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EEG‑based spatio‑temporal 
relation signatures 
for the diagnosis of depression 
and schizophrenia
Oded Shor 1,5*, Amit Yaniv‑Rosenfeld 5,6, Avi Valevski 3,5, Abraham Weizman 1,3,5, 
Andrei Khrennikov 4,7 & Felix Benninger 1,2,5,7

The diagnosis of psychiatric disorders is currently based on a clinical and psychiatric examination 
(intake). Ancillary tests are used minimally or only to exclude other disorders. Here, we demonstrate a 
novel mathematical approach based on the field of p‑adic numbers and using electroencephalograms 
(EEGs) to identify and differentiate patients with schizophrenia and depression from healthy 
controls. This novel approach examines spatio‑temporal relations of single EEG electrode signals 
and characterizes the topological structure of these relations in the individual patient. Our results 
indicate that the relational topological structures, characterized by either the personal universal 
dendrographic hologram (DH) signature (PUDHS) or personal block DH signature (PBDHS), form a 
unique range for each group of patients, with impressive correspondence to the clinical condition. 
This newly developed approach results in an individual patient signature calculated from the spatio‑
temporal relations of EEG electrodes signals and might help the clinician with a new objective tool for 
the diagnosis of a multitude of psychiatric disorders.

Mental disorders are typically diagnosed based on psychiatric interviews with the patients and their families 
and on the patients’ documented medical reports, including neurological  examinations1–3. Since the diagnosis 
is based to a large extent on subjective assessments and possibly thus delaying diagnosis, therapeutic interven-
tions may be inappropriate or ineffective emphasizing the need for an objective biomarker to establish a firm 
diagnosis in an early stage of the disease and to help the development of precision and biological  psychiatry4,5.

Electroencephalography (EEG) is a widely used, inexpensive and well-established technology for assessing 
brain electrophysiology; it is mainly used in the diagnosis of  epilepsy6,7. EEG signature activity such as resting-
state power, spectral and functional connectivity analyses as well as microstate analyses have been suggested as 
possibly relevant in diagnosing  schizophrenia8–11 and major  depression12–16; however, it is not used in clinical 
practice for such purposes as of yet.

We suggest using EEG for diagnosing mental disorders. Our approach follows recent developments in den-
drographic hologram (DH)  theory17–20, which is based on representing systems (physical, biological, cognitive) 
by events generated during discrete periods.

In physics, this approach corresponds to the event-picturing of the  universe21–23. Events are outcomes or 
patterns of outcomes of measurements. Bohr repeatedly highlighted the role of the phenomenon—the event of 
the individual outcome of a measurement, for instance, a dot on the photo-emulsion screen in an interference 
experiment with photons or  electrons24. DH theory is heavily based on the methodology of quantum theory; 
however, the quantum microsystems cannot be used directly. Thus, the outcomes of measurements are obtained 
in a process of complex interactions among systems and measurement devices, for example, interactions between 
photons and  photodetectors25.

To obtain knowledge on a patient’s mental state, the neurologist or psychiatrist uses various observation 
techniques like EEG or MRI, or asks questions, which in this case are considered measurements. In cognitive 
studies, outcomes of mental observations are not intrinsic properties of the human psyche, but rather events 
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(phenomena, according to Bohr) associated with brain  function26. It thus seems reasonable to use the event 
approach from physics for the study of system behaviour, cognition and the human psyche.

We continue Bohr’s work involving a modern interpretation of quantum mechanics for obtaining infor-
mation. According to Bohr, the outcomes of measurements are not the objective properties of systems. They 
quantitatively represent interrelations between a system and an observer (measurement device of the observer, 
e.g., EEG device). The knowledge (or information) obtainable on a system by the observer (may it be quantum, 
classical or biological) is extracted from experiments (collection of data, information). Thus an EEG device will 
interrelate with a patient and obtain knowledge from him in the same manner as subjective assessments based 
on a structured interviews in psychiatry. We adhere also to Wheeler’s  work27 with his “it from bit” program of 
reconstruction of physics and the methodology of information biology, which started with Johnson’s28 charac-
terization of information theory as a general calculus for biology. According to Gatenby and Frieden, life without 
matter and energy is  impossible29. Johnson claimed that life without information is also  impossible28. DH theory 
presents a novel application of the aforementioned ideas by using hierarchic clustering algorithms to represent 
events as trees—dendrograms17,18. For concrete experimental data, trees are finite, but as shown by Shor et al., 
in theory, infinite trees exist as  well17–20. For practical applications, the most useful trees are homogeneous ones, 
where the number of edges for each vertex is identical. A p-adic tree structure is characterized by one incoming 
edge and p outgoing edges for each vertex, where p is a natural number larger than one (p > 1). p-adic trees can 
be imbued with an algebraic structure, including addition, subtraction, multiplication and, for prime p’s, even 
division. The simplest trees are 2-adic ones. We used clustering algorithms to generate such trees. The trees can 
be invested with ultrametric topology, whose distinguishing property is that any two balls are either disjointed 
or one is a sub-ball of the other.

