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A new entropic quantum 
correlation measure for adversarial 
systems
Biveen Shajilal 1,2*, Elanor Huntington 1, Ping Koy Lam 2,3,4 & Syed Assad 2,3

Quantum correlation often refers to correlations exhibited by two or more local subsystems under 
a suitable measurement. These correlations are beyond the framework of classical statistics and 
the associated classical probability distribution. Quantum entanglement is the most well-known 
of such correlations and plays an important role in quantum information theory. However, there 
exist non-entangled states that still possess quantum correlations which cannot be described by 
classical statistics. One such measure that captures these non-classical correlations is discord. Here 
we introduce a new measure of quantum correlations which we call entropic accord that fits between 
entanglement and discord. It is defined as the optimised minimax mutual information of the outcome 
of the projective measurements between two parties. We show a strict hierarchy exists between 
entanglement, entropic accord and discord for two-qubit states. We study two-qubit states which 
shows the relationship between the three entropic quantities. In addition to revealing a class of 
correlations that are distinct from discord and entanglement, the entropic accord measure can be 
inherently more intuitive in certain contexts.

Bipartite states can have correlations that cannot be described by classical joint probability distributions. To some 
degree, these non-classical correlations can be explained using entanglement and more generally using quantum 
discord. Quantum entanglement plays a significant role in the developmental timeline of quantum mechanics. 
The term entanglement was originally coined by Schrodinger to explain the statistical correlations between 
subsystems of a joint-quantum system1. This ”spooky-action” was explicitly pointed out in the seminal publica-
tion of Einstein, Podolsky, and Rosen, which suggested that under reasonable assumptions quantum theory 
must be incomplete2. This would imply the existence of a global state that cannot be written as a product of the 
individual states. Quantum entanglement is intriguing because it challenges the experience and intuition on how 
the macroscopic world work. Thirty years later, Bell proposed a thought experiment to test the predictions of a 
local hidden variable theory3,4 and quantum theory5. This led to the proposal of the Clauser, Horne, Shimony, 
and Holt (CHSH) inequality which holds if Local Hidden Variable theory is true; whereas it could be violated 
if nature follows the quantum mechanical description6. The simplicity of the experiment led to its immediate 
demonstration by Freedman and Clauser. They experimentally showed the violation of the CHSH inequality, thus 
validating the modern quantum theory7. Aspect et al. and several others followed up with improved experiments 
including the more recent loophole-free demonstrations8–12.

Quantum entanglement is a pivotal resource in quantum information. In most quantum computing protocols, 
the lack of entanglement in the system would mean that the computational tasks could be emulated on classi-
cal platforms13. Entanglement is thus a distinguishing factor between the two computing platforms. A famous 
example is the presence of entanglement between the register qubits in Shor’s algorithm14.

It is tempting to assume that entanglement is the requisite resource that delivers quantum advantage for all 
quantum protocols. This is indeed true for systems with pure states but not necessarily the case for mixed states 
systems. Deterministic Quantum Computation with One Bit (DQC1) is an example of such a mixed-state quan-
tum protocol that does not rely on entanglement15. This algorithm performs some key computational tasks better 
than any known classical equivalent algorithm with a maximally mixed state that has little to no entanglement. 
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These mixed states protocols are closer to experimental conditions that are never ideal. In this context, the role 
of entanglement as a fundamental resource is not directly obvious. This conundrum has sparked new research 
to search for other useful measures to more accurately quantify the requisite quantum correlations for quantum 
information.

Datta et al.16 showed that the states involved in DQC1 exhibited the correlation quantum discord proposed 
by Zurek and Vedral17–19. Discord is the difference between quantum mutual information and classical mutual 
information. Quantum mutual information is identical to classical mutual information when the involved sys-
tems are classically correlated and differs when the systems involved are quantum. Datta et al. showed that the 
non-vanishing discord present was responsible for the quantum advantage16. Quantum discord coincides with 
entanglement for pure states and differs only for mixed states. Eastin et al. followed up Datta’s work by showing 
that mixed state computation with zero discord could be classically simulated20. These findings incentivised 
further study into mixed-state correlations outside the prevalent concept of entanglement. For instance, Modi 
et al. compares measures like dissonance and discord with entanglement in a unified framework of quantum 
and classical correlations21.

