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Comparison of earthquake‑induced 
shallow landslide susceptibility 
assessment based on two‑category 
LR and KDE‑MLR
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Geological hazards caused by strong earthquakes have caused continuous social and economic 
losses and destruction of the ecological environment in the hazard area, and are mostly manifested 
in the areas with frequent occurrence of geological hazards or the clustering of geological hazards. 
Considering the long-term nature of earthquakes and geological disasters in this region, this paper 
takes ten earthquake-stricken areas in Wenchuan earthquake zone as examples to collect shallow 
landslide data in 2010, combined with the spatial location of landslides and other factors. Kernel 
density estimation (KDE) method is used to analyze the spatial characteristics of shallow landslide. 
Taking the space of shallow landslide as the characteristic variable and fully considering the 
regulating factors of earthquake-induced landslide: terrain complexity, distance to river, distance to 
fault, distance to road, lithology, normalized vegetation difference index (NDVI) and ground peak 
acceleration (PGA) as independent variables, based on KDE and polynomial logistic regression (MLR), 
A quantitative model of shallow landslide in the earthquake area is constructed. The results show that: 
(1) PGA has the greatest impact on landslide in the study area. (2) Compared with the two-category 
logistic regression (two-category LR) model, the susceptibility map of landslide prediction results 
based on the KDE-MLR landslide susceptibility prediction model is more consistent with the actual 
situation. (3) The prediction accuracy of the model validation set is 70.7%, indicating that the landslide 
susceptibility prediction model based on KDE-MLR can effectively highlight the spatial characteristics 
of shallow landslides in 10 extreme disaster areas. The research results can provide decision-making 
basis for shallow landslide warning and post-disaster reconstruction in earthquake-stricken areas.

Earthquakes play a relatively prominent role in various natural hazards and are extremely destructive. There are 
many earthquakes every year around the world, and China’s seismic fault zone is greatly affected by earthquake 
hazards. According to incomplete statistics, the cumulative death toll in China resulting from earthquakes that 
occurred between 1993 and 2016 accounted for 50% of global earthquake-related deaths. Moreover, more than 
two-thirds of China’s provinces were affected by earthquakes, resulting in millions of casualties and hundreds of 
millions of victims1,2. After a strong earthquake, the geological structure of the affected area becomes unstable 
and susceptible to geological hazards such as landslides, debris flows, dammed lakes, and avalanches that occur 
frequently in extremely earthquake-stricken areas3. Among these hazards, landslides are one of the most frequent 
and destructive earthquake-induced geological hazards in the world4–6. According to a large amount of data, 
losses caused by landslides have far exceeded losses from earthquakes themselves. This had a huge impact on 
the sustainable development of society and the economy7. The Wenchuan earthquake (MW-7.9) that occurred 
on the Longmenshan fault zone in 2008 was the most destructive earthquake in the past 100 years. The energy 
released was approximately three times that of the Tangshan earthquake. In addition, a post-earthquake emer-
gency investigation of geological hazards showed that there was a total of 8060 hidden geological hazard points 
across 39 earthquake-stricken counties in Sichuan Province, fully demonstrating that the temporal and spatial 
effects of geological hazards after the Wenchuan earthquake were significant8.

Previous research on the evaluation of landslides, has mainly been conducted on three aspects: landslide 
sensitivity9–12, landslide risk13–15 and landslide susceptibility16. Among then, landslide susceptibility can be defined 
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as the spatial probability of landslide occurrence based on a set of geological and environmental conditions. A 
landslide susceptibility map reflects the spatial distribution of the landslide probability in an area16. This analy-
sis can be traced back to the Japanese scholar Saito, who, in the 1960s, used the results of creep tests to predict 
the locations of shallow landslides. After completing a series of related theoretical systems, many scholars have 
conducted exploratory research on other quantitative spatial prediction models of regional geological hazards, 
including empirical models (such as fuzzy logic and generalized additive models)17,18, statistical analysis models 
(such as the certainty coefficient method, weights of evidence and entropy models)19–21 and pattern recognition 
models (such as artificial neural networks, support vector machines (SVMs) and adaptive, neuro-fuzzy inference 
systems (ANFISs))22–24. Two-category LR is a generalized linear regression analysis model widely used in explor-
ing landslide susceptibility due to the simple calculations and physical clear meaning characteristic. However, this 
model is relatively simple and cannot handle complex issues in actual situations, some scholars have proposed 
MLR. The MLR is useful in situations with several dependent variables25. Previous findings indicate that the two-
category LR is widely used in shallow landslide susceptibility evaluations26,27. The dependent variables of most 
two-category LR in susceptibility analysis of shallow landslides are binary logic occurrence variables (denoted as 
1) and nonoccurrence variables (represented as 0). Notably, the intensity of regional shallow landslides (spatial 
effects) is not considered in this model resulting in significant forecast biases.