Furthermore, p-adic trees imbued with algebra are known as rings of p-adic  numbers30. They have been widely 
used in areas of physics such as string theory, cosmology, general relativity and quantum  theory31–37. Parisi used 
p-adic numbers in the mathematical formulation of the replica symmetry method that serves as the basis of the 
theory of complex disordered  systems38–41. p-adic trees were also used in  biology42–48, for instance, to model 
information-processing in the brain and conceptualizing human memory  retrieval42. Moreover, Freud’s idea on 
the splitting of cognitive processes into two closely connected domains (consciousness and subconsciousness) 
is modelled based on the p-adic field and shows the process of thinking as a random dynamical  process46.

The transition from theoretical modelling to practical applications is presented in an article by Shor et al.49. 
Here, the clustering algorithms and generated dendrograms thereof were used to represent hierarchic rela-
tions between events that consist of EEG measurements. The novel technique is based on a time series of den-
drograms instead of straightforward use of an EEG-output time series. The medical diagnostic algorithm was 
based on a relatively rough dendrogram analysis known as quantum potential, which is a central concept of 
Bohmian mechanics. We interpreted the data according to Bohm and  Hiley26. It should be noted that quan-
tum probability and information are widely used in the modelling of cognition, decision-making, psychology 
and social  sciences42,50–53 and are known as quantum-like to distinguish them from genuine quantum theory 
of  cognition54,55. Bohr emphasized the possibility to apply quantum methodology in  biology56 and Shor et al. 
described the quantum-like model as a dendrogramic configuration  space20.

We define the fundamental concept of DH theory as the “event”. An event can be any single measurable 
feature of a sample space or a number of such features. Each event is related to every other measurable event in 
the specific sample space. For example, the calcium level in a specific blood test is related to the calcium level 
in a previous blood test.

Using objective tools to classify psychiatric patients is a great challenge. We here present a novel algorithm 
using EEG to differentiate patients suffering from psychiatric disorders (depression and schizophrenia) and 
control participants. By means of a distance metric and a linkage algorithm as described in detail in the methods 
section, relations between events can be represented as tree structures called dendrograms.

We show that patients’ personal DH signatures based on EEG recordings accurately differentiate patients with 
diverse psychiatric disorders. This personal DH signature provides an accurate picture of hierarchic interrela-
tions between events generated by patients’ brains, leading to more precise diagnosis of psychiatric disorders.

Methods
The study adhered to the rules and regulations of the Helsinki Declaration and was approved by the Institutional 
Review Board (IRB) of the Rabin Medical Centre, Petach Tikva, Israel (0275-20-RMC). The study was approved 
as retrospective clinical, and the need for informed consent was waived by the ethics committee. All patient data 
were fully anonymized before review.

Participant groups. Electronic medical health records (EMHR) were used to identify all participants that 
underwent at least one EEG examination between the years 2011 and 2019. The participants were then divided 
into the following groups: control participants undergoing EEG due to indications unrelated to neuropsychiatric 
diseases, participants with a diagnosis of major depressive disorder (MDD) and patients diagnosed with schizo-
phrenia. A total of 166 participants (average age: 52.4 ± 18.7 years; range: 18–91 years; 98 (59.4%) female) were 
included in the study:

(1) Controls: Participants (n = 96; age: 52.2 ± 16.8 years; range: 19–80 years; 63 females) undergoing EEG due 
to indications unrelated to neuropsychiatric diseases. Exclusion criteria for this group included diagnosis 
of depression or schizophrenia, bipolar disorder, substance abuse, psychiatric or general medical conditions 
requiring hospitalization, history of epilepsy or conditions requiring anticonvulsants, ECT, vagal nerve 



3

Vol.:(0123456789)

Scientific Reports |          (2023) 13:776  | https://doi.org/10.1038/s41598-023-28009-0

www.nature.com/scientificreports/

stimulation, or transcranial magnetic stimulation (TMS), history of traumatic brain injury and history or 
imaging findings of cerebrovascular diseases including ischaemic and haemorrhagic stroke.

(2) Depression: Participants with a diagnosis of major depressive disorder (MDD) hospitalized during the 
index time. This diagnosis had been established by two senior psychiatrists according to DSM-IV and 
DSM-V criteria following a psychiatric interview where the severity of depression was found to be at least 
moderate. In addition, the participants (n = 28; age: 69.7 ± 14.8 years; range: 33–91 years; 20 females) had 
to have had at least 1 previous major depressive episode, prior to age 30—namely, the index episode was a 
recurrent one.

