological 
and behavioral interventions of MCI are crucial for reducing the risk for AD8.

In the past 20 years, high-precision brain imaging techniques, such as structural, functional, and diffusion 
MRI as well as positron emission tomography (PET), have been demonstrated to be effective for investigating 
brain changes in patients with T2DM and MCI (T2DM-MCI)9. For instance, the blood oxygen level-dependent 
(BOLD) signal in fMRI, which reveals hemodynamic changes associated with neural activities, has been used to 
detect altered functional connectivity (FC) in patients with T2DM-MCI5,10–12. Diffusion tensor imaging (DTI), 
which quantifies the diffusion anisotropy of water molecules in white matter (WM), has been used to explore 
disruptions of structural network connectivity13–16. PET has been used to capture metabolic changes in the brain 
for early diagnosis17.

FC can be employed to reflect the functional condition of the brain, diagnose neurodegenerative diseases, 
and provide in-depth insights into pathophysiological mechanisms8,18–20. Region-specific FC provides useful 
features for T2DM-MCI classification. However, existing T2DM-MCI classification methods based on FC have 
limited accuracy of less than 70.0%21,22. Therefore, further effort is needed to improve the specificity and accu-
racy. The eXtreme Gradient Boosting (XGBoost)23,24, which improves classification based on iterative learning 
of weak classifiers. On a single machine, XGBoost is more than tenfold faster than existing popular solutions, 
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with scalability to handle billions of samples. Model learning can be accelerated with parallel and distributed 
computing23. XGBoost is used in various applications25,26 owing to its high efficiency and accuracy. However, no 
previous study has used XGBoost for classifying patients with T2DM-MCI based on FC features. Therefore, the 
aim of the present study was to identify meaningful features to specifically distinguish T2DM-MCI.

Based on previous evidence, this study focused on the following objectives: (1) implement an efficient 
XGBoost classifier for T2DM-MCI classification; and (2) determine brain regions that distinguish patients with 
T2DM-MCI, providing a basis for early clinical diagnosis and interventional treatments.

Results
Clinical and neuropsychological results.  A total of 199 participants underwent MRI, clinical blood, and 
neuropsychological scale tests and fulfilled the inclusion criteria. The mean ages at scanning for the T2DM-MCI, 
T2DM-NCI, and NC groups were 46.17 ± 8.67, 50.78 ± 8.28, and 46.30 ± 10.40 years, respectively. The demo-
graphic, clinical, and neuropsychological characteristics of the 199 participants are summarized in Tables 1,2,3. 
There were no significant differences between the T2DM-MCI, T2DM-NCI, and NC groups in sex, age, or edu-
cational level (p > 0.05). There were no statistically significant differences between the T2DM-MCI and T2DM-
NCI groups in glycated hemoglobin levels, body mass index (BMI), or fasting blood glucose levels(p > 0.05). 
BMI was significantly different between the T2DM-NCI and NC groups (p = 0.001). Compared with the 
T2DM-MCI group, the T2DM-NCI and NC groups had higher levels of auditory verbal learning test (AVLT, 
immediate: p = 0.002 and p = 0.003; 5 min: p = 0.000 and p = 0.000; delay: p = 0.000 and p = 0.000; recall: p = 0.000 
and p = 0.000), digit span test (reverse, p = 0.000 and p = 0.001), Montreal Cognitive Assessment-B (MoCA-B, 
p = 0.000 and p = 0.000), digit symbol substitution (DSST, p = 0.000 and p = 0.000), and lower levels of grooved 
pegboard test (GPT, L: p = 0.005 and p = 0.007; R: p = 0.000 and p = 0.000). There were no statistically significant 
differences in the other neuropsychological test outcomes among the three groups (p > 0.05) (Tables 1,2,3).

Classification performance.  A summary of classification performance using XGBoost is shown in Table 4 
in terms of accuracy (ACC), the area under the curve (AUC), sensitivity (SEN), specificity (SPE), precision (PRE), 

Table 1.   Demographic results of T2DM-MCI, T2DM-NCI and NC groups. Data are shown as 
mean ± standard deviation (SD) and were analyzed using independent sample t-tests. BMI body mass index. 
# Pearson’s Chi-square test (2-sided). *Statistically significant different (p < 0.05).

