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The amniotic fluid proteome 
changes with term labor 
and informs biomarker discovery 
in maternal plasma
Gaurav Bhatti 1,2, Roberto Romero 1,2,3,4,5,6,7*, Nardhy Gomez‑Lopez 1,2,7, 
Tinnakorn Chaiworapongsa 1,2, Nandor Gabor Than 1,8,9,10, Kevin R. Theis 1,2,7, Jose Galaz 1,2, 
Francesca Gotsch 1,2, Roger Pique‑Regi 1,2,5, Stanley M. Berry 1,2, Mahendra Kavdia 11 & 
Adi L. Tarca 1,2,12*

The intra‑uterine components of labor, namely, myometrial contractility, cervical ripening, and 
decidua/membrane activation, have been extensively characterized and involve a local pro‑
inflammatory milieu of cellular and soluble immune mediators. Targeted profiling has demonstrated 
that such processes extend to the intra‑amniotic space, yet unbiased analyses of the proteome 
of human amniotic fluid during labor are lacking. Herein, we utilized an aptamer‑based platform 
to characterize 1,310 amniotic fluid proteins and found that the proteome undergoes substantial 
changes with term labor (251 proteins with differential abundance, q < 0.1, and fold change > 1.25). 
Proteins with increased abundance in labor are enriched for immune and inflammatory processes, 
consistent with prior reports of labor‑associated changes in the intra‑uterine space. By integrating the 
amniotic fluid proteome with previously generated placental‑derived single‑cell RNA‑seq data, we 
demonstrated the labor‑driven upregulation of signatures corresponding to stromal‑3 and decidual 
cells. We also determined that changes in amniotic fluid protein abundance are reflected in the 
maternal plasma proteome. Collectively, these findings provide novel insights into the amniotic fluid 
proteome in term labor and support its potential use as a source of biomarkers to distinguish between 
true and false labor by using maternal blood samples.

Labor is a well-orchestrated process that includes physiological, biochemical, endocrinological, and immu-
nological pathways in the mother and the fetus, culminating in a successful delivery. This complex process 
involves intra-uterine and extra-uterine components, with the former consisting of increased myometrial con-
tractility, cervical ripening, and decidual/membrane  activation1–4. A strong body of evidence indicates that the 
intra-uterine components include a local pro-inflammatory milieu characterized by increased concentration of 
soluble and number of cellular immune mediators in the  myometrium5–16,  cervix5,7–9,17–25,  decidua7,8,26–35, and 
chorioamniotic  membranes7,8,27,28,30,36–40. Such an intra-uterine inflammatory response is also reflected in the 
intra-amniotic space. Indeed, prior targeted studies have shown that the concentrations of several cytokines, 
including Interleukin-1β (IL-1β)41 and Interleukin-6 (IL-6)42, are elevated in the amniotic fluid of women with 
term labor compared to those without labor. Furthermore, cytomic approaches have shown that innate immune 
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cells, such as neutrophils and monocytes/macrophages, are abundant in the amniotic fluid of women at term 
 gestation43. In line with this concept, we recently profiled the amniotic fluid proteome from early to late preg-
nancy and found that immune-specific signatures were enriched in term  gestation44. Notably, placental- and 
uterine-derived signatures were modulated in the amniotic fluid  proteome44, showing that the fetal and maternal 
components are present in the intra-amniotic space. Taken together, these findings led us to hypothesize that 
amniotic fluid harbors cellular and soluble mediators at the end of gestation in preparation for the physiologic 
intra-amniotic inflammatory process of term parturition. Hence, the primary aim of the current study was to 
explore the human proteome of amniotic fluid during term parturition.

In addition to intra-uterine components, labor also includes extra-uterine components such as processes 
taking place in the maternal  circulation1–4. Indeed, the detection of cell-free RNA and DNA derived from the 
fetus has been an invaluable clinical tool in evaluating fetal development as well as in screening for fetal abnor-
malities and obstetrical  disease45–59. Moreover, the use of high-dimensional techniques such as transcriptomics, 
proteomics, and metabolomics has allowed for the exploration of the complex and dynamic processes that are 
modulated in the maternal circulation prior to and during  labor60–70. Recently, we leveraged the maternal blood 
transcriptome to monitor single-cell signatures derived from placental tissue and demonstrated the increasing 
abundance of such transcripts with advancing  gestation71 as well as in women with  term71 or spontaneous pre-
term labor and  birth66. Similarly, labor-specific transcriptomic changes in the maternal circulation can be cor-
related with those derived from the chorioamniotic membranes, cervix, or myometrium, suggesting that tissue 
signatures of labor are partly mirrored in this  compartment70. By intersecting single-cell RNA-seq data of the 
laboring myometrium with maternal transcriptomic datasets, we also demonstrated that specific cell signatures 
were modulated throughout gestation and enriched with the process of  labor72. Together, these prior observations 
demonstrate that labor-specific changes taking place in the gestational and reproductive tissues can be tracked 
in the maternal circulation. Yet, whether the processes occurring in the amniotic fluid during term labor are also 
reflected in the maternal circulation has not been investigated.

