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One‑class machine learning 
classification of skin tissue based 
on manually scanned optical 
coherence tomography imaging
Xuan Liu 1,5*, Samantha Ouellette 2,5, Marielle Jamgochian 2, Yuwei Liu 1 & Babar Rao 2,3,4

We investigated a method for automatic skin tissue characterization based on optical coherence 
tomography (OCT) imaging. We developed a manually scanned single fiber OCT instrument to perform 
in vivo skin imaging and tumor boundary assessment. The goal is to achieve more accurate tissue 
excision in Mohs micrographic surgery (MMS) and reduce the time required for MMS. The focus of 
this study was to develop a novel machine learning classification method to automatically identify 
abnormal skin tissues through one‑class classification. We trained a deep convolutional neural 
network (CNN) with a U‑Net architecture for automatic skin segmentation, used the pre‑trained 
U‑Net as a feature extractor, and trained one‑class support vector machine (SVM) classifiers to detect 
abnormal tissues. The novelty of this study is the use of a neural network as a feature extractor 
and the use of a one‑class SVM for abnormal tissue detection. Our approach eliminated the need 
to engineer the features for classification and eliminated the need to train the classifier with data 
obtained from abnormal tissues. To validate the effectiveness of the one‑class classification method, 
we assessed the performance of our algorithm using computer synthesized data, and experimental 
data. We also performed a pilot study on a patient with skin cancer. 

Nonmelanoma skin cancers (NMSCs), primarily basal cell carcinoma (BCC) and squamous cell carcinoma 
(SCC), are the most common cancers in the United  States1. NMSCs can be treated effectively by Mohs micro-
graphic surgery (MMS). In MMS, the tumor is excised and sectioned for immediate histological evaluation in 
stages to help achieve clear margins with minimal healthy tissue removal. It is used for tumors that are locally 
invasive and have a high risk of recurrence. During MMS, initial delineation of the tumor is guided by visual 
inspection and has limited accuracy. Therefore, multiple stages of excision with histological preparation and 
evaluation are often needed to achieve complete tumor removal, which can keep a patient in the doctor’s office 
for  hours2. To achieve more accurate tissue excision (particularly at the first stage) and reduce the time required 
for MMS, we developed a single fiber optical coherence tomography (OCT) instrument to performed in vivo 
skin imaging and tumor boundary assessment. The single fiber OCT imaging instrument and artificial intelligent 
data analysis described here has the potential to impact a wide range of surgical procedures other than MMS, 
benefiting patients and clinicians.

OCT is a cross-sectional imaging modality that detects scattered light from subsurface tissue 
 microstructures3,4. When this scattered light encounters a reference beam, interferometric light is picked up by 
a detector enabling depth resolved imaging. OCT has a wide range of biomedical applications, most notably in 
the fields of  ophthalmology5,6. OCT is advantageous compared to other noninvasive imaging modalities, such 
as reflectance confocal microscopy (RCM), as it has increased imaging depth (up to several millimeters), and 
ultrasonography, as it has a higher resolution (≤ 15 μm). Previous studies exploring the application of OCT in 
dermatology have validated its use for identifying  NMSCs7–11.However, the utility of conventional OCT for 
accurately delineating tumor margins prior to surgery is limited by the size of the instrument. Conventional OCT 
devices rely on mechanical beam scanners to perform lateral scanning. As a result, the probe often covers the 
entire tumor, making it difficult to mark the tumor boundaries detected through OCT imaging. Therefore, there 
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have been efforts to identify techniques to circumvent this issue, including the use of ink markings or Steri-strips 
that can be seen on imaging and used as  landmarks12. However, there currently lacks a mechanism to correlate 
the tumor edge detected in an OCT image with the precise physical location at the patient’s skin. This led us to 
develop a single fiber OCT instrument described in our previous  study13.

