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Quantum error mitigation by Pauli 
check sandwiching
Alvin Gonzales 1*, Ruslan Shaydulin 3, Zain H. Saleem 2 & Martin Suchara 2,4

We describe and analyze an error mitigation technique that uses multiple pairs of parity checks to 
detect the presence of errors. Each pair of checks uses one ancilla qubit to detect a component of 
the error operator and represents one layer of the technique. We build on the results on extended 
flag gadgets and put it on a firm theoretical foundation. We prove that this technique can recover 
the noiseless state under the assumption of noise not affecting the checks. The method does not 
incur any encoding overhead and instead chooses the checks based on the input circuit. We provide 
an algorithm for obtaining such checks for an arbitrary target circuit. Since the method applies to 
any circuit and input state, it can be easily combined with other error mitigation techniques. We 
evaluate the performance of the proposed methods using extensive numerical simulations on 1850 
random input circuits composed of Clifford gates and non-Clifford single-qubit rotations, a class of 
circuits encompassing most commonly considered variational algorithm circuits. We observe average 
improvements in fidelity of 34 percentage points with six layers of checks.

Hardware errors or noise arising from qubit imperfections such as unwanted interactions with the environment 
limit the power of near-term quantum technologies. Since these devices lack the necessary number of qubits and 
error rates to perform quantum error  correction1–3, error mitigation is required in order to increase the fidelity 
of computations. In this work we investigate error mitigation that uses a small number of ancillas to suppress the 
effect of errors. Various error mitigation techniques have been developed, such as zero-noise  extrapolation4–6, 
which uses different error rates to reduce the error in the measurement of an observable; probabilistic error 
 cancellation4, which uses an ensemble of known noisy circuits to approach the correct expectation value; dynami-
cal  decoupling7–9, which uses timed control sequences to suppress interactions of the target quantum system 
with its environment; readout error  mitigation10, which uses classical postprocessing techniques to mitigate 
measurement errors; and symmetry  verification11–14, which verifies symmetries in computational problems of 
interest and discards erroneous computations.

Protocols that improve measurements of an observable have applications in problems such as the estimation 
of the ground state energy of a given  Hamiltonian15. In contrast, protocols that improve fidelity generally apply 
to any problem. A main feature of many techniques aimed at improving measurements of an observable or 
reducing readout error is that they have no quantum overhead; in other words, they require no extra qubits or 
quantum operations (gates). Thus, these techniques are ideal for the noisy intermediate-scale quantum (NISQ) 
 era16 because current state-of-the-art NISQ devices contain few qubits, typically fewer than 50, and a limited 
number of gate operations because of fast decoherence times.

As quantum technology develops, error mitigation schemes must adapt and take advantage of improvements 
in qubit count and  quality17,18. Qubit count and error rates vary widely depending on the underlying qubit 
technology. Additionally, many of the current error mitigation techniques such as dynamical decoupling and 
probabilistic error cancellation require intricate tailoring of the protocol to the noise. Thus, they typically require 
the added overhead in costly quantum  tomography19.

In this work we theoretically and numerically study a quantum error mitigation technique inspired by sta-
bilizer codes, that aims at improvement in quantum state fidelity. We build on the results  of20, where they first 
explored the scheme of sandwiching a circuit between pairs of parity checks. Note that they refer to the pairs of 
checks as extended flag gadgets, inspired by the work  in21,22. Our research puts this parity check scheme on a firm 
theoretical foundation and numerically demonstrates its efficacy on a wide variety of quantum circuits. The main 
contributions of our work are: (1) extending the analysis to greater than two layers of checks, (2) establishing 
the theoretical limits of the technique, which culminates in the unit fidelity result of Theorem 1, (3) providing 
parity checks in Propositions 1 and 2 that saturate this fidelity bound and hence answers an open question  in20 

OPEN

1Intelligence Community Postdoctoral Research Fellowship Program, Argonne National Laboratory, Lemont, 
IL, USA. 2Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL, USA. 3Global 
Technology Applied Research, JPMorgan Chase, New York, NY, USA. 4Amazon Web Services, Amazon, Seattle, 
WS, USA. *email: agonza@siu.edu

http://orcid.org/0000-0003-1635-106X
http://orcid.org/0000-0002-8657-2848
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-28109-x&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2023) 13:2122  | https://doi.org/10.1038/s41598-023-28109-x

www.nature.com/scientificreports/

regarding optimal checks to use, (4) providing a protocol that efficiently determines Pauli parity check pairs that 
can be used for a given input circuit, and (5) providing numerical simulations for a wide variety of random input 
circuits consisting of varying qubit count, cnot count, non-Clifford gate count, and layer count.

The error mitigation scheme that we study in this paper at its basic level of one layer uses one ancilla and 
two controlled unitary operations, which we refer to as checks. The parity checks sandwich the input circuit. 
Consequently, the error operator is conjugated between two controlled parity matrices. We measure the ancilla 
and postselect the state on the measurement outcomes. The net effect of the checks and the postselection is a 
transformed error map, where terms of the error map that anticommute with the checks are eliminated in the 
postselected state. The performance of this technique, measured by the improvement in quantum state fidelity, 
improves with the depth of the input circuit. Furthermore, this scheme is tunable, meaning that the number of 
layers and ancillary qubits used can be set by the user.

This protocol shares some similarity to symmetry verification, which also uses stabilizer-style parity checks 
to improve the fidelity of the quantum state and requires no knowledge of the noise. However, unlike symmetry 
verification, which requires input states to be restricted to a specific eigenspace, this scheme places no restric-
tion on the input state. Thus, the technique applies to subcircuits directly and can be easily combined with other 
error mitigation methods.