T2DM-NCI T2DM-MCI NC

pMean SD Mean SD Mean SD

Age (years) 46.17 8.67 50.78 8.28 46.3 10.403 0.058

Gender (M/F) 60/33 23/14 43/26 0.969#

Educational level (years) 12.10 3.45 11.27 3.90 12.05 3.47 0.762

BMI (kg/m2) 24.70 2.93 23.43 3.12 23.05 2.76 0.003*

Table 2.   Neuropsychological results of T2DM-MCI, T2DM-NCI and NC groups. Data are shown as 
mean ± standard deviation (SD) and were analyzed using independent sample t-tests. AVLT California-Los 
Angeles auditory verbal learning test, TMT trail-making test, DST digit span test, MoCA montreal cognitive 
assessment, MMSE mini-mental state examination, DSST digit symbol substitution, GPT grooved pegboard 
test, L left, R right. *Data was considered significantly different (p < 0.05).

T2DM-NCI T2DM-MCI NC

pMean SD Mean SD Mean SD

AVLT (immediate) 23.71 4.92 20.41 5.51 23.84 5.15 0.008*

AVLT (immediate) 23.71 4.92 20.41 5.51 23.84 5.15 0.008*

AVLT (5 min) 9.46 2.27 7.50 2.67 10.09 4.11 0.000*

AVLT (delay) 9.14 2.46 6.97 2.96 9.28 2.23 0.000*

AVLT (recall) 11.07 2.10 8.21 3.97 11.03 1.88 0.000*

TMT-A 47.05 23.25 59.68 19.59 51.25 21.75 0.000*

TMT-B 40.18 17.01 48.76 15.87 43.23 16.72 0.009*

DST (direct) 7.85 1.47 7.32 1.61 10.08 9.16 0.102

DST (reverse) 4.95 1.26 3.89 1.59 5.10 1.64 0.000*

MoCA-B 27.51 1.55 24.05 0.85 27.52 1.54 0.000*

MMSE 28.49 1.54 27.83 1.84 28.32 1.69 0.170

DSST 49.75 12.89 35.03 12.77 48.24 14.83 0.000*

GPT (R) 74.17 13.53 90.70 27.53 68.49 14.17 0.000*

GPT (L) 81.60 15.25 93.81 30.89 80.10 18.22 0.023*
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and F127. We constructed the XGBoost model to classify all three groups and pairwise classifications between 
two groups. The XGBoost model did not perform well in the three classification categories (ACC = 69.39%, 
AUC = 80.07%, SEN = 69.39%, SPE = 78.14%, PRE = 70.90%, and F1 = 68.11%); however, the model achieved 
peak performance in discriminating between the two classification categories (T2DM-NCI versus T2DM-MCI: 
ACC = 87.91%, AUC = 81.99%, SEN = 61.67%, SPE = 98.06%, PRE = 93.06%, and F1 = 73.95%; T2DM-NCI versus 
NC: ACC = 80.00%, AUC = 84.14%, SEN = 75.65%, SPE = 83.23%, PRE = 77.58%, and F1 = 76.24%).

Connections contributive to classification.  Out of 4,005 connections, 511 connections provided useful 
features for classification (analysis of variance (ANOVA) with Bonferroni correction, p < 0.05). After using the 
XGBoost model for classification, we traced the data to further explore and analyze the 511 functional connec-
tions. Many functional connections were connected through the same brain region; precisely, we observed the 
aggregation of connection features. We found that the following eight areas are most discriminative: left caudate 
nucleus (CAU.L, 14.68%), right caudate nucleus (CAU.R, 12.13%), left angular gyrus (ANG.L, 10.76%), left thal-
amus (THA.L, 7.83%), right paracentral lobule (PCL.R, 7.63%), right thalamus (THA.R, 7.44%), right angular 
gyrus (ANG.R, 6.65%), and left paracentral lobule (PCL.L, 4.7%). There were more than 70% of connections to 
CAU (26.81%), ANG (17.42%), THA (15.26%), and PCL (12.33%). The FC of these regions contribute most to 
T2DM-MCI classification (71.82% total, see Table 5 and Fig. 1).