We intend to use the single fiber OCT imager to identify the boundaries of biopsy-confirmed tumors, as 
OCT signals can be used to differentiate between tumor and normal skin. However, extracting clinically relevant 
information from OCT images to guide MMS is challenging, as pathological features in OCT images are often 
obscured by speckle noise and depth dependent signal decay/deterioration. Accurate detection of tumor margins 
on OCT images must be done by an experienced reader, and readers are not usually available in the clinical set-
ting. Moreover, the results of visual inspection depend on the reader’s training in dermatology and pathology, 
and can vary significantly between individuals. Various methods have been developed to streamline the analysis 
of skin OCT images, with most methods relying on empirically selected, manually engineered features for tis-
sue classification. In this study, to address the clinical need for accurate skin tissue characterization in MMS, 
we developed a robust machine learning method that analyzes OCT images and performs automatic skin tissue 
classification using a unique one-class classification approach. Our method involves extraction of features for 
tissue classification from a pre-trained deep convolutional neural network (CNN) with a U-Net architecture. 
The features are used to train the support vector machine (SVM) classifier that performs one-class classification 
for anomaly detection.

The novelty of this study is the use of neural network as a feature extractor and the use of one-class SVM for 
abnormal tissue detection. CNNs have found many applications in the processing and analysis of biomedical 
images. In dermatology, researchers demonstrated deep neural networks that achieved classification accuracy 
comparable to  dermatologists14. Compared to manually selected features, CNN features are extracted auto-
matically at different abstract layers, and have the potential to provide a more objective and comprehensive 
characterization for the tissue in OCT  imaging15. On the other hand, we adopt a one-class classification strategy 
to overcome the limited number of images representing abnormal tissue in the training data. Conventionally, 
the classifier that performs automatic tissue classification (normal versus cancerous or abnormal) undergoes a 
supervised training process. The classifier is trained using data annotated as normal or abnormal (cancerous). It 
is essential that the data set used to train the classifier has sufficient examples representing normal and abnormal 
skin tissues. However, it is challenging to obtain such a comprehensive training data set, because OCT images 
for skin cancers have significantly different features, depending on the type, stage, and grade of the skin cancer. 
To overcome the challenge in establishing a data set for supervised training, we train a one-class classifier to 
recognize normal skin tissue using OCT data obtained from healthy subjects. The one-class classifier has the 
capability to detect the skin tumor as an anomaly regardless of cancer type, stage, and  grade16,17.

In summary, this manuscript describes a method that automatically detects skin tumors through OCT imag-
ing. We trained a U-Net for automatic skin segmentation, used the network as a feature extractor, and trained a 
one-class SVM using these features to detect abnormal tissues. We validated the performance of our algorithm 
using computed synthesized data, and experimental data. We also performed a pilot imaging experiment on a 
patient with skin cancer.

Methods
OCT imaging system. To perform skin imaging, we utilized an OCT imaging platform described in our 
previous  publications13. As illustrated in Fig. 1, the OCT image platform is based on a 1060 nm swept source 
OCT engine (AXSUN). The output of the swept source is routed by a fiber optic circulator to a single fiber probe. 
The tip of the cleaved fiber probe provides a reference light (Er) that interferes with signal light from the sample 
(Es). The fiber-optic probe is integrated with a stainless-steel needle with a rubber cap at its tip (20-gauge feed 
needle, Roboz Surgical Instrument). The metal needle shaft provides mechanical rigidity for the probe. The rub-
ber cap ensures gentle contact between the probe and the skin, and minimizes the deformation of skin layers 
during scanning. Unlike a conventional OCT imaging system based on a Michelson interferometer, our single 
fiber probe enables common path OCT imaging where Er and Es share the same probe path. In addition, the 
manually scanned OCT imaging platform acquires 2D images through manual scanning and performs speckle 
decorrelation analysis to correct distortion  artifacts18. The axial sampling interval is approximately 5 μm and the 
transverse sampling interval is approximately 17 μm.