In Theorem 1, we prove that in a restricted scenario where the noise does not affect the checks (see Fig. 4a,b) 
there exist checks such that the postselected state is noiseless and the fidelity reaches unity. We provide an exam-
ple of a randomly generated Clifford circuit with added checks that saturates this fidelity bound.

We also investigate the performance of the scheme with numerical simulations in a more realistic setting 
where the checks are also noisy. The numerical simulations consist of 1850 (unmitigated) randomly generated 
five- and ten-qubit circuits composed of Clifford + arbitrary diagonal unitary gates. Our technique shows an 
average fidelity gain of 34 percentage points for random input circuits consisting of 40 CNOTs with six layers of 
(noisy) checks; see Fig. 10a,b. The increase in fidelity comes at a cost of a lower probability of postselecting on 
the ancillas’ measurement outcomes. We also provide Clifford simulations that give intuition that this technique 
will perform well for deep circuits.

This paper is organized as follows. In “Background” we review relevant background and provide definitions 
that are used in the paper. In “Pauli sandwich error mitigation protocol: single layer” we provide the single-layer 
protocol. In “Errors detected by the Pauli sandwich” we describe the theoretical foundation of the technique. 
In “Pauli sandwich error mitigation protocol: multiple layers” we provide the full multilayer scheme. In “Upper 
bounds on fidelity and required number of checks” we prove Theorem 1 and provide bounds on the number 
of layers required to reach unit fidelity for the restricted scenario where the noise does not affect the checks. In 
“General errors and hardware considerations” we discuss how our results apply in general settings. In “Protocol 
for finding checks quickly” we introduce techniques for finding checks quickly by using a precalculated table of 
commutation rules that eliminates the need to perform matrix multiplication. In “Numerical results” we give the 
results of our numerical simulations. In “Conclusions” we discuss our results and possible areas for future work.

Background
We begin with definitions and notation. For a detailed introduction to modeling of noise in quantum computa-
tion the reader is referred to Chapter 8  of23.

The most general evolution of an open quantum system is given by a dynamical  map24

where ρS and ρ′
S are elements of the system Hilbert space HS . HS is a subspace of the system and environment 

Hilbert space HSE , where S is the system and E is the environment.
In the case of an initially unentangled system and environment, the map is completely positive and trace 

preserving. It can be derived by taking the partial trace of the global unitary evolution and yields the operator 
sum representation

where USE is a unitary acting across the system and  environment25,26. The operators Ei in Eq. (2) are commonly 
called Kraus  operators26. A map is completely positive (CP) if it maps all positive operators to positive operators 
when extended by the identity map to arbitrary higher  dimensions25, namely,

where In is the n-dimensional identity map and ρ is a density matrix. This extension to higher dimensions is 
required to ensure that when the input state is part of a higher-dimensional state, the output of the map is still 
positive. A map is trace preserving if

Maps that do not satisfy Eq. (3) are called not completely positive (NCP) maps. NCP maps play a significant 
role in non-Markovian  evolutions27, where the evolution of the state is often not decomposable into a sequence 
of completely positive maps. NCP maps have the form

(1)E : ρS → ρ′
S ,

(2)
E(ρS) = trE(USEρS ⊗ ρEU

†
SE)

=
∑

i

EiρSE
†
i ,

(3)E ⊗ In(ρ) ≥ 0 ∀n, ρ,

(4)
∑

i

E†i Ei = I.
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where ηi = ±1 and at least one ηi = −1  exists25.
In this paper we use fidelity as a figure of merit. For two quantum states ρ and ω , fidelity is defined as

 Fidelity is symmetric with regard to its inputs.
Let U denote the unitary operation implemented by the target circuit that we want to error mitigate. Let ρ′ 

be the density matrix representing the ideal, noiseless output of the target circuit, ρn be the density matrix of the 
noisy quantum state produced by the target circuit, and ρm be the density matrix of the noisy error-mitigated 
state produced by the error mitigated target circuit.

We denote the fidelity of the noisy state before error mitigation as Fn = F(ρn, ρ
′) , and the fidelity of the state 

after application of error mitigation as Fm = F(ρm, ρ
′).

We define the fidelity gain (improvement due to the technique) as

 We say that the method “detects all errors” when Fm = 1 or equivalently when the error map E on the postse-
lected state is identity, in other words, when all the Kraus operators of E are proportional to identity.

Next we describe the noise model used in our numerical simulations. The depolarizing channel for dimen-
sion d is

where 0 ≤ p ≤ 123. For the numerical simulations of noisy circuits the only noiseless gates are a measurement 
gate or the input state, which is generated by a random circuit. Otherwise, we apply the single-qubit depolar-
izing channel after each single-qubit gate and the two-qubit depolarizing channel after every two-qubit gate. 
Throughout this paper, we set the two-qubit error rate to ten times the single-qubit error rate, an assumption 
that roughly corresponds to noise observed in current NISQ  systems28,29.

Methods
In “Pauli sandwich error mitigation protocol: single layer” and “Errors detected by the Pauli sandwich” we 
describe the single-layer Pauli Check Sandwiching (PCS) technique and show that this protocol leads to a 
transformation of the error map. In “Pauli sandwich error mitigation protocol: multiple layers” and “Upper 
bounds on fidelity and required number of checks” we describe the multilayer protocol and prove that we can 
reach a fidelity of one between a noisy-mitigated circuit and a noiseless circuit when the error map is restricted 
to a subset of qubits. We also provide a small number of checks that achieve this fidelity. In “General errors and 
hardware considerations” we investigate how our techniques apply in a general setting. In “Protocol for finding 
checks quickly” and “Numerical results” we give the results of numerical experiments across 1850 unmitigated 
random circuits.