Tobler’s first law of geography states that everything is related to other things but near things are more related 
than distant things; that is, there is a potential dependence between the observed data of certain variables in the 
same or different distribution areas28. Landslides are spatially manifested as regions where geological hazards 
or groups of hazards frequently occur. In the past, the spatial quantitative modelling of landslides primarily 
comprised use of statistics to explore the characteristics and development of hazards (whether a hazard occurred 
or not). Although the spatial distribution of geological hazards appears random, it exhibits inherent regularity, 
thus spatial autocorrelation is widely used in the study of geological hazards29,30. Zou et al.29 established spatial 
regression models using the relevant geological hazard data, evaluated the impact of human activities on geo-
logical hazards in the Shennongjia Mountain area, and proposed effective prevention and control strategies. 
Liu et al.31 explored the spatial–temporal distribution and conditioning factors of geological hazards. Gonzalez 
et al.32 investigated the spatial distribution characteristics of seismic hazards in cities and the impact of river 
vaults on them using the conventional spatial autocorrelation method (SPAC) and Calicatas SPAC method. Pre-
vious findings indicate that evaluating the spatial characteristics of landslides improves the accuracy of spatial 
prediction of landslides.

The purpose of this paper is to build a model to predict shallow landslide susceptibility. The disaster intensity 
of regional shallow landslides was quantitatively characterized by the model, and an objective understanding of 
landslide spatial characteristics was used to accurately predict the influence of the landslide disasters. By identify-
ing the shallow landslide susceptibility area, research on shallow landslide spatial characteristics can effectively 
reduce casualties and property losses. In this paper, ten earthquake-stricken areas affected by the Wenchuan 
earthquake are studied. The evaluation factors affecting the surface sensibility of shallow landslides are examined 
from the aspects of topography, geological environment and inducing conditions. KDE is used to describe the 
multiclassification spatial characteristics of shallow landslides, and the degree of aggregation and dispersion of 
shallow landslides in space is fully analyzed. A landslide disaster sensitivity prediction model based on KDE-
MLR is constructed using MLR. The remainder of the paper is organized as follows: in "Introduction" Section, 
summarize the research progress of spatial quantitative modeling of landslides. In "Overview of the study area" 
Section, introduce the 10 severely stricken areas of the Wenchuan earthquake, and the data sources. In "Method" 
Section, introduce the research methods used in this paper, including: KDE, LR algorithm (two-category LR, 
MLR), Model performance evaluation index. In "Results" Section, construct the landslide susceptibility prediction 
model based on KDE-MLR, analyze the influence degree of landslide conditioning factors, evaluate the model 
and discuss the validity of the model. In "Discussion" Section, conclusions are presented. In "Conclusions" Sec-
tion, discussion is presented.

Overview of the study area
This paper conducts a spatial prediction of landslides in the 10 extremely earthquake-stricken areas of the Wen-
chuan earthquake and improves the two types of dependent variables over those used in traditional landslide 
evaluations (1 for landslide occurrences and 0 for landslide non-occurrences). First, the spatial characteristics 
of landslides are analyzed by the KDE method. Second, by taking the spatial characteristics of landslides as the 
dependent variable, using the advantages of the MLR method, and expanding it into three categories, then con-
struct a landslide susceptibility prediction model based on KDE-MLR. Finally, a spatial landslide susceptibility 
map is generated. The research framework, which is shown in Fig. 1 is divided into five steps:

Step 1 Collect landslide geological hazard data in the study area, including the spatial location of landslide 
points, the number of landslides, and related data on seven conditioning factors.
Step 2 Account for factors such as the spatial locations of the landslides, KDE is used to describe the spatial 
characteristics of the landslide in the study area.
Step 3 Use the MLR and take the spatial characteristics of landslides as dependent variables and the condi-
tioning factors as independent variables, then construct a landslide susceptibility prediction model based 
on KDE-MLR.
Step 4 Randomly select 80% of the spatial characteristics of landslides in the study area as training samples 
and 20% as verification samples, then continuously adjust the model parameters and evaluate the effective-
ness and performance of the model.
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Step 5 Compare and analyze the susceptibility maps generated by the Landslide prediction model based on 
two-category LR and the landslide susceptibility prediction model based on KDE-MLR.