Recently a new measure, accord, was proposed by Szasz22 which has the interesting trait of approximately 
lying between discord and entanglement. One motivation for this new measure was to find a correlation measure 
that is stronger than discord but not as strong as entanglement. This would mean the correlation hierarchy can 
be pictorially represented as shown in Fig. 1.

The rudimentary idea behind accord is to measure correlations through a sequence of adversarial actions. This 
is unlike entanglement where the correlations represent cooperative subsystems. In the thought experiment which 
establishes the accord measure, Alice tries her best to perform adversarial measurements against Bob’s effort to 
maximise the mutual information. This is unconventional as we often associate cooperation with correlations. 
The thought experiment proposed by Szasz defines the correlation measure as the optimal measurement coin-
cidence probability (OMCP) when the two parties are involved in a minimax game. In essence, OMCP accord is 
the rescaled probability of Alice correctly guessing Bob’s measurements despite Bob’s efforts to work against it. 
Accord satisfies the most important qualities of a quantum measure of being non-negative and equal to zero for 
classical states. However, Szasz’s measure results in some entangled states having zero accord. Then the desired 
hierarchy shown in Fig. 1 is not necessarily true but one that comes with certain exceptions. Still, the thought 
that there exist correlations that have certain unique characteristics in comparison to the others in the more 
generalised correlation family generates much interest in formulating new quantum resource measures. Quantum 
games in quantum mechanics have been of huge interest, mostly used as a tool to explore the interesting field of 
quantum information. They have been investigated in the context of quantum state estimation and cloning23, for 
developing novel quantum algorithms24 and show potential for further research25. An optical analogue26 of the 
mean king’s problem27,28 shows potential application in quantum communication protocols29. These are indica-
tions of how diversified quantum games can be. Szasz’s take on using an adversarial quantum game to define a 
new correlation is an intriguing direction with potentially interesting implications.

In this paper, we present a new measure of quantum correlations which we call quantum entropic accord (EA) 
which is the mutual information minimaxed over all possible local projective measurements by the two parties 
playing an adversarial game. The measure is inspired by quantum discord which is based on mutual informa-
tion and the interesting game proposed by Szasz. We looked into the possibility of a correlation measure based 
on mutual information of similar characteristics. Optimised mutual information between both parties is now 
positive even for the class of states that initially troubled OMCP accord with zero value while being entangled.

This paper is organised as follows. In “Definition of entropic accord”, we describe the thought experiment 
and introduce EA as a measure. In “Entropic accord: two-qubit systems”, we prove the correlation hierarchy 
for two-qubit systems and evaluate numerically the EA for several classes of states including pure states, Bell-
diagonal states and classical states. The reason behind choosing these specific classes of states is primarily that 
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Entanglement

Figure 1.   Schematic representation of the correlation hierarchy. All entangled states have a finite value of 
accord and all states with accord have a finite value of discord whereas the contrary statements are not true.
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of experimental relevance as well as the availability of well-formulated correlation measures. This enables us to 
readily compare the EA with an entanglement measure and discord. We also look at arbitrary two-qubit states 
for comparing EA with other measures of correlations. Finally, we conclude with a summary and discussions 
in “Discussion”.

Results
Definition of entropic accord.  The thought experiment which defines the new correlation measure 
involves a minimax game between Alice and Bob. One particular example of a minimax game would be chess. In 
a perfect game of chess with Alice making the next move, her best strategy would be to choose a move that max-
imises her chances of winning with the expectation that Bob will respond with a move to minimise her chance 
of winning. In other words, Alice must act in a way anticipating Bob will choose the best move. In the context 
of quantum information, the minimax algorithm can be formalised as follows. Consider Alice (A) and Bob (B) 
spatially separated sharing a joint quantum state ρ . They are capable of performing projective measurements. 
Alice wants to minimize the correlation and Bob wants to maximize it in the following fashion, 

1.	 Alice chooses a projective measurement πA to minimize the mutual information given her knowledge of ρ 
and shares the information of her measurement with Bob.

2.	 Bob chooses a projective measurement πB to maximize the mutual information given his knowledge of Alice’s 
measurement πA and the shared quantum state ρ.

3.	 For the ρ , πA and πB from the previous steps, they do their respective projective measurements and the 
mutual information quantifies the correlation of their measurements.