Pauli sandwich error mitigation protocol: single layer. We begin by describing the simplest version 
of the Pauli Check Sandwiching technique that consists of a single pair of parity checks sandwiching the com-
putation (one “layer”). Figure 1 shows a graphical view of the protocol. The unitary operation U represents the 
gates of the computation. The bottom qubit is the single ancilla introduced by this scheme, and we commonly 
refer to the n qubits above as the compute or computation qubits.

Let C2 ( C1 ) be a controlled unitary with control on the ancilla that applies C̃2 ( ̃C1 ) on the compute target 
qubits. Mathematically,

(5)E(ρ) =
∑

i

ηiEiρE
†
i ,

(6)F(ρ,ω) =
(

tr
√√

ρω
√
ρ

)2

.

(7)Fm − Fn.

(8)Dp(ρ) = (1− p)ρ + p
I

d
,

(9)C1 = C̃1 ⊗ |1��1| + I⊗ |0��0|

C̃1 U C̃2...

|0〉 H • • H

Figure 1.  Overview of the one-layer version of the PCS scheme. U represents the gates of the computation 
and acts across n compute qubits. U is sandwiched between two controlled unitaries comprising C̃1 and C̃2 
that satisfy Eq. (11). The ancilla is the bottom qubit. The measurement is performed in the {|0�, |1�} basis. The 
measurement outcome one is discarded, and zero is kept.
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This scheme also requires that

Before continuing, we make an important distinction between two protocols: the efficient PCS protocol and 
the general PCS protocol. For the efficient PCS protocol, we restrict C̃1 and C̃2 to be elements of the n-qubit Pauli 
group Pn , where

 These added conditions are partly due to the difficult problem of determining the optimal circuit that imple-
ments C̃1 from a given C̃2 and U. Note that C̃2 and C̃1 can be much more general and still satisfy Eq. (11). Thus, 
there are no additional constraints on the checks in the general PCS protocol.

In the general PCS protocol and for a given U, any unitary C̃2 can be used because in Eq. (11) we can always 
pick C̃2 and solve for C̃1 . We note in the text if a result holds for a specific case. If no statement is made, then the 
result holds for both scenarios.

The single-layer protocol is as follows. 

1. Initialize the ancilla to |0� and apply a Hadamard gate. Perform C1 with the control on the ancilla qubit and 
target on the compute qubits.

2. Perform U on the compute qubits.
3. Perform C2 with the control on the ancilla qubit and target on the compute qubits.
4. Apply a Hadamard gate to the ancilla. Measure the ancilla in the {P0 = |0��0|,P1 = |1��1|} basis, and discard 

the results where the outcome is P1 . We keep the result where the outcome is P0.

Errors detected by the Pauli sandwich. We now consider the effect of this scheme on an error map E 
acting on the compute qubits after U, as shown in Fig. 2a. Let E(ρ) =

∑

i EiρE
†
i  . Then the postselected output 

state of the protocol is

As shown in Fig. 2b, this protocol transforms the error map. We can write the postselected state given in 
Eq. (13) in terms of a new error map E ′,

where E ′ has Kraus operators

(10)C2 = C̃2 ⊗ |1��1| + I⊗ |0��0|.

(11)C̃2UC̃1 = U .

(12)Pn = {I, x, y, z}⊗n × {±1,±i}.

(13)ρm =

∑

i

[(

C̃2EiC̃
†
2 + Ei

)

UρU†
(

C̃2E
†
i C̃

†
2 + E†i

)]

tr
(

∑

i

[

(C̃2EiC̃
†
2 + Ei

)

UρU†
(

C̃2E
†
i C̃

†
2 + E†i

)]

)
.

(14)ρm =
E ′(UρU†)

tr
[

E ′(UρU†)
] ,

C̃1 U E C̃2...

|0〉 H • • H

(a) E is a noise map.

U C̃†
2 E C̃2...

|0〉 H • • H

(b) Equivalent noisy circuit using Eq. (11). The gates after U along
with the postselection on the ancilla can be seen as the transformed
error map.

Figure 2.  Noisy single-layer scheme.
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and the factor of 1/2 comes from multiplying Eq. (13) by a convenient form of one, namely, (1/4)/(1/4). We can 
now observe the power of this error mitigation technique. The error operators Ei can be expanded in the Pauli 
basis. Thus, let

where σ̃j is an element of the Pauli group and αij = tr(Eiσ̃j)/(2
n) is a complex constant. Let C̃2 ∈ Pn . Each σ̃j 

term in the expansion of Ei either commutes or anticommutes with C̃2 . Substituting Eq. (16) into Eq. (15), we 
see that the σ̃j elements that anticommute with C̃2 are eliminated and

where P ′
n is the Pauli group excluding the elements that anticommute with C̃2.

The effect of the protocol on the error map shares some similarities to that of  twirling30–32. In twirling, the 
twirling set T is used to conjugate the error map:

Usually, twirling is performed by using the Pauli or Clifford group as the twirling set. When twirling is per-
formed with a suitable set, it transforms the noise into a Pauli channel. However, the PCS scheme is in some sense 
more powerful since it completely eliminates the contribution of anticommuting Pauli terms.