Figure 1.  Schematic of manually scanned OCT imaging system.
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U‑Net for skin OCT image segmentation. We trained a U-Net for automatic skin segmentation. The 
U-Net effectively functionalized the simple single fiber OCT instrument to perform tasks including dermis-
epidermis junction (DEJ) assessment and skin layer thickness quantification. In this study, we use the U-Net a 
feature extractor. U-Net, similar to other deep learning approaches, learns the image features at different scales 
and different abstraction layers through a training process. The activations of neurons in the layer prior to the 
segmentation layer are used as the feature for classification in a one-class SVM classifier. The configuration and 
training strategy of the U-Net is similar to what was described in our previous  publications19,20. The dimension 
of input and output images is 256 (axial dimension or z dimension) × 32 (lateral dimension or x dimension). The 
use of small image patches consisted of 32 Ascans is critical for localized tissue classification. For each pixel, the 
U-Net effectively calculates its likelihood to be stratum corneum, epidermis, and dermis, and assigns a category 
accordingly. The network is trained using image data (Fig. 2a) and ground truth pixel classification based on 
manual annotation (Fig. 2b), and segments an OCT image into difference skin layers (Fig. 2c). The U-Net has 
a contracting encoder branch and an expanding decoder branch. The encoder branch has five stages to extract 
multiscale features of the input image while the decoder branch has five stages to generate a spatially resolved 
pixel category. Each encoder stage has five layers (3 × 3 convolution layer, ReLU activation layer, 3 × 3 convolu-
tion layer, ReLU activation layer, and max pooling layer). Each decoder stage consists of seven layers (up convo-
lution layer for upsampling, up ReLU layer, concatenation layer, 3 × 3 convolution layer, ReLU layer, 3 × 3 convo-
lution layer, and ReLU layer). The 1st encoder stage and the last decoder stage generate 16 features that are used 
for image segmentation and later for SVM classification. Cross entropy is used as the loss function for training.

SVM for one‑class classification. We train a one-class SVM classifier to learn the characteristics of nor-
mal skin OCT images. The trained classifier is used to detect skin anomaly. It has been demonstrated that one-
class SVM classifier separates data in the transformed high-dimensional predictor space to detect outliers and 
novelties, and is effective at producing decision surfaces from high-dimensional feature  vectors17. The one-class 
classification strategy allows us to eliminate the need to acquire images from patients with different skin cancers. 
The premise of one-class SVM is based on the following facts. First, OCT images of normal skin are similar. Sec-
ond, OCT images of abnormal skin are different from those of normal skin. To extract features for classification, 
we forward propagate an input image (Si,j where i and j represent pixel index) through the pre-trained U-Net 
(bottom, Fig. 3) to the layer prior for segmentation (the last ReLu layer of the last decoder stage). At this layer, 
the network has 16 neurons (N = 16) for each pixel of the image. In other words, the U-Net creates 16 feature for 
each pixel (top, Fig. 3): xi,j,k where k = 1, 2, …, N. To establish feature vectors for each image patch that contains 
32 Ascans, we segment the image using the U-Net and average the activations within specific pixel groups: 
X = [X1, X2, …, XN] where Xk = ∑i∑j xi,j,k. The process of feature extraction is summarized in Fig. 4a. By repeating 
the procedure, we extract feature vectors from different image patches in the training data set. Notably, all the 
images used for training correspond to normal skin. To determine the skin status, an input OCT image is for-
ward propagated through the U-Net and segmented to create a feature vector. The SVM classifier maps a feature 
vector to a prediction score and determines whether the skin is normal or abnormal according to the value of the 
prediction score (positive score: normal tissue; negative score: abnormal tissue), as illustrated in Fig. 4b. Notably, 
SVM classification is a standard, well established approach. We used SVM tools available in Matlab to develop 
the classification model. Specifically, the SVM model used in this study is based on a radial basis function (rbf) 
kernel function with an automatic kernel scale, trained with OCT images of normal skin and annotated with a 
“normal” label to achieve a specific outlier fraction in one-class classification.