Herein, we utilized the aptamer-based SOMAscan proteomics  platform73 to characterize changes in the 
concentrations of 1,310 amniotic fluid proteins during the normal process of labor at term. In addition to 
identifying amniotic fluid proteins dysregulated with labor, we tested in independent patient sets whether the 
amniotic fluid-derived signature can discriminate between women in labor and those not in labor based on 
blood protein profiles.

Results
Clinical characteristics of the study population. This study included amniotic fluid samples collected 
from women at term in labor (TIL, n = 24) or not in labor (TNL, n = 11) (Fig. 1, top panel). The clinical charac-
teristics of the study participants are shown in Table 1. There were no significant differences in gestational age 
at amniocentesis between the TIL and TNL patients (median gestational age at amniocentesis: TIL 39 weeks 
vs. TNL 38 weeks, p = 0.25). There were no significant differences in maternal age, nulliparity, or birth weight 
between the two groups (Table 1). All women delivered a healthy neonate (Apgar score at 5 min > 8 for all cases) 
without major pregnancy or neonatal complications. 

An additional set of plasma proteome data were available from a separate cohort of TIL (n = 59) and TNL 
(n = 21) patients (Fig. 1, bottom panel)74. The clinical characteristics of the study participants are shown in Sup-
plementary Table S1. There was no significant difference in gestational age at sampling between the two groups 
(median gestational age at blood draw: TIL 39 weeks vs. TNL 38.7 weeks, p = 0.21).

Validation of the SOMAmer assay to evaluate amniotic fluid proteins. Although the SOMAscan 
v3 platform has been previously validated by using both targeted and unbiased proteomic platforms across a 
range of biological specimens, there is limited information about the cross-platform agreement when measuring 
amniotic fluid  proteins75,76. Therefore, we utilized enzyme-linked immunoassay (ELISA)-based concentrations 
of C–X–C motif chemokine ligand 10 (CXCL10), neutrophil elastase (ELANE), interleukin (IL)-6, and secretory 
leukocyte protease inhibitor (SLPI) that were available for a subset of samples included in this study (Fig. 2). 
We found a significant positive correlation between the SOMAmer assay and the ELISA for each of these pro-
teins [CXCL10: n = 19, Spearman’s ρ = 0.76, p < 0.001; ELANE, n = 30, ρ = 0.57, p = 0.001; IL-6: n = 19, ρ = 0.65, 
p = 0.003; SLPI: n = 30, ρ = 0.61, p < 0.001], therefore indicating significant cross-platform agreement.

The amniotic fluid proteome shows changes with labor at term. To visualize the relationship 
between the amniotic fluid proteome of TIL and TNL patients, principal component (PC) analysis was utilized. 
Despite some overlap, most amniotic fluid samples showed clear separation according to labor status (Supple-
mentary Fig. S1). Furthermore, the meta-proteomes (PC1 and PC2, 22% and 16% of variance explained, respec-
tively) were significantly associated with labor status (t-test, p < 0.05 for PC1 and for PC2).

Although there was no significant difference in gestational age at amniocentesis between the two study groups 
(Table 1), we and other investigators have shown that gestational age is a strong modulator of the amniotic fluid 
proteome and transcriptome, and even a small difference in gestational age at amniocentesis could potentially 
translate into changes in protein  abundance44,77–79. However, Pearson correlation analysis showed no evidence 
of an association between gestational age at amniocentesis and the principal components of our current data 
[PC1: ρ = 0.01, p = 0.94, PC2: ρ = 0.03, p = 0.89)]. This finding is most likely due to the narrow range of gestational 
ages wherein amniocentesis was performed in the current study. Thus, we have not adjusted for gestational age 
at amniocentesis in our subsequent analyses.

A comparison of amniotic fluid protein abundance between the TIL and TNL groups resulted in 251 (19.2%) 
proteins with significant differences (q < 0.1 and fold change ≥ 1.25) (Supplementary Table S2). Of these, 100 
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(39.8%) proteins were more abundant, and 151 (60.2%) proteins were less abundant in TIL than in TNL. The sum-
mary results of this differential abundance analysis are displayed in Fig. 3, where the volcano plot indicates the 
magnitude of differences in protein abundance  (log2 fold changes) against the statistical significance (q-values) 
of these differences (Fig. 3a). In addition, the heat map shown in Fig. 3b displays the  log2 abundance in relative 
fluorescence units of the most significant (q < 0.05 and fold change ≥ 1.5) proteins in a color scale, indicating 
consistent patterns of protein abundance within each study group. These results illustrate the distinct amniotic 
fluid proteomic profile that characterizes labor at term.