We define the new correlation measure as:

where I(A; B) is the classical mutual information calculated from the joint probability P(A, B) and the marginal 
probabilities, P(A) and P(B),

Here the minimisation and maximisation are over projective measurements πA and πB . The scheme is pictorially 
represented in Fig. 2,

which provides an intuitive picture of the game where Alice’s intention is to minimise the mutual information 
through her measurements. She starts with the knowledge of what state is shared between her and Bob. However 
Bob’s intention is the opposite, with his knowledge of Alice’s measurement, he tries to maximise the mutual infor-
mation. This degree of correlation arises from their correlated subspaces as a result of the procedure mentioned 
above or the game both parties play. Intuitively, EA is the smallest information Bob can force without knowing 
Alice’s measurement and also the largest information Alice can guarantee if she knows Bob’s measurement.

We first check that EA satisfies the requisites for being a good correlation measure. Brodutch et. al30 proposes 
three conditions for this: 

(1)Entropic Accord = min
πA

max
πB

I(A;B),

(2)I(A;B) =
∑

A

∑

B

P(A,B)log
P(A,B)

P(A)P(B)

EA

Alice
Bob

I(A;B)

*

Figure 2.   Pictorial representation of the game Alice and Bob play to establish entropic accord (EA). Alice 
performs a projective measurement to minimize the information that she would potentially share with Bob. 
With this knowledge, Bob subsequently makes his projective measurement to maximize the mutual information. 
The saddle point of the mutual information quantifies the EA.
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1.	 The measure should be nonnegative.
2.	 The measure is invariant under local unitary transformations.
3.	 The measure is zero for classically correlated states.

In our favour, by definition, EA is invariant under local unitary transformations and since mutual information 
is nonnegative, the first two conditions are met. The final criterion to check is whether this measure is zero for 
classically correlated states. Classical states are characterised by completely diagonal reduced density matrices.

where {|n�} forms an orthogonal basis. Assume Alice measures in a basis that is mutually unbiased to { |m� }. 
Then Bob’s reduced state ρB|A(a = m) does not depend on m which implies IAB = 0 , which means EA is zero 
for classical states.

Entropic accord: two‑qubit systems.  As pointed out earlier, the usefulness of a quantum state as a 
resource for quantum information protocol is typically quantified by the amount of entanglement present. Dis-
cord is beyond the framework of this school of thought as some states with zero entanglement and non-zero 
discord still show benefits in quantum protocols16,31. Discord is the difference between the quantum mutual 
information and the classical mutual information between Alice and Bob where the classical measurements 
occur at Bob’s side32. Computing quantum discord for a general case is an NP-complete problem. However, for 
two-qubit systems, it can be calculated easily and for certain classes of states, such as Bell-diagonal states where 
we can calculate discord analytically. In the following subsections, we will compare EA with entanglement and 
discord in bipartite qubit systems.

Proof of the correlation hierarchy.  As shown earlier EA fulfils the three conditions for being a correlation meas-
ure, however, it is important to look at whether a strict hierarchy holds true for EA unlike in the case of the 
OMCP accord. For a general two-qubit state, we can show that zero discord ⇒ zero EA ⇒ zero entanglement. A 
state has zero discord if and only if it can be written as33,

where {ej} is some orthonormal basis set and pj are non-negative numbers that sums to 1. When Alice chooses 
to measure in a basis that is mutually unbiased to {ej} , then Bob’s reduced state will always be the same. Conse-
quently, the mutual information is zero and therefore EA is zero.

Similarly, a two-qubit state has zero EA if and only if the state ρAB can be written as,

where ρB represents the conditional state of Bob and φB is an arbitrary operator such that ρAB ≥ 0 . This state 
has zero EA because if Alice measures in the computational basis, Bob’s state will always be ρB regardless of 
Alice’s outcome. If a state cannot be written in this form, then Bob’s conditional state will be different and the 
EA will be nonzero. As every density matrix ρAB is positive semidefinite, states of this form have positive partial 
transpose. i.e.,

This is a sufficient condition for two-qubit systems to be separable and consequently leads to zero 
entanglement34,35.