Study area.  In 2008, the 5.12 Wenchuan earthquake shook Sichuan, Gansu and Shaanxi provinces. This 
paper studies the 10 extremely earthquake-stricken areas of the Wenchuan earthquake that were announced by 
the Ministry of Land and Resources of China. These 10 extremely earthquake-stricken areas suffered the most 
damage during the earthquake and are all located in Sichuan Province: Wenchuan, Beichuan, Qingchuan, Maox-
ian, Anxian, Mianzhu, Shifang, Dujiangyan, Pingwu and Pengzhou (Fig. 2). The study area covers approximately 
26,000 km2 and has a total population of over 3.5 million. The topography of the region is relatively complex, 
with elevations ranging between 490 and 5600  m, and the average annual precipitation is between 490 and 
1400 mm33. In addition, the terrain in this area is complex, located in the Longmenshan fault zone (one of the 
fault zones with the largest topographic gradient in the world), and there have been many strong earthquakes. By 
investigating the occurrence of geological hazards (e.g., landslides) in the extremely earthquake-stricken areas 

Figure 1.   Methodological flowchart of the study.

Figure 2.   Map of the study area (Names of software: ArcGIS 10.5 and Office 2019).
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of the Wenchuan earthquake, landslides can be found to have increased sharply 2–3 years after the earthquake34. 
Therefore, this paper takes 2010 as an example to analyze the spatial distribution characteristics of landslides in 
the 10 extremely earthquake-stricken areas and establishes a quantitative spatial landslide model to provide a 
reference for hazard monitoring and decision-making to formulate emergency plans.

Data sources.  Data preparation.  In this study, the landslide that occurred in 2010 (2 years after the Wen-
chuan earthquake) was selected as the research object due to the long-term nature of the earthquake and geo-
logical hazards. The spatial location and number of shallow landslides in the study area of this paper were ob-
tained by Landsat-8 30 m resolution remote sensing data interpretation, and grid processing was carried out 
with 60 m*60 m pixels in ArcGIS 10.5 software. According to the results of remote sensing analysis and statistics, 
there were 885 landslide points in the study area in 2010. However, in real life, the occurrence of shallow land-
slides often changes the whole area, which may make the model ignore the change in nonlandslide points in the 
calculation process. This reduces the accuracy of the landslide susceptibility evaluation map due to inconsistency 
with the actual situation. A total of 885 non-landslide points were randomly selected in a 1:1 ratio outside the 
buffer zone, 10 km away from the landslide point to reduce errors caused by this situation. The spatial distribu-
tion of the 885 non-landslide points is shown in Fig. 3.

Conditioning factors of landslides.  The selection of conditioning factors is one of the most important tasks in 
spatial predictive modelling35. Although there is currently no clear guideline for selecting conditioning factors 
when constructing prediction models, the selection of conditioning factors usually depends on the character-
istics of the study area and the scale of the hazard36,37. For this paper, we selected seven landslide conditioning 
factors or independent variables based on the quality and availability of data: terrain information entropy (Ht) 
(Fig. 4a), PGA (Fig. 4b), distance to roads (Fig. 4c), distance to rivers (Fig. 4d), distance to faults (Fig. 4e), NDVI 
(Fig. 4f) and lithology (Fig. 4g). Among them, Ht is a topographic and geomorphic factor, distance to rivers, 
distance to faults, lithology, and NDVI are geological environment factors, and distance to roads and PGA are 
inducing factors.