Proteins differentially abundant with term labor are enriched for distinct signaling pro‑
cesses. Next, to aid in the interpretation of the proteomic dysregulation associated with term labor, we 
performed gene set enrichment analysis (GSEA) of the MSigDB C5 gene set collection and identified Gene 

Figure 1.  Study design and summary. The study included the determination of 1310 protein analytes in 
amniotic fluid samples collected at term from patients not in labor (TNL, n = 11) and from those in active labor 
(TIL, n = 24) (top panel). Maternal plasma concentrations of amniotic fluid proteins that significantly increased 
in abundance with labor were then used to discriminate labor from no labor groups in an independent set of 
pregnant women (TNL, n = 21 vs TIL, n = 59) (bottom panel). The figure was created with biorender.com155.

Table 1.  Demographic characteristics of the amniotic fluid study cohort. Continuous variables were compared 
with the use of Welch’s t-test and are summarized as the median (interquartile range). Categorical variables are 
shown as a number (%) and were compared with the use of Fisher’s exact test.

Characteristics Term no labor (n = 11) Term in labor (n = 24) p

Age (years) 27 (22.5–30) 21 (19.8–23.2) 0.138

Nulliparity 4/10 (40%) 14/24 (58.3%) 0.457

Gestational age at amniocentesis (weeks) 38 (37.2–39) 39 (37.9–39.7) 0.251

Cervical dilatation (cm) 3(3–4)

Birth weight (g) 3130 (3055–3525) 3400 (3037.5–3600) 0.638



4

Vol:.(1234567890)

Scientific Reports |         (2023) 13:3136  | https://doi.org/10.1038/s41598-023-28157-3

www.nature.com/scientificreports/

Ontology (GO) terms (biological processes, molecular functions, and cellular components) associated with 
labor status. We identified 184 biological processes, 24 molecular functions, and 9 cellular components that 
were enriched in proteins with higher abundance in the TNL compared to TIL samples (q < 0.25) (Supplemen-
tary Table S3). Such biological processes included regulation of CD4 positive alpha–beta T-cell differentiation, 
lymphocyte activation, regulation of protein phosphorylation, cell–cell signaling, tyrosine phosphorylation of 
STAT protein, regulation of phospholipase activity, cardiac conduction system development, and transmission 
of nerve impulse (Supplementary Table S3). For proteins that were more abundant in the TIL group compared to 
the TNL group, we determined the enrichment of 65 biological processes, 28 molecular functions, and 22 cellu-
lar components (Supplementary Table S3). The significantly enriched biological processes included regulation of 
proteolysis, intracellular transport, macromolecule catabolic process, erythrocyte, and myeloid cell homeostasis 
(Supplementary Table S3).

We then conducted a GSEA of the MSigDB C2 gene set collection of canonical pathways to gain further 
insights into the physiology of normal labor as captured by the amniotic fluid proteome. GSEA identified 48 
biological pathways that were significantly enriched among proteins more abundant in TNL compared to TIL 
samples (Supplementary Table S4), which included pathways related to cytokine signaling in T helper cells, e.g., 
cytokine-cytokine receptor interaction, JAK-STAT signaling, and selective expression of chemokine receptors 
during T-cell polarization as well as other signaling pathways (Fig. 4). By contrast, the 91 biological pathways 
enriched among proteins more abundant in TIL samples (Supplementary Table S4) were related to neutrophil 
degranulation, carbohydrate metabolism, degradation of the extracellular matrix, and myometrial relaxation 
and contraction pathways.

Taken together, these findings indicate a distinct inflammatory proteomic signature associated with physi-
ological labor at term compared to term no labor.

Integration of the amniotic fluid proteome with placental single‑cell RNA‑seq signatures 
reveals labor‑specific enrichment of specific cell types. Given the crucial role of the placenta in 
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Figure 2.  Cross-platform correlation of specific amniotic fluid proteins. Scatter plots of  log2-transformed 
relative fluorescence units determined by using the SOMAscan assay (y-axis) and  log2-transformed ELISA 
or RIA concentrations (x-axis) for (a) C–X–C motif chemokine ligand 10 (CXCL10), (b) neutrophil elastase 
(ELANE), (c) interleukin (IL)-6, and (d) secretory leukocyte protease inhibitor (SLPI). The number of sample 
pairs, Spearman’s correlation coefficient, and the corresponding p-value are shown per analyte. The scatter plots 
were generated with the R package, ggplot2159.
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cross-talk between the mother and the fetus during pregnancy and at labor onset, we further sought to interpret 
the labor-associated changes in the amniotic fluid proteome by intersecting these data with cell type signatures 
previously identified by using single-cell RNA-seq of placental  tissues66. The aggregated proteomic signature 
of decidual cells and stromal-3 cells was significantly increased (q < 0.1) in amniotic fluid samples from TIL 
patients compared to TNL patients (Fig. 5, Supplementary Table S5). By contrast, there was a significant decrease 
in the signatures corresponding to extravillous trophoblasts, cytotrophoblasts, natural killer cells, endometrial 
cells, and fibroblasts with the onset of term labor (Fig. 5, Supplementary Table S5).