Pauli sandwich error mitigation protocol: multiple layers. The suppression of errors from anticom-
muting Pauli terms in the postselected state can be enhanced by introducing multiple layers of the single-layer 
error mitigation technique. A graphical view of how this scheme works is given in Fig. 3. There are m layers with 
each layer consisting of controlled operations C1,k and C2,k , where the second index represents the layer, and one 
ancilla corresponding to each layer. Each pair of C1,k and C2,k satisfies

The multilayer scheme generalizes the single-layer scheme and is performed as follows. 

1. Initialize the ancillas to |0� , and perform Hadamard gates on the ancillas. Perform C1,k with control on the 
kth ancilla qubit and target on the compute qubits.

2. Perform U on the compute qubits.
3. Perform C2,k with control on the kth ancilla qubit and target on the compute qubits.
4. Perform Hadamard gates on the ancillas. Measure all the ancillas in the {P0 = |0��0|,P1 = |1��1|} basis, and 

discard the results where at least one of the outcomes is P1 . We keep the result where all the outcomes are P0
.

Upper bounds on fidelity and required number of checks. Now let us consider a noise map 
E(ρ) =

∑

i EiρE
†
i  acting after U on a subset of qubits as shown in Fig. 4a. From Eq. (15), in the expansion of Ei in 

the Pauli basis, we know that the kth layer eliminates Pauli terms that anticommute with C̃2,k . This immediately 

(15)E′i =
C̃2EiC̃

†
2 + Ei

2

(16)
Ei =

∑

σ̃j∈Pn

αijσ̃j ,

(17)
E′i =

∑

σ̃j∈P ′
n

αijσ̃j ,

(18)

1
∣

∣

∣

∣

T

∣

∣

∣

∣

∑

V∈T
VE(V†ρV)V†

=
1
∣

∣

∣

∣

T

∣

∣

∣

∣

∑

i,(V∈T)
VEiV

†ρVE†i V
†.

(19)C̃2,kUC̃1,k = U .

C̃1,m C̃1,2 C̃1,1 U C̃2,1 C̃2,2 C̃2,m...
......

|0〉 H • • H

|0〉 H • • H
...

|0〉 H • • H

Figure 3.  Multilayer scheme. There are n compute qubits, m layers, and m ancillas. The second index in the 
controlled unitaries represents the layer. Each layer uses one ancilla and two checks. The checks sandwich the 
input circuit.
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leads to the observation that we can detect all errors under the noise model shown in Fig. 4a, which we prove 
in the following theorem. Theorem 1 holds in general for the general PCS protocol and it holds for the efficient 
PCS protocol when the checks are in the Pauli group, in other words, when U is Clifford. Note that we discuss 
why these results hold for NCP errors as well later at the start of “General errors and hardware considerations”.
Theorem 1 (Unit Fidelity) If errors are restricted to act only on the compute qubits, for any noisy unitary quantum 
circuit U acting on n compute qubits, there exist checks (see Fig. 4a) such that the fidelity between the post selected 
state and a noiseless run (noiseless execution of U only) reaches one.

Proof First, note that if the error map E(ρ) =
∑

i EiρE
†
i  is the identity map, then the fidelity between the output 

ρm of the error-mitigated circuit and the output ρ′ of a circuit with only U (a noiseless run) is

This directly follows from Eq. (19). Thus, if we can transform all the Kraus operators Ei of the error E to 
identity in the postselected state, then we have the result.

Notice that from Eq. (19), Fig. 4a is equivalent to Fig.  4b and the error map is conjugated by multiple layers 
of checks. Expanding the error in the Pauli basis, we have

where σ̃j is an element of the Pauli group Pn and αij = tr(Eiσ̃j)/(2
n) is a complex constant. Let C̃2,i ∈ Pn, ∀i.

We now make the results given in “Errors detected by the Pauli sandwich” recursive. First, we label the check 
layers from 1 to m starting with the innermost layer. Then, Eq. (15) can be written recursively as

where (k) represents the layer and E(0)i  is the initial error Kraus operation. This leads to the recursive form of 
Eq. (17),

where G(k)
n  is the Pauli group excluding the elements that anticommute with {C̃2,1, C̃2,2, · · · , C̃2,k} . Letting k equal 

the size of Pn (excluding global phases), namely, 4n , we get E(k)i = αiI . The αi is a constant that cancels out under 
renormalization, and the result follows.   �

Before proceeding, we need to clarify the implications of Theorem 1. In that theorem, if we satisfy the condi-
tions, we will have unit fidelity in the postselected state. However, the probability of postselecting is

where the Kraus operators of E (m) are given by Eq. (23). In Eq. (23) the checks will eliminate all the Pauli terms 
that are nonidentity. Thus, we see that if all the Kraus operators of the error map are traceless, in other words, 
contain no identity term in their expansion in the Pauli basis, all the Kraus operators for the error map in the 
postselected state will be the zero matrix, and the probability of postselecting is zero. This makes sense because 

(20)F(ρm, ρ
′) = 1.

(21)
Ei =

∑

σ̃j∈Pn

αijσ̃j ,

(22)E
(k)
i =

C̃2,kE
(k−1)
i C̃†

2,k + E
(k−1)
i

2
,

(23)
E
(k)
i =

∑

σj∈G(k)
n

αijσ̃j ,

(24)P(0) = tr(E (m)(UρU†)),

C̃1,m C̃1,2 C̃1,1 U E C̃2,1 C̃2,2 C̃2,m...
......

|0〉 H • • H

|0〉 H • • H
...

|0〉 H • • H

(a) E is an arbitrary noise map.

U C̃†
2,m C̃†

2,2 C̃†
2,1 E C̃2,1 C̃2,2 C̃2,m...