Association between classification features and clinical variables.  To better understand the rela-
tionship between the characteristics of the clinical development of T2DM-MCI, we further analyzed the correla-
tion between imaging data and clinical variables (Bonferroni correction). The correlations between significant 
cognitive function scores and different brain regions were analyzed using Pearson’s correlation for three groups 
(Fig. 2). ANG.L was positively correlated with TMT-B (r = 0.224, p = 0.043), ANG.R is negatively correlated with 
BMI (r = –0.215, p = 0.042). PCL.R was positively correlated with AVLT (5 min) (r = 0.267, p = 0.015) and AVLT 
(delay) (r = 0.233, p = 0.037). THA.L was positively correlated with educational level (r = 0.236, p = 0.027). MoCA 
was positively correlated with DSST (r = 0.392, p = 0.000) and educational level (r = 0.204, p = 0.007). There was 
no significant correlation between other variables and the brain regions.

Table 3.   Clinical results of T2DM-MCI, T2DM-NCI and NC groups. Data are shown as mean ± standard 
deviation, independent sample t-tests. *Data was considered significant different (p < 0.05). HbA1c 
hemoglobinA1c, DBP diastolic blood pressure, SBP systolic blood pressure, FBG fasting blood glucose, FSI 
fasting serum insulin, TG triglyceride, TC total cholesterol, LDL low-density lipoprotein, ACR​ albumin/
creatinine ratio, mALB microalbuminuria, 24 h UPRO 24-h urinary protein, M-TP micro total protein.

T2DM-NCI T2DM-MCI NC

pMean SD Mean SD Mean SD

HbAlc (%) 9.25 2.56 8.75 2.15 NA NA 0.522

DBP (mmHg) 126.42 16.62 127.79 19.96 123.48 19.04 0.273

SBP (mmHg) 82.74 14.00 82.25 10.72 82.40 11.12 0.783

FBG (mmol/L) 8.93 2.96 7.95 2.68 4.50 0.76 0.000*

FSI (uIU/mL) 11.25 9.79 14.08 16.05 NA NA 0.507

TG (mmol/L) 2.67 2.58 3.25 3.83 NA NA 0.775

TC (mmol/L) 4.76 1.03 4.99 1.06 NA NA 0.694

LDL (mmol/L) 3.02 0.99 3.15 0.88 NA NA 0.785

ACR (mg/g) 30.00 96.60 22.18 51.45 NA NA 0.068

mALB (mg/L) 29.15 80.94 24.79 50.62 NA NA 0.221

24 h UPRO (G/24 h) 0.19 0.23 0.17 0.14 NA NA 0.436

M-TP (mg/L) 101.71 68.93 102.18 79.54 NA NA 0.995

C-Peptide (ng/mL) 2.27 1.22 2.31 1.26 NA NA 0.674

Table 4.   Classification performance in T2DM-MCI, T2DM-NC and NC differentiation. ACC​ accuracy, AUC​ 
the area under the receiver operating characteristic curve, SEN sensitivity, SPE specificity, PRE precision.

ACC (%) AUC (%) F1 (%) SEN (%) SPE (%) PRE (%)

T2DM-NC vs. T2DM-MCI 87.91 ± 1.04 81.99 ± 8.30 73.95 ± 2.54 61.67 ± 4.56 98.06 ± 1.77 93.06 ± 6.36

T2DM-NC vs. NC 80.00 ± 0.83 84.14 ± 3.44 76.24 ± 1.48 75.65 ± 7.28 83.23 ± 6.20 77.58 ± 4.86

T2DM-NC vs. T2DM-MCI and NC 69.39 ± 1.27 80.07 ± 0.76 68.11 ± 0.87 69.39 ± 1.27 78.14 ± 1.33 70.90 ± 1.54
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Discussion
T2DM-MCI has a relatively low clinical diagnostic rate owing to its subtle onset and lack of clinical diagnostic 
approach. This study examined whether FC has discriminative features for accurately detecting T2DM-MCI 
using XGBoost patterns. The XGBoost algorithm is an accurate and efficient classification algorithm used in 
data mining with good performance. XGBoost has been applied for early diagnoses of diseases such as tubercu-
losis, epilepsy, kidney disease, and breast cancer28–32. Notably, this study is the first to apply whole-brain FC for 
detecting T2DM-MCI using the XGBoost model. Our model yields better classification performance (87.91% 
accuracy) than that of previous studies21,22. Using only 23 patients with T2DM and CI, Chen et al.21 used high-
order FC for differentiating healthy controls from patients with T2DM and CI (79.17% accuracy) and patients 
with T2DM without CI (59.62% accuracy). With only 16 T2DM-MCI, Shi et al. employed large-scale FC to 
predict MoCA scores with a connectome-based predictive model and support vector machine, achieving AUC 
values (T2DM-NCI vs. T2DM-MCI) of 0.65‒0.70, which was significantly lower than that obtained by our 
method (0.82 in AUC). Moreover, our sample size was larger than those of previous studies21,22,33, including 199 
participants in total.