Changes in the amniotic fluid proteome are reflected in the maternal circulation and can dis‑
tinguish term labor. We then sought to determine whether the labor-associated protein changes in amni-
otic fluid are also reflected in the maternal plasma proteome, given that signatures derived from the tissues 
surrounding this compartment can be monitored in the maternal  circulation66,70,72. We first defined an amniotic 
fluid proteomic signature of term labor by selecting the top 20 proteins that were most increased in the TIL 
group compared to the TNL group. Among these 20 proteins, the abundance of 15 in the maternal plasma was 
also available in a dataset generated by SOMAScan v.2 in an independent set of uncomplicated  pregnancies74. 
The aggregated proteomic signature (average of Z-scores) was significantly higher in maternal plasma sam-
ples collected at term labor compared to gestational age-matched samples collected from women not in labor 
(Fig. 6a), and the discrimination accuracy was substantial (area under the curve [AUC] = 0.76, 95% confidence 
interval [CI] 0.64–0.88) (Fig. 6b).

Finally, we extended the pool of protein candidates to all proteins with significantly higher abundance in 
amniotic fluid during labor (Supplementary Table S2) and allowed a random forest classifier to select and assign 
different levels of importance to the different candidate proteins, as opposed to the simple average, as described 
above. Random forest models based on ten proteins selected according to their importance resulted in a leave-
one-out cross-validation (LOOCV) AUC of 0.9 (95% CI 0.8–1) (Fig. 6b). Among the considered proteins, those 
most informative for distinguishing between labor and no labor in maternal plasma samples were ranked high 
to low: ERP29 (endoplasmic reticulum resident protein 29), SERPINE1 (plasminogen activator inhibitor 1), 
ICOSLG (ICOS ligand), SFTPD (pulmonary surfactant-associated protein D), HNRNPAB (heterogeneous 
nuclear ribonucleoprotein A/B), UFC1 (ubiquitin-fold modifier-conjugating enzyme 1), CTSV (cathepsin L2), 
PSME1 (proteasome activator complex subunit 1), IGFBP1 (insulin-like growth factor-binding protein 1), and 
PRDX1 (peroxiredoxin-1).

These data demonstrate that labor-associated changes in the amniotic fluid proteome can be monitored in 
the maternal circulation, providing a potential non-invasive means to distinguish labor.
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Figure 3.  Differential protein abundance in the amniotic fluid with and without labor at term. (a) Volcano 
plot showing  log10-transformed false discovery rate adjusted p-values (q-values) against  log2-transformed 
fold changes of the 1310 amniotic fluid proteins. (b) Heatmap based on proteins with significantly altered 
abundance (q<0.05 and fold change ≥ 1.5) between term not in labor (TNL, indicated by blue headers) and 
term in labor (TIL, indicated by red headers) samples. The R/Bioconductor packages, EnhancedVolcano157 and 
pheatmap158, were used to generate the volcano plot and heatmap, respectively.
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Discussion
We utilized an aptamer-based proteomic platform to measure the abundance of 1,310 proteins in amniotic fluid 
samples collected from women with spontaneous term labor and from those at term without labor. First, we 
demonstrated that the amniotic fluid proteome undergoes substantial changes with spontaneous term labor that 
include the altered abundance of 251 proteins. Moreover, such proteins are enriched for immune and inflam-
matory processes, consistent with labor-associated changes occurring in other compartments. By integrating 
the amniotic fluid proteome with placenta-derived single-cell RNA-seq data, we demonstrated the labor-driven 
upregulation of signatures corresponding to decidual and stromal-3 cells. Importantly, we show that changes 
in amniotic fluid protein abundance are reflected in the maternal plasma proteome, providing the means to 
distinguish between the patients in labor from those not in labor by using minimally invasive samples. Such 
data may inform the development of blood tests to distinguish true labor from false labor at term and improve 
patient management.

Previous investigations have sought to describe the soluble proteome of the amniotic fluid in normal preg-
nancy by using MS-based  approaches77,80–83, although such studies did not evaluate changes associated with 
spontaneous term labor. The proteomics platform utilized herein targets a predetermined number of proteins 
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Figure 4.  Functional enrichment of biological pathways in the amniotic fluid proteome with and without labor 
at term. Gene-concept network (cnetplot) of biological pathways that were significantly enriched (q-value < 0.1) 
before (blue) or after (red) the onset of labor. The size of the nodes, corresponding to enriched terms, represents 
the number of member genes that contributed to the enrichment (leading edge) of the term. The color of 
the nodes representing each leading-edge gene indicates the TIL/TNL fold change in the corresponding 
protein abundance. The relationships between the enriched terms are represented by the shared genes. The R/
Bioconductor package, clusterProfiler162 was used to generate the figure.
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with specific aptamers, thus allowing for high throughput measurements comparable to immunoassays over a 
wide dynamic  range75,76,84. While MS-based approaches identify more proteins, they tend to miss low abundant 
signaling proteins, e.g.,  cytokines85. The aptamer-based platform has been previously used to describe changes in 
the amniotic  fluid44 and maternal plasma  proteome86 with advancing gestation and pregnancy  complications87–90; 
yet, the current study represents its first application to study physiological term labor.