Pure states and the addition of white noise.  In case of pure states, quantum discord reduces to entanglement. As 
we shall show, this is not the case with EA. For pure states, entanglement is quantified using the von Neumann 
entropy of the reduced state of each party. Any bipartite pure state can be brought to Schmidt form by local 
operations36,37,

where θ is the Schmidt angle. In the context of a game that establishes a measure, if the two parties are cooperating 
with each other and decide to measure in the σz basis, the entropy of entanglement of this state would correspond 
to the mutual information between Alice and Bob. The outcomes of these measurements will look like this, 

(3)ρc =
∑

m,n

|m, n�cm,n�m, n|,

(4)ρAB =
∑

j

pj|ej��ej| ⊗ ρB,j ,

(5)
ρAB = 1

2
(|0��0| ⊗ ρB + |0��1| ⊗ φB + |1��0| ⊗ φ

†
B

+ |1��1| ⊗ ρB),

(6)
1

2

[

ρB φB

φ
†
B ρB

]

≥ 0 ⇔ 1

2

[

ρB φ
†
B

φB ρB

]

≥ 0,

(7)ρAB ≥ 0 ⇔ ρ
TA
AB ≥ 0

(8)|�� = |00� cos θ + |11� sin θ ,
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0 1

0 cos
2 θ 0

1 0 sin
2 θ

 The mutual information or entropy of entanglement is given by,

Next, consider the case where the two parties are not cooperating with each other. Suppose Alice chooses 
to measure in the σx basis. She will get the outcomes + or − with equal probability. Bob’s state will then be 
|��B(A = ±) = |0� cos θ ± |1� sin θ . The bipartite state under this setting can be rewritten as,

The optimal strategy for Bob to discriminate her two states is to measure in the σx basis. Doing so, they end up 
with the following outcomes, 

+ −

+ 1

4
(cos θ + sin θ)2 1

4
(cos θ − sin θ)2

− 1

4
(cos θ − sin θ)2 1

4
(cos θ + sin θ)2

The mutual information I(A; B) for this case, as a function of θ , is given by,

The mutual information is calculated and compared with entropy of entanglement. From Fig. 3, it is clear 
that the maximum mutual information between Alice and Bob when they perform disparate measurements 
and cooperative measurements (entropy of entanglement) are different. In case of disparate measurements, the 
blue curve corresponds to a measurement strategy that need not be the optimal strategy for Alice, which cor-
responds to an upper bound to the EA. This result even implies that EA is less than or equal to the entropy of 
entanglement for pure states.

As mentioned earlier, for pure states, quantum discord is a measure of entanglement. However, for mixed 
states, quantum discord can measure correlations beyond entanglement. It is worthwhile looking into how these 
measures compare when noise is introduced as these class of states are much more relevant from an opera-
tional perspective. We compare EA with entanglement of formation which is also an entropy-based measure 

(9)
I(A;B) =S(ρA)

=− sin2 θ log(sin2 θ)− cos2 θ log(cos2 θ)

(10)
|�θ � =|+�A

( |0� cos θ + |1� sin θ√
2

)

B

+

|−�A
( |0� cos θ − |1� sin θ√

2

)

B

.

(11)
I(A;B) = 1

2
log(1+ sin 2θ)+ log(1− sin 2θ)

+ sin 2θ

2

(

log(1+ sin 2θ)− log(1− sin 2θ)

)

.

0 /4 /2
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Figure 3.   Mutual information as a function of the Schmidt angle θ . The red curve represents the entropy of 
entanglement and the blue curve represents the upper bound to EA when Alice choose to measure in the σx 
basis for pure states. For pure states, quantum discord reduces to entanglement.
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of entanglement. EoF is also interesting because of its intuitive meaning which is relevant from an operational 
perspective. EoF represents the asymptotic number of standard singlets that are required to locally prepare a 
state which therefore represents the maximum measure of entanglement in a system. Similarly, discord is an 
entropic measure that has already demonstrated an operational advantage. We compute the EoF for two-qubit 
states ρ with the following equation,

where C(ρ) is the concurrence and h(x) = −x log2 x − (1− x) log2(1− x) . Concurrence is given by,

where �1, �2, �3, �4 are the eigenvalues in decreasing order of the hermitian matrix R =
√√

ρρ̃
√
ρ  with 

ρ̃ = (σy ⊗ σy)ρ
∗(σy ⊗ σy) which is the spin-flipped state of ρ and σy is a Pauli spin matrix38. Discord was calcu-

lated by taking the difference of quantum mutual information and the Holevo quantity J(ρ,πB)18,32 maximised 
over πB,

The Holevo quantity represents the maximum information gained about the system ρ when Bob performs 
projective measurements {πB}39. EA was numerically calculated using Eq. (1) for two-qubit states between Alice 
and Bob. A minimax optimisation was employed by varying the angle of the rotation Alice and Bob implement 
before performing their measurement.