Figure 2.  (a) OCT image and (b) manually labeled layers of air (blue), stratum corneum (SC) (yellow), 
epidermis (red), and dermis (green) for U-Net training; (c) U-net generates labels for individual pixels of the 
OCT image. Scale bars represent 1 mm.
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Data acquisition
Data acquisition from healthy subjects for U‑Net training, feature extraction and classifier 
training. To train the U-Net and the one-class SVM classifier, we used the OCT imaging platform described 
in section "OCT imaging system" to acquire images from 9 healthy subjects. We performed in vivo imaging 
on our subjects, manually scanning a hand-held OCT probe on the skin to obtain 2D images. We did not 
obtain tissue specimens for ex vivo imaging. Subjects were recruited under an approved IRB protocol (Advarra 
Pro00035376). All methods involving human subjects were carried out in accordance with relevant guidelines 
and regulations. All experimental protocols were approved by the Advarra Institutional Review Board. Informed 
consent was obtained from all subjects. From each subject, we scanned the right forearm, left forearm, forehead, 
neck, and palm. The age of the subjects ranged from 24 to 59. The skin type of the subjects ranged from type II 
to type IV. We had both male and female subjects. We excluded images that had low quality and established a 
training data set. Each image had a dimension of 2048 (Ascan number) by 256 (pixel number in each Ascan). 
To train the U-Net, pixels of the images were manually labeled to be air (signal free region), stratum corneum, 
epidermis, and dermis. We divided the images along with the ground truth (results of manual labeling) into 
smaller patches (32 Ascan per patch), resulting in 2232 image patches. We follow the procedure described in our 

Figure 3.  U-Net (bottom), and the use of U-Net activations as features for tissue classification.

Figure 4.  (a) Feature extraction using a pre-trained U-Net as a feature extractor; (b) classification of an input 
OCT image using one-class SVM.
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previous publication to train the  network18. The U-Net was trained in Matlab 2019b, on graphic processing units 
(GPU-GTX1070). The training was accomplished in approximately 10 min with an adaptive moment estimation 
(ADAM) solver, a mini batch size of 40, initial learning rate of  10−3, iterated for 10 epochs.

Pilot imaging study on a patient. To evaluation the trained U-Net and the one-class SVM classifier, we 
performed a pilot imaging study on a subject with biopsy-confirmed BCC (nodular type). The patient was a 
72-year-old male, and the tumor was located on his left jaw. The surgeon first labeled the tumor with a marker, 
then we performed three sets of scans. First, we scanned the normal skin of forearm of the patient. Then, we 
scanned the tumor. Lastly, we scanned the region immediately adjacent to the circle draw by the surgeon. The 
significance of imaging experiment on a patient was to validate if manually scanned OCT imaging coupled 
with one-class classification allows accurate characterization of skin tissue (normal skin versus skin tumor) on 
a clinically relevant case. We correlated our classification results with histology to determine if the classification 
is correct.

Results
Selection of features for classification.. As described in section "SVM for one-class classification", we 
used the U-Net as a feature extractor. Here we assessed different feature selection strategies. To establish a fea-
ture vector, we forward propagated the input image through the U-Net up to the layer prior to the segmentation 
layer (Fig. 3). The chosen layer had N neurons (N = 16) and provided N activation values. For each OCT image 
patch that had 32 Ascans, we averaged the activations for all the pixels without discriminating pixel type to 
establish a feature vector, Xall. Furthermore, we obtained Xe by averaging activation values for epidermis pixels 
determined by the U-Net and obtained Xd by averaging activation values for dermis pixels determined by the 
U-Net. In addition, we established Xe&d by concatenating Xe and Xd: Xe&d = [Xe;Xd]. When calculating feature 
vectors, we eliminated pixels categorized as “air” by the U-Net, because these pixels were overwhelmed by noise. 
Stratum corneum pixels were not considered, because very few pixels were classified as stratum corneum. We 
extracted feature vectors with respect to different groups of pixels, because pixels belonging to different category 
(epidermis and dermis) have different characteristics. To evaluate the feature selection strategy, we used 50% of 
the images in our data set (1116 image patches) to create feature vectors Xall, Xe, Xd, and Xe&d for SVM training. 
For each set of training vectors, we trained a one-class SVM classifier  (SVMall,  SVMe,  SVMd, and  SVMe&d) using 
a Gaussian kernel function and a specific outlier ratio.

We validated the classification accuracy using the remaining image patches in our data set. We extracted fea-
ture vectors from these images, fed the feature vectors to the trained classifiers, determined tissue type according 
to the output of the classifier, and determined the classification accuracy. Figure 5a shows the one-class clas-
sification accuracy obtained by comparing SVM classification with the ground truth (100% normal examples). 
Figure 5a shows that the classifier trained with a higher outlier ratio tended to classify a larger percentage of 
testing examples as abnormal.