Prior research into amniotic fluid proteins in term labor has primarily utilized targeted approaches to evaluate 
individual proteins or specific protein  sets41,42,91–123. Such studies support our current observations by indicat-
ing a general increase in inflammatory mediators in amniotic fluid during labor, as evidenced by the elevated 
concentrations of pro-inflammatory  cytokines41,42,95,99–102,106,111,  chemokines93,97,99,107,115,121, arachnoid acid 
 metabolites124,125, and extracellular matrix-degrading  proteases108,113,116,126. Herein, we confirmed the previously 
reported term labor-associated increase in concentrations of several such inflammatory proteins, including 
IL-642,99–102, C-X-C motif chemokine ligand 8 (CXCL8)93,97,99, colony stimulating factor-3 (CSF3)96,99, matrix met-
allopeptidase-8 (MMP8)110, matrix metallopeptidase-9 (MMP9)108,126, and heat shock protein family A (Hsp70) 
member 1A (HSPA1A)120. We also reproduced the previously reported decrease in amniotic fluid concentra-
tions of tumor necrosis factor ligand superfamily member 6, soluble form (FASLG)127, intercellular adhesion 
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Figure 5.  Placental single-cell RNA-seq signatures represented within the amniotic fluid proteome. For each 
placental cell type signature previously derived by single-cell RNA-seq analysis, the concentration of proteins 
coded by up to 20 most preferentially expressed genes was transformed into a Z-score and averaged. The 
Z-scores were compared between the term not in labor (TNL, blue bars) and term in labor (TIL, red bars) 
groups. The cell types that significantly (q-value < 0.1) changed in expression are shown. The box plots were 
generated with the R package, ggplot2159.
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molecule-1 (ICAM1)122, and lymphotoxin alpha (LTA)104 with labor. Yet, the application of an aptamer-based 
multiplex proteomics platform has enabled deeper exploration beyond markers of inflammation to describe 
labor-associated changes in proteins involved in other processes such as intracellular signaling, cell metabolism, 
intracellular transport, and cell–cell communications.

Herein, pathway analysis of the amniotic fluid protein changes in term labor identified innate immune 
responses and neutrophil degranulation as being enriched among upregulated proteins. This observation is 
in line with a previous report of amniotic fluid immunophenotyping, showing that neutrophils are the most 
abundant cell types in the amniotic fluid at  term43. Moreover, our previous study comparing the amniotic fluid 
proteome between samples collected at term (without labor) and those collected during mid-trimester also 
identified neutrophil-mediated immunity as the most enriched functional term among proteins that increased 
in concentration at  term44. Neutrophils produce matrix metalloproteinases that degrade the extracellular matrix, 
a process crucial for two key events of parturition: rupture of the fetal membranes and cervical  ripening113,128–130. 
Indeed, GO and pathway analyses identified terms such as proteolysis, genes encoding enzymes and their regu-
lators involved in the remodeling of the extracellular matrix, and extracellular matrix organization as enriched 
among proteins with increased abundance during labor.

Another set of functional terms that emerged from the functional profiling of proteins with increased abun-
dance in term labor was related to carbohydrate metabolism. The top three upregulated proteins in labor were 
glycolytic enzymes: alpha-enolase (ENO1), fructose-bisphosphate aldolase A (ALDOA), and gamma-enolase 
(ENO2). Parturition requires diverse effector functions of multiple cell types across the maternal and fetal 
intrauterine tissues, making energy generation and consumption essential for accomplishing parturition without 
complications. Glucose metabolism meets a major portion of this increased energy  demand131,132. Other stud-
ies of term and preterm pregnancies have also found an increase in the concentrations of proteins involved in 
carbohydrate metabolism with the spontaneous onset of labor in amniotic fluid and cervicovaginal  fluid133–136. 
For example, analysis of paired cervicovaginal fluid samples collected a week before and a week after the onset 
of spontaneous term labor showed a significant increase in ENO1 with  labor133. In addition, mass spectral 
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Figure 6.  Changes in the amniotic fluid proteome are reflected in the maternal circulation and can 
distinguish term labor. (a) Boxplots showing changes in the amniotic fluid-derived labor signature in the 
maternal plasma proteomic profiles. The box plots were generated with the R package, ggpubr163. (b) Receiver 
operating characteristic curves for classifying maternal plasma samples into labor and no labor groups based 
on the plasma concentrations of proteins identified in the amniotic fluid. The black curve corresponds to the 
discrimination accuracy of the aggregated proteomic signature of the top 15 amniotic fluid proteins that were 
most increased in the TIL group compared to the TNL group. The red curve corresponds to the leave-one-
out cross-validation (LOOCV)-based predictions of a random forest model trained with 10 proteins selected 
according to their importance from all amniotic fluid proteins increased in the TIL group compared to the TNL 
group. The ROC curves were plotted with the R package, pROC164.
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proteomics analysis of amniotic fluid samples collected from women with spontaneous preterm labor has identi-
fied glycolysis/gluconeogenesis-associated proteins as differentially abundant in women who delivered preterm 
 with134 and  without134,135 intra-uterine infection or intra-uterine inflammation.