T2DM is typically related to an increased risk of CI and dementia. Patients with T2DM may experience 
memory, language, attention, concentration, reaction, and executive function decline1,34. Nevertheless, research-
ers are still unsure of the exact pathophysiology underlying T2DM-related cognitive dysfunction, delaying the 
development of preventive treatments. We further found that the FC of THA, ANG, CAU, and PCL was highly 
discriminative in distinguishing T2DM-MCI, T2DM-NCI, and NC.

THA is a relay station or hub transmitting information between subcortical, cortical, and cerebellar areas35. 
THA declines with normal aging36. There may be no obvious structural damage, however, it develops thalamocor-
tical FC impairment in patients with T2DM21. In our preliminary study37, patients with T2DM without CI already 
had abnormalities in the dynamic FC of THA, as revealed by a significant decrease in connectivity between the 
right executive control network and THA.L. Abnormal thalamic connectivity is associated with CI. Thalamic 
connectivity is likely to be impaired in patients with T2DM and CI, which is consistent with our results21,38,39. 
When undergoing external working memory tasks, the corresponding working memory brain regions are acti-
vated, and the right hippocampal/parahippocampal gyrus and THA are abnormally activated predominantly 

Table 5.   Brain regions most contributive to classification. CAU​ caudate nucleus, ANG angular gyrus, THA 
thalamus gyrus, PCL paracentral lobule, L left, R right.

Brain region Total ratio (%) Subregion Ratio (%)

CAU​ 26.81
CAU.L 14.68

CAU.R 12.13

ANG 17.42
ANG.L 10.76

ANG.R 6.65

THA 15.26
THA.L 7.83

THA.R 7.44

PCL 12.33
PCL.L 4.70

PCL.R 7.63

Figure 1.   Significant connections rendered on the surface of the automated anatomical labeling atlas in 
BrainNet viewer. THA thalamus, ANG angular gyrus, CAU​ caudate nucleus, PCL paracentral lobule, L left, R 
right.
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in the right cerebral hemisphere40. This indicates that THA is involved in processing working memory, and FC 
is already impaired before the onset of CI in patients with T2DM. ANG is associated with complex language 
functions and linked to other cognitive domains such as representational and semantic memory41. Patients with 
T2DM exhibit significantly thinner ANG cortical thickness42, reduced cerebral blood flow43, and less spontane-
ous neuronal activities44. Moreover, abnormal FC in THA and ANG because of diabetes causes various cogni-
tive dysfunctions, including AD/VaD38,45,46. Compared with NC, bilateral ANG in patients with T2DM exhibit 

Figure 2.   Associations between neuropsychological test scores and functional connectivity. Partial correlation 
was used to determine the relationship between neuropsychological test scores and functional connectivity. 
(a) Correlation of functional connectivity with neuropsychological test scores (b) Correlation between 
neuropsychological test scores. TMT trail-making test, BMI body mass index, AVLT World Health Organization 
University of California-Los Angeles auditory verbal learning test, MoCA-B montreal cognitive assessment-B, 
DSST digit symbol substitution test, L left, R right.
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abnormal FC with multiple brain regions, and the FC of ANG with multiple brain regions positively correlated 
with MoCA, suggesting that the broad functional disconnectedness of ANG may play an essential role in the 
neuropathology of patients with T2DM-MCI45.