......

|0〉 H • • H

|0〉 H • • H
...

|0〉 H • • H

(b) Equivalent circuit using Eq. (19). Reminiscent of the single-layer
scheme, the gates after U along with the postselection on the ancillas
can be seen as the transformed error map.

Figure 4.  Noisy multilayer scheme.
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we are not correcting errors, but mitigating errors by post selecting outcomes. The theorem holds trivially in this 
scenario because there is no post selected state.

Moreover, from Fig. 4a and Theorem 1, it seems that we can set E(ρ) = U†ρU  , which eliminates U, and use 
only the checks for the implementation of the circuit. While this is certainly true, we must consider the postse-
lection probability. If U is traceless, the probability of postselecting is zero.

Next we provide a small number of C2 checks that can reach unit fidelity in the setting of Theorem 1. The 
following results given in Propositions 1 and 2 are for the general PCS protocol. Propositions 1 and 2 hold for 
the efficient PCS protocol given that the checks are in the Pauli group, in other words, U is Clifford. Propositions 
1 and 2 hold for the noise model give in Fig. 4a. For arbitrary weight-one Kraus errors, that is, the Kraus error 
operators, Ei act only on a single qubit; there exist two layers, where C̃2,1 and C̃2,2 are max weight, and we reach 
unit fidelity in the postselected state.

Proposition 1 (Weight-One Kraus Operators: Two layers of max weight checks are sufficient) For the noise 
model given in Fig. 4a and for all E consisting of only weight-one Ei, there exist two layers of checks such that we 
have unit fidelity in the postselected state. The C2 part of the checks requires a total of 2n cnot gates, where n is the 
number of compute qubits.

Proof Each of the single-qubit errors can be expanded in terms of the single-qubit Pauli gates. Thus,

where k is the qubit it is acting on, σj is a Pauli matrix or identity, and αi,j is a complex constant. Let our checks be

and

These checks are inspired by the parity checks used in Shor’s  code33. The C̃2,1 consist of tensors of Pauli X and 
anticommutes with Pauli Y and Pauli Z errors in Eq. (25). The C̃2,2 consist of tensors of Pauli Z and anticommutes 
with Pauli X errors in Eq. (25). From Theorem 1, the anticommuting terms in the error operators are suppressed. 
Thus, these two layers of checks are sufficient to reach fidelity one.   �

The checks given in Proposition 1 can detect all errors E that consist of weight-one Kraus operators Ei . This 
class of errors contains error maps that are more general than just single-qubit error maps. For example, E1 
can act on qubit one, and E2 can act on qubit two. E1 and E2 are weight-one errors, but the overall map affects 
multiple qubits.

Remark At least two layers are necessary to reach fidelity one in Proposition 1. To see this, we need only show 
that a single layer is insufficient for arbitrary weight-one errors. Consider a circuit with only one compute qubit. 
For an arbitrary single-layer scheme, let C̃2 = W  be the check. Then let the error map be E = W  . The check 
and the error do not anticommute so the error map in the postselected state is not identity. Thus, a single layer 
is insufficient to detect all weight-one errors; at least two layers are necessary. Proposition 1 shows that we can 
always saturate this lower bound on the number of required checks.

We can also reach fidelity one for arbitrary weight errors for the error model given in Fig. 4a with a small 
number of weight-one C̃2,k . These checks are generators of the Pauli group and require 2n layers, but the C2 
components of the checks require the same number of cnot gates as in Proposition 1. Thus, generally at the cost 
of more ancillas, we can detect all errors on the postselected state. Consider two weight-one C̃2 checks of σ1 and 
σ3 on the kth compute qubit. All Pauli group elements that are nonidentity on the kth qubit anticommute with 
either σ1 or σ3 . This leads to the following small set that can reach fidelity one.

Proposition 2 (Any Error: 2n number of weight-one checks are sufficient) For the noise model given in Fig. 4a 
and arbitrary errors, let n be the number of compute qubits. Then there exist 2n number of distinct (ignoring the 
global phase) weight-one C̃2,k such that we have unit fidelity in the postselected state.

Proof Let the kth compute qubit have two layers acting on it with C̃(k)
2,r = σ

(k)
1  and C̃(k)

2,l = σ
(k)
3  . All Pauli group 

elements that are nonidentity on the kth qubit anticommute with at least one of the checks. Thus, this eliminates 
all Pauli terms in the expansion of the error Kraus operators that do not have identity on the kth qubit for the 
postselected state. We repeat these checks for the other compute qubits. The same argument holds in general for 
{σ (k)

i , σ
(k)
j |i �= j} and the result follows.   �

Figure 5 shows an example of a random Clifford circuit consisting of two compute qubits and 30 cnot gates 
that gives unit fidelity for the postselected state. This matches the prediction of Theorem 1. We use a Clifford 
circuit to guarantee that we can get the desired checks with the efficient PCS protocol. We use the checks provided 
in Proposition 2. The two checks on each compute qubit are σ (k)

1  and σ (k)
2  , and we vary the number of layers 

(25)Ei,k =
∑

j

αi,jσj,k ,

(26)C̃2,1 = x⊗n

(27)C̃2,2 = z⊗n.
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from zero to four. Interestingly, at the single-qubit error of 0.1, the two-qubit depolarizing channel is maximally 
depolarizing, but the fidelity remains at one for the postselected state (as predicted).

The gain in fidelity comes at the cost of a lower probability of measuring all zeros for the ancillas. This trade-
off is demonstrated in Fig. 5b. The probability of measuring all zeros p(0) drops to around 7% for this circuit at 
the high single-qubit error of 0.1. Note that the overhead in the number of runs is 1

p(0)
.