All conditioning factors were generated using ArcGIS software. The topographic information entropy was 
calculated using 1:35 0000 DEM data30. The distance to the fault was derived from the 1:500,000 regional geo-
logical map38. The distance to the river was obtained from 1:3 million National Hydrogeological Atlas (https://​
www.​osgeo.​cn/​map/​m04dd). Statistical yearbook and historical data were obtained through remote sensing 
interpretation. Lithology data were retrieved from 1:500,000 regional geological map38,39. NDVI was obtained 
from Landsat-7 30-m resolution remote sensing interpretation. PGA data were retrieved from the United States 

Figure 3.   Spatial distribution of landslides (Name of software: ArcGIS 10.5).

https://www.osgeo.cn/map/m04dd
https://www.osgeo.cn/map/m04dd
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Geological Survey (USGS) report. The 7 conditioning factor layers were gridded with 60 × 60 m pixels in ArcGIS 
10.5 software, generating a total of 1,002,7131 grids, which are used as input data for generating the landslide 
susceptibility map, as shown in Fig. 4.

Method
Kernel density estimation (KDE).  In order to deeply reveal the spatial distribution characteristics of 
earthquake and landslide geological hazards, this paper selects the KDE to quantitatively calculate the spatial 
distribution characteristics of landslides, and analyzes the spatial continuous trend of landslides in the hard-
est hit area of the Wenchuan earthquake. KDE is mainly used to estimate the density of point or line features 
around each output raster cell40. Through the two-dimensional greyscale expression or three-dimensional sur-
face expression of the earthquake-induced landslide core density calculation results, the distribution charac-
teristics of the cluster or dispersion of the landslide point groups can be simply and intuitively obtained. The 
two-dimensional kernel density is an extension of the one-dimensional kernel density, and the density value at a 
certain point is estimated by calculating the kernel estimator:

In formula (1), s is the spatial location of an estimated point, n is the number of landslide points within the 
bandwidth, dis is the distance from the ith landslide point to s , and h is the bandwidth. The bandwidth formula 
is as follows:

In formulas (2) and (3), Dm is the median distance from each landslide point to the average centre, N is the 
sum of the landslide points, SD is the standard distance, M is the total number of landslide points, xi and yi are 
the coordinates of the landslide points i and X  and Y  are the average center of the landslide points. K0 is the 
kernel function, and its formula is shown:
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Figure 4.   Conditioning factors of landslides: (a) Ht, (b) PGA, (c) distance to roads; (d) distance to rivers, (e) 
distance to faults, (f) NDVI, and (g) lithology (Names of software: ArcGIS 10.5 and Office 2019).
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LR algorithm.  Two‑category LR.  The two-category LR method is a nonlinear, multivariate statistical meth-
od that is widely used to evaluate landslide susceptibility41–43. The two-category LR model can perform different 
types of independent variable analysis, including analyses of continuous variables and discrete variables. It com-
prehensively evaluates various conditioning factors based on actual landslide point samples and non-landslide 
point samples and can better solve the problem of factor interdependence44,45. The two-category LR method 
does not require the independent variables to conform to the normal distribution and it has no restriction on 
the distribution of the identified variables. It can be used to predict the probability of dependent variables with 
binomial characteristics. When the dependent variable in the two-category LR model is of two types, namely, oc-
currence of a landslide (denoted as 1) and nonoccurrence of a landslide (denoted as 0), the relationship between 
the probability of landslide occurrence and the conditioning factor is shown in the following formula46:

In formulas (5) and (6),  is the two-category LR prediction value representing the probability of landslide 
occurrence and having a value in the range [0, 1], Z represents the sum of the linear weight values after the vari-
ables are superimposed,  is the constant term of the logistic regression, xi represents each conditioning factor 
and  is the two-category LR coefficient of the ith conditioning factor.

MLR.  In practical problems, the dependent variable may have multiple values. When there are more than two 
dependent variable values, MLR analyses need to be used. MLR analysis is a variant of two-category LR and its 
basic concept is essentially the same as that of two-category LR47,48. MLR analysis assumes that dependent vari-
able categories are completely independent. It also takes one of the categories as a reference group and calculates 
a reference group regression coefficient49.

The MLR model can be considered a J-1 two-category LR model of J dependent variables and each independ-
ent dependent variable is compared with the reference group to calculate the advantage of the reference group50. 
Assuming that Y = J is the reference group, the LR model of each category is as follows:

In formula (7), j = 1, . . . J − 1 , αj is the intercept, xi represents each conditioning factor, and βij is the MLR 
coefficient of the No. ith conditioning factor. The MLR model is expressed in the form of probability as follows:

In formulas (8) and (9), Pj represents the probability that the dependent variable is a certain category and 
PJ represents the probability of the reference group. The values of the dependent variable Y in this study are 0, 
1 and 2. Since most of the locations in the 10 extremely earthquake-stricken areas are non-landslide points, the 
dependent variable Y = 0 is set as the reference group.