In Fig.  4, each colour represents the set of states of the form ρ = (1− e)(|�θ ���θ |)+ e1/4 , where 
|�θ � = |00� cos θ + |11� sin θ . We can see that as we add white noise (e) into the pure state with a given θ , the 
correlations decrease to eventually become zero. For a given EoF and discord, the numerical results show that 
the Werner states bound the maximum amount of EA a pure state with added white noise can have and the 
lower bound is given by pure states. The results in Fig. 4 give an indication of how the trend varies as the degree 
of noise present in the system changes. We can see that with sufficient noise the EoF goes to zero while EA is 
still finite. This signifies that entanglement is a subset of EA. We also note that both EA and discord only go to 
zero when the state is maximally mixed. An alternative representation of these results is shown in Fig. 5 which 
makes the effect of noise more apparent.

Bell‑diagonal states.  In this subsection, we look at the comparison of EA with entanglement and discord for 
Bell-diagonal states which are an interesting sub-class of two-qubit states. Bell-diagonal states are three-param-
eter sets of states that includes maximally entangled states, separable states and classical states which can be rep-
resented as points in a tetrahedron. The geometry also produces other regions of interest which will be discussed 
further in detail. All two-qubit states can be written as,

Here 1 is the identity operator, σ and τ are the standard Pauli matrices of Alice and Bob respectively. The 
coefficients cij = Tr(ρσi ⊗ τj) forms a real matrix C which is responsible for the correlation of the state (i.e., 

(12)E(ρ) = h

(

1+
√

1− C2(ρ)

2

)

(13)C(ρ) ≡ max(0, �1 − �2 − �3 − �4)

(14)D(ρ) = I(ρ)−max
πB

{J(ρ,πB)}.

(15)ρ = 1

4



1⊗ 1+ �r.�σ ⊗ 1+ 1⊗�s.�τ +
�

ij

cijσi ⊗ τj



.

a) b) c)

Figure 4.   Comparison of EA with entanglement of formation (EoF) and discord for pure states with white 
noise. Each colour represents the group of states which is a mixture of noise and pure state parametrised by the 
Schmidt angle θ . Each line represents how the correlations evolve for the given pure state as we introduce noise. 
From (c) it is evident that discord asymptotes to entanglement for pure states whereas EA does not. EA does not 
asymptote to both the measures for the class of states under comparison. For a given EoF and discord, Werner 
states have the maximum EA. Werner states are states of the form (1− e)|ψ−��ψ−| + e1/4 with ψ− being the 
Bell singlet. Werner states are bipartite quantum states which are invariant under all unitary transformations.
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joint measurements are necessary to estimate them). The parameters �r and �s are local parameters (i.e., only local 
measurements are necessary to calculate these) and they represent the reduced state. For Bell diagonal states, �r 
and �s are zero and the matrix C is diagonal which implies we only need to consider the values cij which constitute 
a vector in a three-dimensional space40. Equation (15) can be rewritten for Bell diagonal states as,

The bell diagonal states can be pictorially represented as a tetrahedron T (Fig. 6) where the coordinates are the 
cj ’s from Eq. (16) with vertices (− 1,−1,−1), (−1,1,1), (1,−1,1) and (1,1,−1). Within the tetrahedron, the separable 
states lie inside the octahedron, |c1| + |c2| + |c3| ≤ 141. This geometric picture has been used previously to study 
how non-classical measures change along one-dimensional trajectories traced out by decohering states41. This 
approach becomes useful in the upcoming analysis.

In addition to the geometrical intuition, these states entail, Bell-diagonal states are also relevant because of 
the fact that any generic two-qubit state can be probabilistically turned into Bell diagonal states by performing 
local operations42,43. These operations are probabilistic and the correlation cannot be increased by these opera-
tions. As a result, any analysis of these class of states would potentially translate to understanding correlations 
in two-qubit states as a whole.

By definition, bell diagonal states are the convex combination of the four bell states ( φ+,φ−,ψ+,ψ− ). Therefore, 
Eq. (16) can be rewritten as,

(16)ρAB = 1

4



1+
3

�

j=1

cjσj ⊗ τj



.

a) b) c)

Figure 5.   Comparison of EA with EoF and discord for pure states with white noise. Each colour represents 
how noise affects the correlation measures for a given pure state parametrised by the Schmidt angle θ . The pink 
colour represents the pure states that are highly entangled (θ → π/4 ) whereas cyan represents states that are not 
highly entangled (θ → 0 ). At all times EA is less than or equal to discord. Whereas EA is only greater than EoF 
when the degree of noise present in the mixture is significant.