Studies in murine pregnancy have indicated that the fetal lung secretes surfactant components, particularly 
surfactant protein A (SP-A), into the amniotic fluid, where it can activate macrophages and induce inflammation 
and  parturition137–139. However, it was observed that SP-A concentrations were lower in human amniotic fluid 
samples collected at term in labor compared to those at term without  labor118. While SP-A was not measured in 
the current study, a functionally related protein, pulmonary surfactant-associated protein D (SFTPD), was among 
the most abundant in amniotic fluid samples collected after labor onset. Of note, while a moderate increase in 
the amniotic fluid concentration of SFTPD in amniotic fluid has been reported throughout the third  trimester140, 
we did not previously observe a similar change in the amniotic fluid samples collected at term without labor 
compared to those collected during mid-pregnancy44. Thus, the observed changes in amniotic fluid concentra-
tions of SFTPD could be specific to labor rather than to advanced gestational age. In addition, a genetic study 
has previously shown a significant association between SFTPD gene polymorphism and spontaneous preterm 
birth among women with recurrent preterm  birth141.

Moreover, we showed that the meta-protein signature corresponding to decidual cells was increased in amni-
otic fluid samples collected during labor. Notably, we previously determined that the meta-RNA expression 
of decidual cells decreases with gestational age in amniotic fluid samples collected before the onset of  labor79, 
suggesting that a labor-specific activation of the decidual cells occurs. Indeed, decidual activation is a crucial 
component of the common pathway of  parturition4,142,143. Consistently, in addition to the increased meta-protein 
signature of decidual cells, we also observed that the biological pathway of myometrial contraction and relaxation 
was enriched among proteins that were more abundant in samples collected after labor. Given that myometrial 
contractility represents another component of the common pathway of  parturition3,4,142, these findings further 
support the reflection of labor-specific changes in the intra-uterine tissues by the amniotic fluid proteome.

Amniocentesis is an invasive procedure that is no longer a part of routine maternal  care144; thus, the devel-
opment of diagnostic biomarkers that can be evaluated by using minimally invasive samples, such as maternal 
blood, is essential. To determine the potential of non-invasive biomarker discovery based on information derived 
from amniotic fluid, we followed a previously described analytic approach to define and track disease-specific69, 
single cell-specific79, and tissue-specific  signatures44,145 in the maternal circulation and amniotic fluid. First, we 
defined a labor-specific signature as consisting of amniotic fluid proteins that increased the most in abundance 
with labor in a Hispanic population. Next, we showed that this meta-protein signature is significantly increased 
with term labor in the maternal plasma proteome of an independent set of predominantly African-American 
 mothers74. The simple average of standardized plasma protein abundance distinguished between the groups, 
which is encouraging when considering that the proteins were identified in the amniotic fluid analysis. Moreo-
ver, when the list of candidate proteins was expanded from the top 15 to all amniotic fluid proteins significantly 
increased with labor, a plasma proteomic random forest model led to substantially improved accuracy. The set 
of proteins that most contributed to prediction accuracy included many previously known to be associated with 
labor in gestational tissues. For example, the expression of the gene coding for SERPINE1 was previously shown 
to be elevated during labor in the myometrium and  placenta146–149. Moreover, mass spectrometry-based prot-
eomic analysis of placental membranes collected after spontaneous labor (term or preterm) showed that ERP29 
was detected only in term  placentas150. The concentration of decidual IGFBP1 was shown to increase in vaginal 
secretions after fetal membrane  rupture151, and an increased concentration of IGFBP1 in the cervicovaginal fluid 
has been proposed as a biomarker of  PPROM152–154. These findings indicate that the amniotic fluid proteomic 
changes associated with term labor have biological plausibility and are translatable to the maternal circulation 
and across diverse cohorts of patients.

Strengths and limitations
The strengths of this study include the unbiased analysis of the proteome (1,310 proteins), although we recog-
nize that this protein set represents a fraction of the human proteome. Another strength is the use of gestational 
age-matched samples to control for this variable, given that we have demonstrated its influence on the amniotic 
fluid  proteome44. Finally, while amniotic fluid proteomic analysis was performed in a Hispanic population, the 
observed labor-specific changes were translatable to the maternal plasma proteome of a predominantly African-
American population. The primary limitation of this study is the moderate sample size of the TNL group, which 
is to be expected since amniocenteses are not commonly performed in term deliveries. Yet, to overcome such 
a limitation, we utilized robust differential analysis and functional profiling methods with particular emphasis 
on controlling the false discovery rate. In addition, our study design (case–control, cross-sectional study) was 
not ideally suited to discriminate between events that cause labor and those that accompany labor since amnio-
centesis was performed either in the absence of labor or during labor. Nevertheless, by using robust functional 
profiling strategies, we provide corroborating evidence for several biological processes previously implicated in 
the onset of labor, including fetal lung maturity and decidual activation.