Model performance evaluation index.  To evaluate the performance of both the two-category LR and 
KDE-MLR landslide susceptibility prediction models, this paper uses an error matrix to evaluate the accuracy of 
each model51, as shown in Table 1. The overall accuracy is principally used to determine the performance of the 
models and is obtained by comparing the predicted model category with the actual category.

In MLR analysis, training sets are used to train the model. When predicting the remaining test datasets, 
the probability of each category is compared by calculating the predicted dependent variable probabilities for 

(5)Z = a0 + a1x1 + a2x2 + · · · + aixi
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Table 1.   Error matrix used for the accuracy assessment. 0, 1, 2 are dependent variables respectively; N1 means 
the actual category is 0, the forecast category is 0, and so on.

Actual category

Forecast category

0 1 2

0 N1 N2 N3

1 N4 N5 N6

2 N7 N8 N9
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different categories and the reference group. The highest category is the result of the final classification50. The 
effectiveness of the model is determined by its overall accuracy rate, which expresses the accuracy of the model. 
The accuracy rate is the ratio of the number of samples that predict the correct classification of the model to the 
total number of samples. The specific formula is as follows:

Results
Calculation results of the spatial characteristics of landslides.  To further understand the spatial 
distribution characteristics of landslides, this paper comprehensively considers the spatial location and number 
of landslides. This paper also uses the KDE formula in Sect. Kernel density estimation (KDE) to calculate the 
spatial characteristics of landslides of the 10 extremely earthquake-stricken areas, as shown in Fig. 5.

Based on the value of spatial distribution characteristics that calculated by KDE, this paper uses the aver-
age value (3.3) as the demarcation point to divide the spatial characteristics of landslides into two levels (High, 
Medium). Thus, the spatial characteristics of landslides of all landslide points is divided into 2 levels, High and 
Medium. In Fig. 5, approximately 62% of the landslide points have high spatial aggregation of landslides. These 
points mainly lie in Wenchuan and Beichuan. The KDE value of 337 landslide disaster points in the entire study 
area is lower than 3.3, the landslide spatial characteristics is moderate, and the distribution in other counties 
(cities) is relatively uniform.

Analysis of the influence degree of factors on landslides.  Analysis of landslide conditioning factors 
based on LR.  In the two-category LR landslide prediction model, this paper randomly selects 80% of the 885 
landslide and non-landslide points (619 landslide points and 619 non-landslide points) as the training set and 
20% (266 landslide points and 266 non-landslide points) as the validation set. Two-category LR is performed 
based on the extracted landslide conditioning factors and training samples, and the regression coefficient of each 
conditioning factor is obtained. As shown in Table 2, the greater the absolute value of the coefficient, the greater 
the impact it has on landslide susceptibility.

Table 2 shows that the absolute value of the PGA regression coefficient is the highest (0.418), which indicates 
that this factor has the largest influence on earthquake-induced landslides. The lithology, distance to rivers and 
Ht also have relatively large impacts on landslides in the study area, with absolute values of their regression coef-
ficients between 0.2 and 0.4. The regression coefficients of the distance to roads, NDVI and distance to faults are 
all less than 0.1, indicating that these three conditioning factors have relatively little correlation with landslides.

(10)
Overall accuracy =

N1+ N5+ N9
9
∑

i=1
Ni

Figure 5.   Calculation results of the spatial characteristics of landslides (Name of software: ArcGIS 10.5).
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Analysis of landslide conditioning factors under KDE‑MLR.  In the landslide susceptibility prediction model 
based on KDE-MLR, the dependent variable (the spacial characteristics the of landslides) is a categorical variable 
and the independent variable (conditioning factor) is a categorical, or continuous, variable in the MLR analysis52. 
MLR uses different criteria in determination of the MLR coefficients of discrete variables and continuous vari-
ables. Therefore, continuous variables were classified in this study and treated as separate variables (Table 3).