(3) Schizophrenia: Diagnosis of schizophrenia had been established by two senior psychiatrists according to the 
ICD-10 criteria. In addition, the participants (n = 42; age: 41.4 ± 16.8 years; range: 18–76 years; 15 females) 
had to be hospitalized during the index time.

EEG data acquisition. The EEG recordings were retrieved from the EMHR of all patients. EEGs had 
been recorded in a routine clinical setting by an experienced EEG technician. All the patients included in the 
study had undergone EEGs between 8 am and 1 pm using a Nihon Kohden surface EEG (19-electrode standard 
according to the international 10–20 electrode placement system) with a sampling frequency of 500 Hz (Nihon 
Kohden, Japan). During the EEGs, patients had been awake in a resting position with open or closed eyes.

To extract the hierarchical relational dendrogram from the patients’ EEG signals, we converted the raw EEG 
data from the 19 active electrodes (elec) into the European Data Format (EDF). Data then was filtered to remove 
the 50-Hz mains signal and further filtered with a high-pass filter of 1 Hz. Data was used without removing 
muscle artefacts or clarifying open or closed eyes state. To assess the possibility that artefacts in the EEG record-
ings might account for group differences, we used artefact removal algorithm as described below. For removal 
of independent components (ICs) of artefacts related to ocular, muscular, cardiac activities, or other movement 
artifacts, we used EEGLAB  toolbox57 and its FASTER  plugin58. In short, the pre-processing procedure involved 
filtering all recordings by a high-pass filter of 1 Hz as well as a notch filter of 50 Hz. This was followed by noisy 
channels and independent components (ICs) of artifacts related to ocular movements, muscle artifacts, cardiac 
activities or other movement artefacts, identification by the Faster algorithm. The identified noisy channels 
were interpolated and artefactual ICs were removed, respectively.Analysis was done using MATLAB software 
(Mathworks, Natick, MA).

Receiver operating characteristic (ROC). ROC analysis is used clinically to quantify how accurately 
medical diagnostic tests (or systems) can discriminate between two states. The ROC curve shows the trade off 
between the true positive fraction (TPF) and false positive fraction (FPF) as one change the criterion for positiv-
ity. The area under the curve (AUC) summarizes the entire location of the ROC curve Thus the AUC is a measure 
of sensitivity, specificity and validity of diagnostic tests. Roc analysis was accomplished with MATLAB software 
(Mathworks, Natick, MA).

Universal dendrogram analysis and calculation of patients’ personal universal DH signatures 
(PUDHSs). For each electrode in a person’s EEG (19 in total), we chose a 1 s window consisting of 500 data 
points (EEG sampling rate of 500 Hz). Each person’s universal dendrogram was constructed by calculating the 
pairwise Euclidean norm distances between all 1-s windows across all 19 electrodes (see an illustration in Fig. 1). 
Then a Ward linkage algorithm was employed, resulting in a single personal universal dendrogram (Duniversal ). 
For each branch of each Duniversal we calculated the sum of its p-adic expansion:

Thus,  Vi is a natural number that represents the relation between eventiand all eventjs where j  = i.
Consider a dendrogram represented by a (finite) 2-adic tree: the root of the vertex indicates the origin of the 

2-adic coordinate system, and each node has one edge going into it and two edges coming out of it. Branches are 
pathways of combined edges that go from the root edge to an edge at the bottom level of the tree. Each branch is 
labeled by a binary string of 0 s and 1 s, composing a natural number that encodes the branch (or a point at its 
bottom level). The set of all branches in the tree is a two-dimensional structure called the dendrogram topology. 
One concrete system of branch-labeling known as the prefix-code, widely used in information theory, is also 
used here. The 2-adic metric is the distance between natural numbers, which is determined by the hierarchic 
structure of the tree. The distance between two branches is determined by their common root-branch: the longer 
the common root-branch, the shorter the distance.

This 2-adic representation uniquely determines a specific branch, say branch i or event i, as well as the 
branch’s/event’s relations to all other branches/events. We label this 2-adic number for branch i/event i as Vi.

It should be kept in mind that we currently analyze the relations between EEG-outputs (events) rather than the 
absolute magnitude of the outputs The relations are expressed by 2-adic numbers, each representing a complex 
context of spatial (locations of 19 electrodes) and temporal dynamics of the state of the brain.

Each patient’s EEG recording is represented as a hierarchic relational dendogram. A time window of 1 s 
was chosen for all analyses. According to the frequency of a sample of each patient’s EEG recording, for each 
of the patient’s 19 electrodes, we prepared 500 vectors of size 1 s × (frequency of sampling), resulting in 500 s 
of recording divided into 19 × 500 vectors. Thus, a matrix of 9500 row vectors was obtained, with each vector 
representing an “event” whose relations to all other vectors were yet unknown. To reveal these relations, first 
pairwise Euclidean distance between all events (9500 × 9499/2 such distances) was calculated. Then the events 

(1)Vi =

k
∑

j=0

aj × 2j where aj = 1, 0
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were linked hierarchically according to their Euclidean distance, resulting in a dendrogramic tree, each branch 
of which represents an event (a vector of size 1 s × (frequency of sampling)).