General errors and hardware considerations. In the preceding sections, we restricted E to CP maps, 
but our results hold also for general linear Hermitian maps, which includes NCP maps. As previously men-
tioned, NCP maps play a major role in non-Markovian evolutions, where the maps tend to be non-CP divisible. 
NCP maps have a similar form to CP maps and are written as E(ρ) =

∑

i ηiEiρE
†
i  , where ηi = ±1 and there 

exists at least one ηi = −1 . The coefficients ηi are not used in any of our proofs, and thus the results hold.

Also, we restricted E to act only on the compute qubits. Obviously this is a restricted case, and in physical 
systems the checks are noisy and the error map would generally act across all the qubits, as shown in Fig. 6a. In 
this situation, the checks still conjugate the error, as shown in Fig. 6b. Consequently, the technique is effective 
when E is dominated by Kraus operators that mainly affect the compute qubits; that is, the majority of the noise 
is from U.

On non fully connected quantum computers, the parity checks may be difficult to perform with resulting 
minimal noise on the ancillas due to the need for swapping qubits. Thus, applications of this technique likely 
need to carefully map the circuit to the hardware to minimize the swaps between ancillas and compute qubits 
or execute the circuits on a fully connected device.

Since single-qubit gates introduce less noise than nonlocal gates, the Pauli group is a good candidate for the C̃2 
part of the checks. Furthermore, when U is a deep circuit, the noise it induces will generally act across multiple 
qubits. In this scenario, low-weight C̃2 will act nontrivially on these errors. Thus, in general it is better to use 
low-weight checks in order to avoid introducing too many errors.

Figure 5.  Example of checks that detect all errors. The upper bound on fidelity is saturated at four layers for 
this randomly generated Clifford input circuit consisting of two qubits and 30 cnot gates. We use depolarizing 
noise for the given noise model in Fig. 4a. The two-qubit error rate is ten times the single-qubit error rate. The 
single qubit-error rate ranges from 10−5 to 10−1 . At 10−1 , each cnot gate (acting on the compute qubits only) 
is followed by a two-qubit maximal depolarizing channel. Regardless, the postselected state is noiseless, as 
predicted by Theorem 1.
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Moreover, for some executions of this scheme, the postselection probability may be smaller than desired. The 
postselection probability can be increased by reducing the number of check layers.

Protocol for finding checks quickly. While checks always exist for a given U, in practice it is difficult to 
directly compute C̃1 from Eq. (19) for a given C̃2 . Here we introduce our searching protocol for the efficient PCS 
protocol for determining the check pairs quickly and without matrix multiplication. Note that this protocol can 
fail to find any checks or may not find the desired number of checks. This can happen when the circuit con-
tains many non-Clifford gates. We refer to the checks searching protocol as the finding checks protocol. For our 
implementation, we constrained C̃1 and C̃2 to be in the Pauli group. We leave the potential searching protocol of 
a non-Pauli C̃1 for future work.

The goal is to determine the gates comprising C̃1 from a given C̃2 ∈ Pn and a given U. Instead of per-
forming matrix multiplication, we transpile the input circuit to an equivalent circuit that uses the gate set 
{x, y, Rz, s, h, cnot} and perform lookups of the commutation relations. This method applies to circuits consist-
ing of Clifford + arbitrary diagonal gates, which is a universal gate set since diagonal gates contain the gate T.

To determine the checks, we use the equality U1U2 = U2(U
†
2U1U2) = U2U

′
1 , where U ′

1 = U†
2U1U2 and U1 

and U2 are unitary. We refer to this technique as “pushing” U1 through U2 . Figure 7 gives a visual example of the 
pushing of the C̃2 gates to determine C̃1 . Figure 8 is the completed error-mitigated circuit. This process is efficient 
since the cost of each lookup call is constant O(1).

Algorithm 1 is the pseudocode for the main script for finding a desired number of Pauli check pairs. It iterates 
through the minimum weight Pauli checks first and terminates when a sufficient number of layers of checks have 
been found. The protocol focuses on using low weight checks to minimize the noise introduced by the checks 
as discussed previously in “General errors and hardware considerations”. The main script calls on Alg. 3 to see 
whether it is possible to push the current gate through. In Alg. 2 the lookup call is a preset table that has com-
mutation relations. This symbolic “pushing” of Pauli gates through U works for all gates in the basis set except for 
Rz . For Rz , if the gate being pushed is not in {z, I} , which are operators that commute with an arbitrary diagonal 
gate, then we skip that Pauli group element.

Note that mathematically, any C̃2 ∈ Pn can be used because C̃1 can be determined from Eq. (11). Thus, one 
should be able to expand the current algorithm to allow for finding of general C̃1 . This problem is nontrivial.

Figure 6.  Noisy multilayer scheme.
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Figure 7.  Visual example of “pushing” the checks through the circuit. We start with C̃2 and find C̃1 . 
No multiplication is performed since the propagation of the C̃2 gate is determined through lookups of 
predetermined commutation relations.

Figure 8.  Final error-mitigated circuit for the example described in Fig. 7.
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Figure 9.  Two-qubit Clifford simulation with single-qubit error of 0.00126 (0.0126 two-qubit error). Note 
that while these input circuits can be optimized to use O(n2/log(n)) cnot gates (i.e., O(2) cnot gates), these 
simulations provide intuition that the protocol is suitable for deep circuits.