The results of the landslide susceptibility prediction model based on KDE-MLR were calculated by SPSS 
Modeler software. The same sample ratio used in the two-category LR landslide prediction model was used to 
divide the dataset. In this study, 80% of the dataset was used as the training set (0: 708 individuals in this set, 
1: 269 individuals in this set, and 2: 439 individuals in this set) and 20% was used as the validation set (0: 177 
individuals in this set, 1: 67 individuals in this set, and 2:110 individuals in this set) (0 represents no landslide 
point). The dataset comprised 3 categories, with Y = 0 as the reference group. Two groups of regression coef-
ficients with different spatial characteristics of landslides levels were obtained. The results are shown in Fig. 6:

(1)	 When the dependent variable is the moderate spatial characteristics of landslides (Y = 1), lithology and 
NDVI have the highest effect on the region, and the two variables were positively correlated. The result 
indicated that the probability of Y = 1 was higher in areas with softer lithology and lower NDVI values 
compared with the reference group. This implies that areas with less vegetation cover and softer strata 
were prone to moderate spatial aggregation of landslides. The regression coefficients of each level of the 
distance to the road, the distance to the fault zone, the distance to the river, PGA, and Ht were all negative 
values. This finding implies that the intermediate level of spatial characteristics of landslides was negatively 
correlated with these factors. These results indicate that shorter distance to the road, shorter the distance 
to the fault zone, and shorter distance to the river are associated with moderated spatial characteristics of 
landslides are more moderate. In addition, the regression coefficients of PGA and Ht fluctuate according 
to the classification.

(2)	 When the dependent variable represents the high spatial characteristics of landslides (Y = 2), the regres-
sion coefficients of NDVI and lithology are basically consistent with the case of Y = 1. In this case, the high 
spatial characteristics of landslides exhibited a high dependence on lithology and NDVI, and the spatial 
characteristics of landslides were positively correlated with lithology and NDVI. The regression coefficient 
value gradually decreased with increase in the distance to faults. However, all coefficients had positive val-
ues, indicating that landslide susceptibility was higher in areas closer to the faults and the influence of this 
factor on Y = 2 was higher than its influence on Y = 0. The regression coefficients of Ht had negative values, 
implying a larger value of Ht was associated with a higher correlation of spatial characteristics of landslides. 
The regression coefficient value of PGA was small, but the change was relatively stable. The regression coef-
ficients of the distance to the road and the distance to the river exhibited distinct correlations according 
to the classification. The absolute value of the regression coefficient was largest when the distance to the 
road was 1–2 km and the distance to the river was less than 1 km. The impact on the landslide disaster was 
largest under these conditions.

The importance of each conditioning factor is obtained by combining the two sets of regression coefficients. 
From Table 4, it can be concluded that the influence on landslide geological hazards from high to low is PGA, 
NDVI, lithology, distance to roads, distance to rivers, distance to faults, and Ht.

Table 2.   Two-category LR coefficient results.

Serial number 1 2 3 4 5 6 7

Conditioning factor Distance to roads PGA Distance to rivers Distance to faults NDVI Ht Lithology

Absolute value of the standardized 
regression coefficient 0.0575 0.418 0.3663 0.008 0.052 0.2611 0.381

Table 3.   Classification of Influential Factors.

Serial number Conditioning factor Grading situation Classification based on

1 Distance to roads Level 1: ≤ 1 km; Level 2: 1 ~ 2 km; Level 3: 2 ~ 5 km; Level 4: 5 ~ 10 km; Level 5: ≥ 10 km 53

2 Distance to faults Level 1: ≤ 2 km; Level 2: 2 ~ 5 km; Level 3: 5 ~ 8 km; Level 4: 8 ~ 15 km; Level 5: ≥ 15 km 54

3 Distance to rivers Level 1: ≤ 1 km; Level 2: 1 ~ 2 km; Level 3: 2 ~ 5 km; Level 4: 5 ~ 10 km; Level 5: ≥ 10 km 55

4 PGA Level 1: < 0.2 g Level 2: 0.2 ~ 0.35 g Level 3: 0.35 ~ 0.5 g Level 4: 0.5 ~ 0.6 g Level 5: > 0.6 g 56

5 NDVI Level 1: 0.0425 ~ 0.5456; Level 2: − 0.0847 ~ 0.0425; Level 3: − 0.2181 ~ − 0.0847; Level 4:-0.4666 ~ − 0.2181; 
Level 5: − 1 ~ − 0.4666 Natural fracture method