Whether the observed association between molecular changes in the amniotic fluid and maternal blood 
extends to other ethnicities and obstetrical syndromes, such as spontaneous preterm labor and birth, remains 
to be determined in future studies.

Conclusion
Collectively, the findings herein provide the first characterization of the amniotic fluid proteome during term 
parturition, thus demonstrating that such a process is reflected by the altered proteomic composition in this 
fetal compartment. Moreover, we validated our findings by corroborating the enrichment of specific immune 
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and inflammatory processes associated with labor onset in other intrauterine compartments. Importantly, labor-
driven perturbations of the amniotic fluid proteome can be observed in the maternal plasma proteome, thereby 
supporting its potential use as a biomarker to inform optimal patient management.

Methods
Ethics. The study protocol, collection of samples, and use of clinical data were approved by the Human Inves-
tigation Committee of Sotero del Rio Hospital, Santiago, Chile (amniotic fluid), and the Institutional Review 
Boards of Wayne State University and the Pregnancy Research Branch  (formerly known as the Perinatology 
Research Branch), an intramural program of the Eunice Kennedy Shriver National Institute of Child Health and 
Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/
NIH/DHHS), Detroit, MI, USA (maternal plasma). All patients provided written informed consent prior to 
sample collection. All experiments were performed in accordance with relevant guidelines and regulations.

Study population. Amniotic fluid. Amniotic samples were collected from pregnant women seeking care 
at the Sotero del Rio Hospital, Santiago, Chile. A cross-sectional study was designed to include 35 women: 11 
who underwent amniocentesis at term before the onset of labor and 24 who had an amniocentesis at term after 
the spontaneous onset of labor (Fig. 1, top panel). Labor was diagnosed by the presence of regular uterine con-
tractions occurring at a frequency of four in 20 min for a minimum of 1 h associated with cervical dilatation 
and/or effacement changes. Women at term not in labor underwent amniocentesis for the assessment of fetal 
lung maturity prior to cesarean delivery, whereas those in labor underwent amniocentesis because of uncer-
tain gestational age or for the diagnosis of intra-amniotic infection. Amniotic fluid samples were obtained by 
transabdominal amniocentesis under ultrasonographic guidance and cultured for the presence of microorgan-
isms (aerobic and anaerobic bacteria and genital Mycoplasmas). Amniotic fluid not used in clinical assessment 
was centrifuged for 10 min at 4 °C, and the supernatant was aliquoted and stored at − 80 °C until analysis.

We included cases without evidence of medical or obstetrical complications such as preterm labor, preec-
lampsia, clinical chorioamnionitis, gestational or pregestational diabetes mellitus, positive amniotic fluid cul-
ture, meconium-stained amniotic fluid, multiple gestation, and pregnancy with fetal anomalies. The amniotic 
fluid samples had been previously used in targeted studies of amniotic fluid cytokines and arachidonic acid 
 metabolites113,115,116,118.

Maternal plasma. Plasma samples were collected from women enrolled in a prospective longitudinal study at 
the Center for Advanced Obstetrical Care and Research of the NICHD’s Pregnancy Research Branch, Detroit 
Medical Center, and Wayne State  University74. Only the last sample collected prior to term delivery from women 
with spontaneous labor (n = 59) and the gestational age-matched samples from women who were not in labor 
(n = 21) were used (Fig. 1, bottom panel).

The study design is summarized in Fig. 1, which was created with Biorender.com155.

Proteomics. The abundance of 1310 proteins in amniotic fluid samples (75 µL aliquots) and 1125 proteins in 
maternal plasma samples was determined with the SOMAmer (Slow Off-rate Modified Aptamers) platforms v3 
and v2, respectively (SomaLogic, Inc., Boulder, CO, USA), as previously  described44,86. Briefly, the samples were 
incubated with SOMAmer mixes pre-immobilized onto streptavidin-coated beads and washed to remove non-
specifically bound proteins. Proteins bound to their cognate SOMAmer reagents were tagged by using the NHS-
biotin reagent. The beads were treated with an anionic competitor solution to prevent non-specific interactions. 
The beads were exposed to ultraviolet light to release pure cognate-SOMAmer complexes and unbound SOMA-
mer reagents, and the photo-cleavage eluate was incubated with a second streptavidin-coated bead to capture the 
biotinylated proteins. Unbound SOMAmer reagents were removed during subsequent washing, and the bound 
SOMAmer reagents were separated from their cognate proteins under denaturing conditions and hybridized 
to custom DNA microarrays. Protein abundance was measured in relative fluorescence units by detecting the 
Cyanine-3 signal from the fluorophores in SOMAmer reagents. The raw signal intensities were standardized by 
hybridization control normalization, median signal normalization, and interplate  calibration84.