Figure 6.   Bell-diagonal state tetrahedron representation. (a) The blue tetrahedron is the entire set of Bell-
diagonal states. The Bell states sit at the vertices of the tetrahedron indicated by the red dot. The yellow 
octahedron is the class of separable states corresponding to the condition 

∑

3

j=1

∣

∣cj
∣

∣ ≤ 1 . The region outside the 
separable states represents the entangled states. (b,c) are the Schematic representation of two slices from the 
Bell-diagonal space. The lines connecting the centre of T and the vertices are maximally entangled states with 
added white noise. In (b), we represent the special case of Werner states (magenta line) where the maximally 
entangled state is the Bell singlet. (c) Represents one of the faces of the tetrahedron. The face represents the rank 
3 states and its edges represent the rank 2 states in the Bell diagonal space. The red line corresponds to the edge 
states, the orange line represents the type I face states and yellow line, the type II face states. The blue shading 
represents the separable region on that face. (d) depicts the dotted pink lines that represent the rank 4 Bell-
diagonal states which are the convex combinations of the maximally entangled Bell state ψ− and face states.
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i.e., the eigenstates are four bell states with eigenvalues p1 , p2 , p3 and p4 . This helps in uniformly sampling 
the entire space of the tetrahedron and systematically looking at distinct groups of states with different ranks. 
Figure 6b,c show two slices of the tetrahedron. By calculating the measures along the different slices of the tetra-
hedron, we will be able to clearly see how these measures behave at the point of transition from the inseparable 
states to separable states (blue shaded region represents the slice of the octahedron on that plane of interest). By 
definition, such separable states will have no entanglement. The positive value of EA even when entanglement is 
zero would imply EA is a measure that does not rely solely on separability as the only criterion for the presence 
of quantum correlations. EA was numerically calculated for all the states shown in Fig. 6. The results of Werner 
states were consistent with the results seen in the previous subsection where Werner states had the maximum 
EA for a given EoF when noise is introduced. In general, these are rank 4 states. From Fig. 7, type I face states 
has the least amount of EA for a given EoF. Also, as expected the rank 3 type II face states have zero EoF and 
finite EA. The rank 2 edge states have the same trend as that of type I face states. In Fig. 7, we see how these 
states compare with each other. The dotted pink lines inside the horn are rank 4 states inside the tetrahedron. 
Each dotted pink line represents how the measure varies along different lines that connect the Bell state vertex 
and the opposite face (depicted in Fig. 6d).

Unlike EA and EoF where the edge states and type I face states have the same value, they have different 
values for discord. The edge states have the maximum EA for a given discord and one of the edges of the lower 
boundary is set by type I states (orange line from Fig. 6c). Also, the area bounded by the horn in the case of EA 
vs discord is larger than the area in the EA-EoF parametric plot which is expected as some separable states in 
the Bell-diagonal space would have a finite value of EA and discord. Fig. 8 represents the variation of the three 

(17)
ρAB = p1|φ+��φ+| + p2|φ−��φ−|

+ p3|ψ+��ψ+| + p4|ψ−��ψ−|

a) b)

Figure 7.   Comparison of EA with EoF and discord for Bell-diagonal states. The dashed pink lines correspond 
to the rank 4 Bell-diagonal states depicted in Fig. 6d.

(a) EoF (b) EA (c) Discord

Figure 8.   Strength of correlations on the plane formed by the convex combination of maximally entangled bell 
states and face states. A is (φ− + ψ+)/2 , B and C are the other Bell states. The states depicted in Fig. 6d are lines 
along one such plane. (a–c) Represent EoF, EA and discord respectively. EoF vanishes in the separable region 
whereas EA and discord are still non-zero for some states in the separable region. The surface plots are also 
indicative of the hierarchy these measures follow. EoF must be zero when EA is zero, and EA must be zero when 
discord is zero.
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correlations on the plane which contain the pink dotted lines from Fig. 6d and Fig. 9 represents two lines along 
this plane where p represents the distance of the point from the vertex ψ− . From Fig. 9a,b, we see the EoF and EA 
decrease gradually as you move through the line which starts from one of the vertices and ends at the opposite 
face. As the point enters the separable region, the EoF goes to zero while EA and discord remain finite. As the 
line exits the separable region, EoF increases again while EA and discord increase however with an exception. 
There is a kink in the red lines in Fig. 9b representing the EA and discord. Past the kink, discord and EoF are 
increasing while EA is decreasing. This not only adds to how EA differs from EoF but also points out how EA 
and discord behave differently, particularly in the separable region. We can also say the three measures vanish 
to zero and gain correlations at a different rate which is consistent with the expectations regarding the hierarchy. 
This is evident from Fig. 8. From this, we expect a state with zero EA to have zero EoF which is indeed the trend 
we see from the results in Fig. 7a. We can see that the states are grouped more towards the EA axis as EoF is 
decreasing. Similarly, we can see EA can be zero even when discord is non-zero.