Furthermore, we created a data set using the image patches (1116 patches) not used for SVM training. The 
data set had 4464 image patches, including OCT data of normal skin, synthesized BCC data, synthesized SCC 
image data, and synthesized data with DEJ disruption. We simulated abnormal images representing BCC by 
reducing OCT signal magnitude to 75% of its original value starting from a random depth within the  dermis21. 
We simulated abnormal images of SCC featuring discrete bright regions below the surface, by enhancing the 
signal magnitude by 25% within a randomly selected region below skin  surface22. We also created images with 
disrupted dermis-epidermis junction (DEJ), by normalizing individual Ascans within an image using an averaged 

Figure 5.  (a) Classification accuracy validated using data obtained from normal skin, when the classifiers were 
trained under different outlier ratios; (b) ROC curves for different classifiers, when validated using a data set 
consisted of normal skin images and computer synthesized abnormal images.
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depth profile. For each image patch, we created feature vectors (Xall, Xe, Xd, and Xe&d). We labeled a feature vector 
as “normal” if it was obtained from the normal OCT data, or “abnormal” if it was obtained from synthesized 
abnormal data (BCC, SCC and DEJ disruption). We fed these feature vectors to the classifiers (trained with an 
outlier ratio of 8%). We obtained the operating characteristic (ROC) curve shown Fig. 5b and listed the area 
under curve values for different classifiers in Table 1. We also compared the predictions provided by the classi-
fiers with the ground truth and summarized the prediction accuracies in Table 1. Results in Table 1 suggest that 
the feature vector that concatenated features of epidermis tissue and dermis tissue (Xe&d = [Xe;Xd]) outperformed 
other feature vectors. Therefore, we chose to use Xe&d for subsequent classification of experimental data. Using 
a MacBook Pro computer (Apple M1 CPU and 8 GB RAM) and Matlab R2022a, it takes approximately 0.1 s to 
extract a feature vector from an image patch with 32 Ascans following the procedure shown in Fig. 4b. It takes 
approximately 0.01 s for the SVM classifier to make the prediction.

Spatially resolved tissue classification based on one‑class tissue classification. To demonstrate 
how the one-class classifier allowed spatially resolved tissue classification, we scanned the fiber-optic OCT probe 
from the skin to the nail plate at the thumb of a healthy subject. The image obtained is shown in Fig. 6a. The left 
side of the image corresponds to the skin and the right side of the image corresponds to the nail plate. The OCT 
signal obtained from the nail was different from that of the skin and was considered as abnormal. For an image 
patch at a specific lateral coordinate, we extracted features from epidermis pixels and dermis pixels, and concat-
enated these features to establish Xe&d. Using the pre-trained one-class SVM classifier  SVMe&d, we were able to 
obtain prediction scores at different spatial locations (Fig. 6b, black curve). To determine the edge between nor-
mal skin and anomaly (nail plate), we filtered the SVM prediction scores (thresholding in wavelet domain) and 
obtained the first order difference of the filtered SVM prediction score (red curve in Fig. 6b). The peak location 
of the red curve corresponds to the boundary between normal and abnormal tissue, where the SVM prediction 
score changes abruptly. The boundary location is shaded with the color of red in Fig. 6c, suggesting that one-class 
SVM using features extracted from both epidermis and dermis allowed spatial resolved tissue classification and 
tissue boundary detection.

Table 1.  Assessment of SVM classification when the classifiers were trained with an outlier ratio of 8%.