Data analysis. Demographic data analysis. Clinical  characteristics and demographics of the study par-
ticipants were summarized as the median and interquartile range for continuous variables and as proportions 
for categorical variables. To compare data between groups, Welch’s t-test and Fisher’s exact test were used for 
continuous and categorical variables, respectively. A p-value < 0.05 was considered statistically significant.

Differential protein abundance analysis and validation. The abundance of 1,310 proteins in the amniotic fluid 
was compared between samples collected from patients at term in labor and from those at term without labor 
by using moderated t-tests implemented in the limma R  package156. A fold change ≥ 1.25 and a false discovery 
rate adjusted p-value (q-value) < 0.1 were used to determine statistical significance. The results of differential 
expression analysis were summarized and visualized with volcano plots and heatmaps, using the R packages 
EnhancedVolcano157 and pheatmap158, respectively.

Amniotic fluid concentrations of four proteins—CXCL10, ELANE, IL-6, and SLPI—were determined previ-
ously by specific immunoassays, ELISA, or radioimmunoassay, according to the manufacturer’s  instructions113. 
These data were used to assess cross-platform reproducibility via Spearman’s correlation analysis. The correlations 
were visualized with scatter plots created with the R package ggplot2159.
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Gene Ontology and biological pathway enrichment analysis. All proteins were mapped to Entrez gene identi-
fiers per the manufacturer’s provided annotation. We used  GSEA160 to analyze the molecular signatures database 
(MSigDB)161 C5 sub-collection of gene sets corresponding to GO biological processes, molecular functions, 
and cellular components. We also performed the same analysis for the MSigDB C2 collection of canonical bio-
logical pathways curated from popular online databases, e.g., KEGG and Reactome. The analysis was restricted 
to gene sets with at least five genes having corresponding proteins measured on the SOMAScan platform. A 
q-value < 0.25 was considered statistically significant, as recommended by the authors of  GSEA160. The enrich-
ment of selected biological pathways was visualized as a gene-concept network created using the R/Bioconduc-
tor package, clusterProfiler162.

Placental single‑cell‑specific expression. We previously defined sets of genes as specific to a given population of 
cells identified by single-cell RNA-seq analyses of the  placenta66. The  log2 transformed relative fluorescence units 
reflecting the abundance of proteins encoded by these genes and measured herein with the SOMAmer assay 
were standardized by subtracting the mean and dividing by the standard deviation calculated from the reference 
(TNL) study  group44,79,145. The standardized values referred to as Z-scores were then averaged and compared 
between groups with the Wilcoxon rank sum test. A q-value of less than 0.1 was considered significant. To obtain 
robust summaries of signatures, we considered only those cell types having at least five signature genes with cor-
responding proteins measured by the SOMAscan platform.

We implemented a previously described  strategy66,69 to define an amniotic fluid labor signature consisting 
of the top 20 proteins most increased in abundance after the onset of labor. Of these 20 amniotic fluid proteins, 
15 (HNRNPA2B1, MMP8, SFTPD, PRTN3, CSF3, PEBP1, ACY1, PPIA, TPT1, CTSV, ICOSLG, GDI2, CXCL8, 
MMP1, and AKR1A1) were also measured in maternal plasma by using the SOMAScan platform (v2) (Fig. 1)74. 
The average z-scores corresponding to these 15 proteins were then compared between the TIL and TNL groups 
with Wilcoxon tests and visualized in boxplots created with the R package, ggpubr 163.

Plasma proteomic models to classify labor and no labor groups. A random forest model was fit to discriminate 
between the labor and no labor groups by using protein data derived from the plasma samples. Only amni-
otic fluid proteins that significantly increased in abundance with labor were considered because there was no 
significant difference between the labor groups in the aggregated Z-score in the maternal plasma proteome 
of the 20 amniotic fluid proteins that decreased in abundance with labor. A LOOCV procedure was used to 
assess the model’s generalizability to unseen data. Briefly, in each iteration of LOOCV, one patient profile was 
excluded from the training set used to fit the model, and the resulting model was applied to the data of the 
patient excluded from the training set. During training, an initial random forest classifier was fit, and the top 10 
features, ranked according to metric importance, were selected to fit the final model. The procedure was repeated 
for all patients, and the model performance was evaluated by calculating the area under the receiver operating 
curve (AUROC). The receiver operating curve was plotted using the R package, pROC164, and the R packages, 
randomForest165, and ranger166, were used to fit the random forest models.

Data availability
The amniotic fluid and the maternal plasma proteomics data presented in this study has been provided as Sup-
plementary Tables S6 and S7.
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