It is worthwhile pointing out that the results in Fig. 7 do not represent the complete set of states present in 
the Bell-diagonal states. However because of the geometry and how states of similar properties are confined in 
a specific region, the results are indicative of properties of all bell-diagonal states. In addition, we also know 
which group of states bounds the values that make this analysis sufficient, i.e., a larger number of points would 
only fill up the horn rather than showing any trends outside the region shown. This was verified numerically. 
The Bell-diagonal picture significantly helped in understanding how these correlations behave as one translates 
through several points in the tetrahedron T. The geometry and its implications help to compare states of differ-
ent ranks easily.

As pointed out earlier, it is true that an arbitrary two-qubit state can be probabilistically converted to the Bell 
diagonal state. This means that the trends which are evident from Fig. 7 are indicative of a trend that would be 
present for every two-qubit states. To look at how these measures compare among each other, the results from 
Fig. 7 can be extended to the entire two-qubit space by evaluating these measures for randomly generated two-
qubit states which will represent a more generalised comparison. The random arbitrary two-qubit states were 
generated uniformly according to the Haar and Bures measures44. These results are shown in Fig. 10. We could 
see a similar trend to what we saw with the Bell-diagonal states where the points are more grouped towards the 
EA axis for the EA-EoF parametric plot and grouped more towards the discord axis for the EA-discord plot. This 
is expected as a consequence of the hierarchy proven earlier.

Interestingly for the EA-discord comparison, there were no points outside the region formed by the envelope 
of type I Bell-diagonal face states and pure states of the form from Eq. (8) and Bell-diagonal edge states, whereas, 
for the EA-EoF parametric plot, there were few states outside the horn formed by the envelope of these states. 
However numerical calculations showed that there exist no states outside the contour formed by rank 2 states 
of the form ρ(p) = p|ψ+��ψ+| + (1− p)|00��00| . In brief, the lower boundary for the parametric relation of 
EA-EoF would be formed by ρ(p) and for the EA-discord would be jointly formed by the envelope of face states 
and the pure states from Fig. 10b. These results are consistent with the previous trend and indicate no anomalies 
in the proposed hierarchy.

These differences presented with the supporting results from subsections (1), (2) and (3) point out how EA 
quantitatively differs from entanglement and discord when measuring mixed-state correlations. More impor-
tantly, EA also differs from entanglement for pure states (discord measures entanglement in this case).

Discussion
EoF and discord rely on the cooperative nature of the correlated subsystems. EA being a nonclassical correlation 
measure that is based on an adversarial nature, probes a distinct aspect of quantum correlations. In this paper, 
we show direct evidence of how EA does not converge to other measures of entanglement for pure states. This 
property is in clear contrast to discord, which converges to EoF. Because of the stark adversarial roles Alice and 
Bob play, EA is more sensitive to noise compared to discord. The adversarial nature of the correlations is better 
revealed by EA when the states are mixed. The difference between the three analysed measures becomes more 

a) b) c)

Figure 9.   Variation of correlation measures along the lines in the plane shown in (a). p represents the distance 
of the state from the vertex ψ− along the respective lines. The blue shaded region in (a) represents the separable 
region.



10

Vol:.(1234567890)

Scientific Reports |         (2023) 13:1436  | https://doi.org/10.1038/s41598-023-28035-y

www.nature.com/scientificreports/

obvious for mixed states and their hierarchy becomes more evident when the amount of noise increases. EA, 
therefore, offers instead an intuitive understanding of mixed state correlations otherwise not probed, based on 
measurements on the subsystems. However, in this work, we limited the discussion to two-qubit states where 
the subsystems are represented in equal dimensions. It will be interesting to look into the nature of EA when one 
of the subsystems is represented in a larger Hilbert space. Further, EA can be extended to higher-dimensional 
systems and it is intriguing to check whether EA has any operational interpretation as well.
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