Figure 10.  Six layers. (a) The peak average fidelity gain of 34 percentage points occurred at a single-qubit error 
of approximately 0.00251 (0.0251 two-qubit error) and 40 CNOTs. (b) The probability of postselecting decreases 
with increasing error rate and increasing cnot count.
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Numerical results. The analytical results presented above assume perfect checks. Here we numerically 
investigate the scheme in a more realistic setting where most gates are noisy, including those involved in the par-
ity checks (the only gates that are not noisy are measurements and the circuit that generates the random input 
state).

Intuitively, given a Clifford circuit and using the efficient PCS protocol, we should be able to perform long 
computations with high fidelity. For a given Clifford circuit, we can keep the C2 checks constant and independent 
of the depth of U. Thus, the noise induced by our C2 checks should be relatively constant.

The C1 checks depend on U, but they are elements of the Pauli group and hence limited in size and complexity. 
Therefore, the noise induced by the C1 checks should also be limited and independent of the depth of U.

We demonstrate this intuition on simulations consisting of 550 randomly generated Clifford circuits with 
two compute qubits. Note that these Clifford simulations provide only intuition that the protocol is suitable for 
deep circuits because Clifford circuits can in general be optimized to use O(n2/log(n)) cnot gates, where n is 
the number of  qubits34. Thus, two-qubit Clifford circuits can be optimized to be shallow. It may be possible to 
prove this performance on Clifford circuits with higher qubit counts.

We considered random circuits with cnot counts that varied from 1, 2, 4, · · · , 1, 024 . For each cnot count we 
generated 50 random circuits, and we used single-qubit depolarizing noise of 0.00126 (0.0126 two-qubit noise). 
This lies within the range of current noise levels found in state of the art quantum  computers29,35. We used four 
layers of checks; the form of the checks was provided in Proposition 2. As shown in Fig. 9a, we maintained an 
average fidelity Fm for the postselected state of greater than 90% for circuits consisting of up to 1,024 cnot gates. 
The average fidelity of the unmitigated circuits drops to 25% at 256 cnots. Note that this comes at the cost of a 
lower postselection rate of 6.25% as shown in Fig. 9b.

For optimized Clifford circuits, we would likely not want to use all the checks from Proposition 2 because we 
would probably exceed the cnot count of the input circuit. Still, as shown in Fig. 9a, fewer layers can produce 
significant fidelity improvement.

These simulations establish the general trend that fidelity is positively correlated with the number of layers 
up to some value. We suspect that these results also hold for general (non-Clifford) circuits.

We also randomly generated 1850 input circuits consisting of Clifford + arbitrary diagonal unitary gates. 
Of these, 1,350 input circuits consist of five qubits with cnot counts of {1, 5, . . . , 40} ; 500 input circuits consist 
of ten qubits with cnot counts of {1, 5, . . . , 40, 80} . We varied the single-qubit error from 10−5 to 10−2 with 21 
equally spaced points in log scale.

For the ten-qubit circuits we also generated circuits with cnot gate counts of 80 to match the max cnot 
count to qubit ratio of the five qubit case. Each random circuit was generated first as a random Clifford gate, 
which we truncated to reach the desired cnot count. Next, we inserted rz gates with random rotation angles 

Figure 11.  (a) Average fidelity for layers zero to six. At the peak fidelity gain, the nonmitigated circuit has about 
33% fidelity, and the six-layer mitigated circuit has about 67% fidelity. (b) Probability of postselecting.



14

Vol:.(1234567890)

Scientific Reports |         (2023) 13:2122  | https://doi.org/10.1038/s41598-023-28109-x

www.nature.com/scientificreports/

Figure 12.  (a) Average fidelity gain vs number of layers. (b) Probability of postselecting vs number of layers. 
The single-qubit error is fixed at approximately 0.00251 (0.0251 two-qubit error).

Figure 13.  Five-qubit circuits with 10 rz gates. (a) The max fidelity gain is about 25 percentage points. (b) 
Probability of postselecting vs single-qubit error.
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Figure 14.  Five-qubit circuits with 15 rz gates. After 10 cnot gates, we cannot find circuits with six layers.

Figure 15.  Five-qubit circuits with 15 rz gates. (a) At one layer of checks, the peak fidelity gain is about 10 
percentage points.
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Figure 16.  Ten-qubit circuits with 5 rz gates. We used a single layer of low weight checks. The 80 cnot count 
case matches the cnot count to qubit ratio of the five-qubit case with 40 cnot gates. (a) The peak fidelity gain is 
about ten percentage points. It occurs at a single-qubit error of about 0.000891 (0.00891 two-qubit error).

Figure 17.  Max weight checks. The high-weight checks introduce a lot of noise compared with the low-weight 
method, as shown in the large negative fidelity at a high single-qubit error rate.
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and random locations in the circuit. We used rz gate counts of {5, 10, 15}. Each rz value for five qubits consists 
of 450 circuits. This covers a large class of variational quantum eigensolver and quantum approximate optimiza-
tion algorithm  circuits36.

We achieved an average peak fidelity gain Fm − Fn of 34 percentage points for five-qubit circuits with a cnot 
gate count of 40, five rz gates, and six layers of checks, as shown in Fig. 10a. For input circuits with a low cnot 
count, the fidelity gain is negative because the checks introduce more errors than they eliminate in the post 
selected state. The average postselection probability is given in Fig. 10b.

We also give in Fig. 11a a plot that breaks down this peak fidelity gain. At the peak fidelity gain, the nonmiti-
gated circuit has about 33% fidelity, and the six-layer mitigated circuit has about 67% fidelity.