SVMe&d SVMe SVMd SVMall

AUC of ROC 0.91 0.79 0.88 0.88

Accuracy 0.69 0.55 0.68 0.65

Figure 6.  (a) OCT image obtained by scanning the fiber-optic probe across the junction between the skin and 
the nail plate from a healthy subject; (b) spatially resolved SVM prediction score (black curve), and first order 
difference of filtered prediction score (red curve); (c) boundary between skin and anormal tissue (red shade) 
identified through one-class SVM classification.
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Pilot patient study.. In a pilot clinical imaging experiment, we imaged a 72-year-old male patient with 
biopsy-confirmed BCC (nodular type) located on his left jaw (Fig. 7a). To benchmark OCT images of the tumor 
against normal skin image, we obtained OCT images of normal skin from two different locations at the forearm 
of the patient (Fig. 7b,c). In OCT images obtained from the normal skin of the patient, the first layer of the skin 
(stratum corneum) is thin and bright, followed by the epidermis with reduced brightness and clearly visible 
DEJ. Underneath is the dermis where the signal decreases as depth. We scanned the tumor following trajectories 
1–4 shown in Fig. 7d, and show the images obtained in Fig. 7e–h. Compared to the normal skin from the same 
patient, images obtained from the tumor show disruption of DEJ and reduced OCT signal amplitude starting 
from upper dermis. We also scanned the region immediately adjacent to the circle drawn by the surgeon, follow-
ing trajectories 5–8 shown in Fig. 7d. Images obtained are shown as Fig. 7i–l. Notably, every OCT image shown 
in Fig. 7 has 256 Ascans, corresponding to a ~ 4.4 mm lateral scanning range. A smaller lateral range was chosen 
to ensure that Fig. 7e–h were obtained from the tumor without ambiguity. To perform one-class tissue classifi-
cation, we divided an OCT image into eight non-overlapping patches (32 Ascans per patch). For every image 
patch, we followed the procedures illustrated in Fig. 4a to establish feature vectors for different image patches, 
and used the pre-trained one-class SVM classifier to output a prediction score. A positive prediction score corre-
sponded to normal skin tissue, while a negative prediction score corresponded to abnormal skin tissue. We aver-
aged the score using results from all the 8 patches within an image, and summarized the results in Table 2. For 
OCT images obtained from the forearm skin (normal) and OCT images obtained from the tumor (abnormal), 
the one-class classifier predicted the tissue to be normal and abnormal, respectively. The tissue classification was 
correct. On the other hand, scans performed outside of the circle drawn by the surgery (Scan 5–8 in Fig. 7d, 
images in Fig. 7i–l) provide margin assessment. According to the results of one-class SVM classification, Fig. 7i,j 

Figure. 7.  (a) Clinical photo taken from the patient; (b,c) OCT image obtained from the forearm of the patient; 
(d) scanning pattern used to profile the tumor; (e–h) OCT images obtained following trajectories 1–4 in Fig. 6d; 
(i–l) OCT images obtained following trajectories 5–8 in Fig. 6d; (m) result of histology examination; (n) Mohs 
histology documentation, depicting histologically positive Stage 1 margins.

Table 2.  One-class SVM classification of OCT images obtained from a BCC patient.

SVM score Normal or abnormal

Normal skin (forearm site 1) 4.2 Normal

Normal skin (forearm site 2) 2.1 Normal

Tumor (scan 1) –5.3 Abnormal

Tumor (scan 2) –3.2 Abnormal

Tumor (scan 3) –5.3 Abnormal

Tumor (scan 4) –5.3 Abnormal

Margin (scan 5) –2.3 Abnormal (positive margin)

Margin (scan 6) –4.8 Abnormal (positive margin)

Margin (scan 7) 2.9 Normal (negative margin)

Margin (scan 8) 6.5 Normal (negative margin)
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(Scan 5 and Scan 6 in Fig. 7d) correspond to abnormal skin, in other words, the margin was positive. Figure 7k,l 
(Scan 7 and Scan 8 in Fig. 7d) correspond to normal skin. In other words, the margin was negative. To validate 
the margin assessment results, we show the result of histology examination in Fig. 7m,n. Histology suggested a 
positive margin, which is consistent with our classification results,