6 Ht Level 1: > 0.9720; Level 2: 0.9718 ~ 0.9720; Level 3: 0.9716 ~ 0.9718; Level 4: 0.9712 ~ 0.9716; Level 5: < 0.9712 Natural fracture method

7 Lithology Level 1: hardest (Rb > 60 MPa); Level 2: harder (Rb = 40 ~ 60 MPa); Level 3: softer (Rb = 20 ~ 40 MPa); Level 4: 
weak (Rb < 20 MP a); Level 5: loose (Unstable rock formation)
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Figure 6.   MLR coefficients under the grading of various conditioning factors (Name of software: Office 2019).

Table 4.   The importance of conditioning factors.

Serial number 1 2 3 4 5 6 7

Conditioning factor Distance to roads PGA Distance to rivers Distance to faults NDVI Ht Litholigy

Predictor importance 0.10 0.42 0.10 0.09 0.12 0.05 0.12
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Performance evaluation of landslide prediction model.  The Error matrix in Table 1 is used to cal-
culate the overall accuracy of the KDE-MLR landslide susceptibility prediction model. The results in Table 5 
show that the overall accuracy of the training datasets used to build the model is 71%, the overall accuracy of 
the validation datasets used to verify the model is 70.7%, and the overall accuracy is more than 70%. This dem-
onstrates that the landslide susceptibility prediction model based on KDE-MLR credibly predicts the probability 
distribution of the spatial aggregation of landslides in the study area57. Similarly, the two-category LR landslide 
prediction model was verified. At the same time, the two-category LR landslide prediction model is verified, and 
its overall accuracy rate is about 72%, indicating that the two-category LR landslide disaster prediction model 
is also feasible, because the two models have similar accuracy rates. Therefore, the problem of error caused by 
model accuracy was excluded in the follow-up study.

Comparative analysis of landslide susceptibility.  This paper assigns a corresponding weight value to 
each conditioning factor based on the regression coefficient. Then, by superimposing each conditioning factor 
layer, distribution maps of landslide predictions for both the two-category LR-based landslide prediction model 
(Fig. 7a) and the KDE-MLR model (Fig. 7b) are obtained.

In Table 6 and Fig. 7:

(1)	 In the predicted results of the two models above, more than 50% of landslides occur in areas with high 
landslide susceptibility. In the KDE-MLR model, the area with a landslide susceptibility level of 3 is approxi-
mately 5441 km2. In the three-level landslide susceptibility area, divided by the two-category LR model 
according to the natural segment point method, the area of the high-level susceptibility is approximately 
7104 km2, and the landslide density is significantly lower than the predicted result in the KDE-MLR model. 
Overall, the landslide susceptibility prediction model based on KDE-MLR constructed in this paper can 
effectively highlight the spatial characteristics of landslides in 10 extremely earthquake-stricken study areas.

(2)	 The landslide susceptibility prediction model based on KDE-MLR is used to predict the hazard level areas 
with high spatial characteristics of landslides. According to Fig. 7, it can be seen that most of them are 
distributed in Beichuan and Wenchuan areas. On the whole, with the increase of susceptibility level, the 
regional landslide density has also gradually increased. Generally, as the susceptibility level increases, the 

Table 5.   Accuracy results of the susceptibility prediction model of landslides based on KDE-MLR.

Observed

Predicted

Overall accuracy (%)0 1 2

Training step

0 566 42 100

71.01 116 106 47

2 80 26 333

Validation step

0 132 14 31

70.71 31 26 10

2 12 5 93

Figure 7.   Spatial distribution of the prediction results of landslides in extremely earthquake-stricken areas: 
(a) Landslide prediction distribution map based on the two-category LR-based landslide prediction model; (b) 
Landslide prediction distribution map based on the KDE-MLR model (Names of software: ArcGIS 10.5 and 
Office 2019).
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density of regional landslides also increases. From the statistical analysis shown in Fig. 8, there are a total 
of 552 landslides in Wenchuan and Beichuan, and approximately 71% of those landslides are in areas with 
a predicted landslide susceptibility levels of 2. In Beichuan, approximately 80% of the landslides are located 
in the Y = 2 area, which is more consistent with the spatial distribution of the actual landslide points.