CAU is associated with memory and learning abilities47 as well as executive and cognitive processes48. CAU 
and the cerebellum function as a network that controls behavior49. FC between the CAU and hippocampus, 
which is an important anatomic basis for learning and memory, is implicated in altered white matter structure 
in patients with T2DM50. CAU has extensive connections to cortical and subcortical structures that serve com-
plex regulation of motor function, cognition, and emotion51. In patients with T2DM, the grey matter volume of 
CAU is significantly reduced42, and the microstructure is abnormal50. The characteristics of the abnormalities 
are significantly associated with the duration of T2DM. In addition, the activation of the left CAU, hippocampus, 
and parahippocampal gyrus is weaker in T2DM-MCI than in normal controls under memory task stimulation40. 
Consistent with the previous studies mentioned above, the abnormality of FC of the CAU in our findings indi-
cates impaired cognitive functions in patients with T2DM. In addition, PCL is associated with motor and sensory 
innervation of the contralateral lower extremities as well as the regulation of physiological functions. However, 
FC in PCL is affected in cognition-related diseases, such as vascular cognitive impairment. Sun et al. found that 
the most obvious regions showing connectivity deficits were between several regions, including PCL, and CAU.
R52. They also showed impaired connectivity in the default mode network, and PCL with CAU.R. PCL was also 
discriminative as a region of interest (ROI) feature in the T2DM classification33. Furthermore, during the analysis 
of the internal connectivity of the left executive control network, ANG.L and PCL.L had significantly decreased 
connectivity with other brain regions in the network. In the external network connectivity analysis, significant 
differences were found between the left executive control network and ANG.R/PCL.L. In addition, significant 
differences were observed between the right executive control network and PCL.R/ANG.R. Furthermore, sig-
nificant differences were found between the precuneus network and CAU.R/ANG37. In summary, THA, ANG, 
CAU, and PCL are highly sensitive to T2DM. They play essential roles in the early diagnosis of T2DM-MCI.

Educational level, age, BMI, blood pressure, and blood glucose levels are key factors influencing MCI in 
patients with T2DM. Correlation analysis showed that THA.L and MoCA were positively correlated with educa-
tional level, suggesting that highly-educated people have a lower risk of developing MCI53,54. Lower FC strength 
in ANG. R was associated with higher BMI. We also found that higher cognition scores were positively correlated 
with higher FC in PCL.R and ANG.L. This corresponds with previous findings21,55 that people with higher FC 
in PCL.R and ANG.L have a smaller risk of developing MCI.

Our study has some advantages. First, this study is the first to apply the XGBoost model to classify T2DM-
MCI and achieve a good classification performance. Second, our analysis was based on whole-brain FC, unlike 
previous studies that were based on brain regions or predefined networks8,21,56,57. Third, we found that THA, 
ANG, CAU, and PCL demonstrated significant discriminative power in T2DM-MCI detection. However, our 
study has some limitations. First, the overall T2DM study sample was below 200; the number of T2DM-MCI 
was small. Therefore, multicenter data collection should be considered to expand the sample size in future stud-
ies. Second, this classification study extracted different characteristic connections based on all participants and 
applied the features to training classification, which has the problem of cross-validation and is slightly limited in 
the subsequent application. Subsequent studies can consider separating the training and test sets and conducting 
feature extraction so that the data results can be more objective and random. Third, our research is only a cross-
sectional study. We believe that combining follow-up and longitudinal studies will better explain the mechanism 
of accelerated neurodegenerative changes in T2DM-MCI.

Conclusion
This study proposes a novel framework to pool the connectivity features extracted from whole brain FC for 
detecting T2DM-MCI. The current study is the first attempt to use the XGBoost model to detect T2DM-MCI, 
which significantly enhances the prediction accuracy of the model. We show that the FC within THA, ANG, 
CAU, and PCL provides major information for detecting T2DM-MCI. Our results affirm that FC contains clini-
cally relevant cognition-related information. Therefore, it is a potential biomarker for assessing the degree of 
cognitive decline. Overall, our findings provide valuable knowledge for classifying and predicting T2DM-related 
CI. These results have clinical implications in patients with T2DM. It can help in early clinical diagnosis and 
provides a basis for future studies.