Conclusion and discussion
The overall aim of this study is to perform in vivo skin characterization through manually scanned OCT imag-
ing and machine learning algorithms for automatic tissue classification. The role of the proposed algorithm is to 
determine whether the skin under OCT imaging is normal or abnormal. In this study, we investigated a method 
for automatic skin tissue characterization based on OCT imaging. The focus of this study was to develop a novel 
machine learning classification method to automatically identify abnormal skin tissues through one-class clas-
sification. Our approach addressed two challenges in automatic tissue classification. First, feature engineering 
is challenging for OCT data that is complicated and affected by speckle noise. Second, OCT data obtained from 
skin tumor show a wide range of characteristics, depending on tumor type, stage, and other factors (patient skin 
type and age). To train a machine learning algorithm for automatic skin cancer detection, it requires a mas-
sive training data set that has sufficient examples to represent the diversity of features for different cancers. To 
effectively determine the boundary of tumor during Mohs surgery, our method does not intend to determine 
the type of the tumor which is confirmed through biopsy prior to the surgery. Instead, we used a U-Net as a 
feature extractor and trained one-class SVM classifiers using data of normal skin tissue. The algorithm learns the 
features of normal skin tissue and reports anomaly when it encounters features different from normal features. 
We validated the effectiveness of the one-class classification method, using computer synthesized data, and 
experimental data. Our results showed that the one-class classifier allowed accurate detection of abnormal skin 
tissue for synthesized OCT data of BCC, SCC and disrupted DEJ, and OCT data from nail plate. We demonstrated 
spatially resolved tissue classification (Fig. 6) when the classifier was applied to OCT image patches obtained at 
different locations. Results of one-class classification correlated well with histology (Table 2 and Fig. 7) spatially, 
thanks to the effectiveness of the algorithm and the small dimension of the instrument. The one-class classifier is 
able to identify normal and abnormal skin at different body regions, as long as the training data set has examples 
from different body regions. In this study, we trained the one-class classifier using images from normal skin at 
different locations (forearm, left forearm, forehead, neck, and palm). We can acquire data for algorithm training 
from other body locations to improve the robustness of the classifier.

Our approach is the combination of a deep learning model (U-Net) and a traditional machine learning model 
(SVM). First, compared to traditional machine learning classifiers that use manually established features, our 
method is unique as it uses features automatically extracted from the deep learning model. Second, typical deep 
learning neural network models consider two or more classes, optimizes a cross-entropy (or other measures) 
to determine weights and biases for the model, and are usually not compatible with one-class classification. In 
comparison, our approach performs one-class SVM classification, training the deep learning network and the 
classifier using data of normal skin. Our method effectively overcome challenges such as limited numbers of 
images obtained from skin tumors and diverse features associated with abnormal skin.

The algorithm extracts a feature vector for an image patch. and classifies the image patch to be normal or 
abnormal. The spatial resolution of our classification method depends on the size of image patch, because the 
feature vector is obtained by averaging activation values of pixels within the image patch. In our current method, 
each image patch used in classification has 32 Ascans (~ 0.54 mm). When smaller patches are used to train the 
classifier and predict tissue type, the localization precision may be improved, probably at a cost of classification 
accuracy.

The U-Net used as feature extract has 16 features in the layer before segmentation. We extract features from 
epidermis pixels and dermis pixels respectively and establish a concatenated feature vector with 32 features for 
one-class classification. Classification based on more features may achieve a higher accuracy, but is likely to be 
affected by overfitting and has limited robustness.

OCT image data is inevitably affected by noise. A noise reduction pre-processing step might enhance the 
performance of the classifier under certain conditions. However, noise reduction may also compromise the 
robustness of the algorithm. First, OCT images are largely affected by speckle that appears as random modula-
tion and is considered as the major noise source for OCT. However, speckle carries sub-resolution features of 
the sample and has been used as a feature for tissue classification. A generic noise reduction method is likely to 
suppress speckle which is in fact a discriminating feature. Second, the features extracted from the U-Net are at 
different scales. A non-local feature is calculated using OCT signals at different spatial locations and is inherently 
noise suppressing. Third, when a feature is significantly affected by noise, its contribution to the SVM classifier 
is minimized following the training process. Hence, we chose to use OCT data without noise reduction to train 
a robust classifier.

Data availability
Data underlying the results presented in this paper are not publicly available at this time but may be obtained 
from the corresponding author upon reasonable request.
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