Discussion
This paper takes 10 extremely earthquake-stricken areas of Wenchuan as examples, constructs a spatial quantita-
tive modelling of landslide of earthquake-stricken area which based on the KDE-MLR. This provides a decision-
making basis for the early warning of landslide in earthquake-stricken areas. But it can also be improved from 
the following aspects:

Table 6.   Forecast result statistics chart.

Model Forecast result Number of grids Area (Km2) Area percentage (%) Percentage of landslides (%) Landslide density (10–3)

Landslide prediction model based on 
two-category LR

Low 3,659,903 9640 36.5 9 0.022

Moderate 3,669,930 9666 36.6 33.2 0.08

High 2,697,298 7104 26.9 57.8 0.19

The susceptibility prediction model of 
landslides based on KDE-MLR

0 7,079,154 18,645 70.6 28.8 0.036

1 882,388 2324 8.8 17.6 0.17

2 2,065,589 5441 20.6 53.6 0.229

Figure 8.   Map of Wenchuan and Beichuan with regional statistical results (Names of software: ArcGIS 10.5 and 
Office 2019).
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(1)	 The nonlandslide points in this paper are selected at a certain distance away from the disaster points. 
According to Zuo and Wang58, that the positive training set usually uses known data. However, not all the 
negative points can be treated as true negative samples, which means that selecting of random negative 
training points creates uncertainty. For the spatial prediction model of landslides that is driven by super-
visory data, identifying negative samples will be the focus of research in the future.

(2)	 When predicting landslides, this paper uses the KDE algorithm to describe the spatial characteristics of 
landslides. Kristan et al.59 proposed a new online estimation method of the probability density function 
based on kernel density estimation (KDE). This method maintains and updates the nonparametric model 
of the observed data, and has great advantages over the selection of bandwidth and kernel function in this 
paper. Additionally, the advantages of machine learning methods in the spatial prediction of landslides are 
constantly being shown. Therefore, in future research, this paper will consider to using machine learning 
methods for prediction.

Conclusions
Taking as examples the landslides in the 10 areas extremely earthquake-stricken areas of the Wenchuan earth-
quake in 2010, this paper comprehensively considers the spatial location of landslides and other factors after 
the earthquake and uses the KDE method to quantitatively characterize the spatial characteristics of landslides 
and improve the intensity description of traditional landslides (the "0–1" occurrence assignment method). Next, 
the spatial distribution characteristics of landslides after the earthquake are calculated. Then, taking the spatial 
characteristic of landslides as the dependent variable and each conditioning factor as the independent variable, 
an MLR model is used to establish a quantitative spatial landslide model. After comparing and analyzing the 
traditional two-category LR landslides prediction model, the specific conclusions are as follows:

(1)	 In the landslide susceptibility prediction model based on KDE-MLR, the absolute value of the logistic 
regression coefficient of PGA is the largest (PGA = 0.418), indicating that this conditioning factor has the 
greatest impact on the landslides in the study area. The value of PGA = 0.42 is basically consistent with 
these results. NDVI is also has a high value in the KDE-MLR model, however, in the two-category LR 
model, this conditioning factor has the smallest impact on the prediction results. The predictive variable 
terrain information entropy is the least important in the KDE-MLR model. The four conditioning factors 
of lithology, distance to roads, distance to rivers and distance to faults are basically consistent between the 
two prediction models.

(2)	 The accuracy of the KDE-MLR model when predicting the spatial distribution of landslides in the study 
area is approximately 70.7%, which is similar to the prediction accuracy of the traditional two-category LR 
landslide model. However, the landslide prediction susceptibility maps show that the KDE-MLR model 
susceptibility predictions are more consistent with the spatial distribution of actual landslides. Compared to 
the landslide prediction results obtained from the two-category LR model, the KDE-MLR model highlights 
the spatial characteristics of landslides in the 10 extremely earthquake-stricken areas and more accurately 
expresses the spatial distribution characteristics of landslides. This shows that on the basis of combining 
GIS technology, the KDE-based, MLR method has great advantages for studying the spatial prediction of 
earthquake-induced landslides over the traditional, two-category LR method. Furthermore, it has great 
prospects for promotion and application.

Data availability
The datasets used and analysed during the current study available from the corresponding author on reasonable 
request.
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