As shown in Fig. 11a, the mitigated circuits perform significantly and consistently better than the unmitigated 
circuits. Even for lower-layer counts such as two, the average fidelity gain reached 20 percentage points. Fig. 11b 
gives the corresponding post selection probabilities and demonstrates that we have significant control over the 
probabilities by changing the number of layers.

Each additional layer increased the average fidelity provided enough circuit depth. We show this in more 
detail in Fig. 12a, where we fixed the single-qubit error rate to 0.00251 (0.0251 two-qubit error) the value that 
gave the peak fidelity gain in Fig. 10a.

Circuits with more than six layers may result in even better performance, but the amount of fidelity gained 
decreases with subsequent layers. Figure 12b shows the corresponding post selection probabilities and the mini-
mum post selection probability is about 16%.

As the number of rz (non-Clifford) gates increases, the number of possible low weight C̃2 checks for the 
efficient PCS protocol decreases, and consequently the fidelity gain decreases. As shown in Fig. 13a, at an rz gate 
count of 10, the peak fidelity gain is about 25%.

As shown in Fig. 14a, at an rz gate count of 15, we cannot find six layers of checks for random circuits with 
20 cnot gates or higher. Interestingly, as shown in Figs. 10b, 13b and 14b, the post selection curves are relatively 
unchanged.

Using one layer of checks, we have a peak fidelity gain of about 10 percentage points at 40 cnot gates, as 
shown in Fig. 15a. Figure 15b shows the corresponding post selection probabilities.

For the ten-qubit case, as shown in Fig. 16a, we achieved a fidelity gain of about ten percentage points. This 
occurred at a cnot count to qubit ratio of eight, which matches the scenario of the peak fidelity gain in the five-
qubit case. The peak fidelity gain occurred at a single-qubit error of about 0.000891 (0.00891 two-qubit error). 
Figure 16b shows the corresponding post selection probabilities.

The preceding simulations focus on using low-weight checks first. We now analyze the performance of high-
weight checks. As shown in Fig. 17a,b, while the high-weight checks do give a boost in fidelity, they introduce 
significant amounts of noise compared to the low-weight checks.

Conclusions
The quantum error mitigation technique we have studied in this work is novel because (1) it has an adjustable 
quantum overhead for any input circuit, (2) by adjusting the number of layers of check operators, the technique 
allows controlling of the post-selection probability and the error from the error mitigation protocol, (3) the 
method can be applied repeatedly and at any location in the circuit, and works for arbitrary input states, and (4) 
in the setting of Theorem 1, we prove that we can achieve unit fidelity provided that we use a sufficient number 
of layers.

We prove in Theorem 1 that if the error is restricted to the compute qubits (see Fig. 4a), there exist checks 
such that the fidelity for the postselected state reaches unity. We also give a small number of C̃2 checks that reach 
unit fidelity in this scenario in Propositions 1 and 2.

In Eq. (19), C̃2 is chosen and C̃1 can be directly determined through our finding checks protocol given in 
“Numerical results”. This algorithm determines the pairs of checks without matrix multiplication. Instead, we 
perform lookups of predetermined commutation relations. One limitation of our finding checks protocol is that 
we are able to find only C̃1 that are in the Pauli group. This limitation does not exist for the general PCS protocol.

The main limitation of the proposed approach is the need to obtain the checks C̃1 and C̃2 , with cost exponential 
in the number of qubits in the subcircuit. This cost can be reduced to exponential in the number of non-Clifford 
gates (and only polynomial in the number of qubits) by leveraging the extended stabilizer  formalism37.

The performance of the protocol is tested through extensive numerical simulations on random circuits con-
sisting of 550 Clifford and 1850 non-Clifford circuits. We used the Clifford simulations to provide intuition that 
the technique is suitable for deep circuits.

For the non-Clifford circuits, we used five- and ten-qubit circuits. We use the difference between the fidelity 
of the mitigated circuit and the fidelity of the unmitigated circuit as a figure of merit. Under depolarizing noise, 
the simulations reached an average fidelity gain of 34 percentage points for circuits consisting of five qubits, 40 
CNOTs, and six low-weight C̃2 checks (see Figs. 10a and 10b). It is possible that more layers will provide further 
boosts in fidelity. The single-qubit noise ranged from 10−5 to 10−1 . This coincides with current noise levels found 
in superconducting quantum  computers35.

In38, the authors derive an error mitigation scheme based on symmetry verification, which they call the 
spatio-temporal stabilizer (STS) technique. The STS technique shares many similarities with the PCS scheme, 
as first introduced  in20, and when there is only one pair of checks, STS is the PCS scheme. An important differ-
ence is that when there are multiple pairs of checks, layers are allowed to be partly nested in the STS technique. 
For example, a possible STS execution is layer one and layer two act on the same compute qubits, but layer two 
begins before layer one has ended and layer one ends before layer two. Since the STS method also allows the 
standard layering of checks in PCS, our results also hold for the STS technique.
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We also note that while the results of this research are presented in the context of quantum computing, the 
theoretical results hold in general for settings where the user intends to implement an ideal known unitary U on 
a quantum state. This follows because we placed no restrictions on the unitary. The performance of the scheme 
in other settings needs to be investigated. Also, since the protocol places no restriction on the input state, one 
can apply the mitigation technique on subcircuits and easily combine it with other methods. Splitting a large 
circuit into subcircuits for finding checks or combining the protocol with other techniques have not been studied. 
Determining the optimal number of check layers also needs to be further investigated.

Moreover, the best type of checks to use may be non-Pauli in the general PCS protocol. This is likely true given 
some knowledge of the dominant noise. One potential line of investigation is to use the controls in dynamical 
decoupling protocols as the C̃2 parity  checks9,39.
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