Methods
Two hundred and ten individuals were willing to join this study (May 10, 2021, to July 1, 2022). The exclusion 
criteria for the two groups were as follows: type 1 diabetes mellitus, impaired fasting glucose or impaired glu-
cose tolerance58, hypertension, hypoglycemia (blood sugar levels < 3.9 mmol/L), hyperlipidemia, serious eye 
diseases (e.g., blindness), symptoms of neurological conditions (e.g., cerebral infarction or hemorrhage), history 
of neurological abnormality (e.g., Parkinson’s disease), severe head injuries or chronic head discomfort (e.g., 
migraine), BMI > 31 kg/m2, left- or mixed-handedness, substance (tobacco, alcohol, or psychoactive drug) abuse, 
taking medications that may affect cognition and memory within 6 months, specific abnormalities detected on 
conventional MRI scans or any other factors that may influence brain structure or function (e.g., extreme physi-
cal weakness, chronic infections, and other endocrine diseases). Patients with T2DM were diagnosed by two 
experienced endocrinologists following international clinical standards59. MCI was evaluated via Mini-Mental 
State Examination (MMSE) and MoCA-B (21 ≤ MoCA-B score < 26, and MMSE score > 24 were diagnosed with 
MCI)60,61.

Participants with brain tumors (n = 3), neuropsychiatric diseases (n = 4) (e.g., major depression or schizophre-
nia), or developmental disorders (n = 4) were excluded. Finally, 37 patients with T2DM-MCI, 93 patients with 
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T2DM-NCI, and 69 NC were enrolled in this study. The source of patients with T2DM and NC corresponded 
with our previous study37. This study was approved by the ethics committee of The First Affiliated Hospital of 
Guangzhou University of Chinese Medicine (ID: NO. JY [2020] 288). Written informed consent was obtained 
from all participants. In addition, the study was conducted following approved guidelines.

Demographic, clinical, and neuropsychological assessments.  Demographic assessments include 
age, sex, educational level, past medical history, height, weight and medication history. Clinical assessments 
include HemoglobinA1c (HbA1c), C-Peptide, systolic blood pressure (SBP), diastolic blood pressure (DBP), 
total cholesterol (TC), triglyceride (TG), fasting serum insulin (FSI), low-density lipoprotein (LDL), fasting 
blood glucose (FBG), microalbuminuria (mALB), albumin/creatinine ratio (ACR), micro total protein (M-TP), 
24-h urinary protein (24 h UPRO). Neuropsychological assessments include MoCA-B, MMSE, digit span test 
(DST), AVLT, TMT, GPT, and DSST which can be used to assess cognitive ability.

MRI data acquisition.  A Siemens (Munich, Germany) 3 T Prisma scanner with a standard 64-channel head 
coil was used to acquire fMRI imaging. All participants were placed in the supine position and tried their best 
to keep heads as still as possible while acquiring images. The detailed parameters of the multi-slice T2-weighted 
echo-planar imaging (EPI) sequence were as follows: TR = 2000 ms; TE = 30 ms; FOV = 100 mm; flip angle = 90°; 
matrix dimensions = 64 × 64; slice thickness = 3.5 mm; and number of slices = 33. Three-dimensional T1-weighted 
images were acquired with the following parameters: TR = 2,530 ms; TE = 2.98 ms; FOV = 256 × 224 mm2; inver-
sion time = 1,100 ms; flip angle = 7°; matrix size = 224 × 256;, sagittal slices = 192; slice thickness = 1.0 mm; and 
voxel size = 0.5 × 0.5 × 1 mm3. The BOLD-fMRI gradient EPI sequence acquisition parameters were as follows: 
TR = 500  ms; TE = 30  ms; matrix dimensions = 64 × 64; FOV = 244  mm × 244  mm; slices thickness = 3.5  mm; 
voxel size = 3.5 mm × 3.5 mm; number of slices = 960, and scan time = 8 min.

MRI image pre‑processing.  For fMRI data, the pre-processing was performed using SPM12 (Wellcome 
Department of Imaging Neurosciences, University College London, UK, http://​www.​fil.​ion.​ucl.​ac.​uk/​spm), and 
the statistical analyses of imaging data were performed using GRETNA (GRETNA v2.0) in Matlab R2021b. First, 
the first 10-time point-scanned images were removed owing to the instability of the magnetic field at the begin-
ning of the scan. Second, all functional images were realigned to the first image to correct head movement. All 
participants met the criteria of < 2 mm translation and < 2° rotation in any direction. Otherwise, their data were 
excluded. Third, the functional images were normalized to the MNI space using DARTEL and resampled to a 
3 × 3 × 3 mm3 voxel size62. Fourth, we used an anisotropic 6-mm full-width half-maximum Gaussian kernel63 for 
spatial smoothing of the obtained images. Fifth, we detrended and removed linear trends. Sixth, we removed 
covariates, excluding white matter, grey matter, and cerebrospinal fluid influences. Seventh, 0.01‒0.08  Hz 
bandpass filtering was used to remove high and low-frequency signals. Eighth, we removed the FD_Thresh-
old > 0.5  mm time points by “scrubbing” 1-time point before and 2-time points after. In summary, the pre-
processing procedures included slice timing correction, realignment, normalization, smoothing, detrending, 
filtering, and scrubbing.

Statistical analyses.  All statistical analyses were performed using the SPSS software package (version 26.0). 
The measurement data of each group were described by mean ± standard deviation. The demographic, clinical, 
and neuropsychological assessment scores of the three groups were compared using multiple independent sam-
ple ANOVA64. Categorical data were evaluated using Chi-square analysis. Paired-sample t-tests were used for 
pre-and post-treatment intragroup comparisons. In addition, a partial test was used to examine the relationship 
between imaging indices, cognitive tests, and clinical data. p < 0.05 was used as the statistical significance level.

Classification based on the ANOVA‑XGBoost model.  Feature abstraction based on FC network.  The 
pre-processed fMRI BOLD data has dimensions of 950 × 90, where 950 denotes the number of time points in 
each fMRI scan, and 90 means the number of ROI derived from the Automated Anatomical Labelling atlas. We 
calculated the mean BOLD signals for each brain ROI by averaging the time series over all voxels within the ROI. 
Subsequently, based on the pre-processed fMRI data, we used the Pearson correlation coefficient65 to build an 
FC network for each participant in a matrix size of 90 × 90. Every node represented a brain ROI, and every edge 
measured the linear correlation between any pair of ROI.

Subsequently, we flattened the upper triangle elements of FC, thereby deriving a 4,005-dimensional 
[(90 × 90–90)/2] vector for each participant. However, these features may be redundant for classifying partici-
pants into the three experimental groups. Therefore, we applied ANOVA and Bonferroni correction analysis 
to extract features showing significant differences (p < 0.05) among the three groups. Finally, we generated 511 
discriminative features for further classification.

Illustration of XGBoost model.  The XGBoost model23 is an ensemble machine learning algorithm based on 
decision trees that used the gradient boosting framework with promising performance in fMRI-related classifi-
cation tasks29,66,67. The XGBoost model is illustrated in Fig. 3. The XGBoost model was built based on gradient 
boosting machines which used Gradient Boosting Trees68 as the error predictor. In gradient boosting, we trained 
a predictor to predict the errors made by the original model and constructed an improved model whose output 
was fine-tuned based on the original prediction. The improved model is an ensemble of two predictors, i.e., the 
original and error predictors. We repeated this process until we achieved satisfactory prediction results.

http://www.fil.ion.ucl.ac.uk/spm
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We used the XGBoost model to classify the three experimental groups, and the parameters were defined 
as follows: the number of gradient-boosted trees was 280; the maximum tree depth of base learners was 2; the 
minimum sum of sample weight required in a child was 5; the minimum loss reduction needed to make a further 
partition on a leaf node was 0; the subsample ratio of the training sample was 0.8; the subsample ratio for each 
tree’s construction was 0.8; the boosting learning rate was 0.1; and the L1 regularization constraint was 0.01. The 
XGBoost model was implemented based on the XGBoost package in Python (Supplementary Information S1).

Experimental setting.  We randomly partitioned all participants from the three groups into training and 
testing sets, following a 2:1 ratio, and this procedure was repeated five times. In the data division, we ensured 
that the three classes in both sets were equally distributed to prevent data imbalance. Five measurement metrics 
were adopted for model evaluation, including the AUC, ACC, F1, SEN, SPE, and PRE69.

Data availability
The data that support the findings of this study are available from the coauthors, Jinjian Wu and Shijun Qiu, 
upon reasonable request.
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