Figure 1.  From EEG signal via dendrograms to PUDHS values—an illustration. A simple example showing a 
time series of 3 dendrograms (up) from three 1 s widows. Each dendrogram has 19 branches corresponding to 
the 19 electrodes. lower dendrogram was constructed by pairwise distances of 57 segments of EEG data meaning 
(3 windows × 19 segments in each window). PUDHS values are calculated by counting how many branches sum 
of 2-adic expansion is lower than threshold (blue thick horizontal line at the bottom dendrogram).
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As noted above, each branch can be represented by a 2-adic expansion that encodes its relations to all other 
branches (events) and the sum of an event’s 2-adic expansions is a natural number. Thus, 9500 such natural 
numbers, fully representing the dendrogram topology, were obtained for each patient, defining the personal 
universal dendrogram.

To evaluate the topological structure of each patient’s personal dendrogram, a threshold number must be 
defined. The threshold number dissects the universal dendrogram into subsystems as follows (further discussed 
in the results section):

Here, z is a natural number (a pre-chosen free parameter of the model) set to the same value for all patients, 
where personal universal dendrogram is a single dendrogram constructed by all events recorded from a patient. 
Moreover, 2-adic ball of dendrogram branch Vi is defined by log2⌊

(

Vi of dendrogram branch
)

⌋ where

In this approach, Tpersonal universal dendrogram is determined individually for each patient’s dendrogram and var-
ies from patient to patient. Once the threshold was defined, we recorded for each patient the number of branches 
that were smaller than the threshold.

The patient’s personal universal DH signature (PUDHS) is given by the quantity:

To calculate PUDHS , we chose a natural number between 1 and 8 as the value of each patient’s parameter z.

Block dendrogram analysis and calculation of patient’s personal block DH signatures 
(PBDHSs). As the resources (both computational and time) for constructing a large universal dendrogram 
become the limiting factor for dendrograms with more than 100 000 branches, we created a block dendrogram 
DH signature that is much more efficient: we decomposed the previously described dendrogram into a time 
series of blocks of dendrograms. Following, the corresponding number of edges created by 19 electrodes (9500) 
was reduced significantly according to the block size: for each of the 19 electrodes, we chose a window of 1 s 
which consisted of 500 data points. Furthermore, we chose how many windows (which are measured in seconds) 
would be included in the dendrogram (1, 3, 5 or 10). We then created a dendrogram with the corresponding 
number of edges to these 19, 57, 95 or 190 (see an illustration for 1 and 3 windows in Fig. 1). Each such den-
drogram is constructed by pairwise Euclidean norm distances between all the 1-s windows of the 19 electrodes. 
Then, Ward’s linkage algorithm is employed with a single resulting dendrogram with 19, 57, 95 or 190 branches. 
Using this procedure, we analyzed for each patient 500 s in the block dendrograms of each of the various sizes. 
The total amounts to a time series of 500, 167, 100 or 50 dendrograms. For a particular size of dendrogram 
blocks, we obtained the patient’s personal block DH signature, which is defined as:

Di, where i = 1, 2..n and n = number of block dendrograms in the dendrogramic time series (in our calcula-
tions, n = 500, 167, 100, 50).

Each dendrogram consists of:

For each branch, we calculate the sum of its p-adic expansion:

Thus, Vi is a natural number that uniquely represents the relation of  eventi to all other  eventjs.
Following, n vectors of natural numbers Vi each of size m that represent the topology of each dendrogram Di.
For each of the vectors, we set 2 thresholds: Tdendrogram (intra-system threshold) and T1dendrogram (inter-

system threshold), defined as follows.

where the free model parameter z1 was a specific natural number that was identical for all patients. z1 set the 
2-adic ball level lower than that of the dendrogram ball.

The threshold Tdendrogram was determined individually for each patient and for each patient’s dendrograms 
(relational block subsystem).

The 2-adic ball value of each dendrogram was calculated as: ⌊(log2(max Vi of dendrogram))⌋

where the model parameter z2 was a natural number that was identical for all patients.
z2 set the 2-adic ball level lower than that of the maximal ball of all block dendrograms.
The threshold T1dendrogram was determined for each individual patient and varied among patients according 

to the parameters of each patient’s relational block subsystem.
The maximal p-adic ball value of all dendrograms was calculated as

(2)Tpersonal universal dendrogram = 2maximal 2−adic ball of personal dendrogram−z

(3)maximal 2−adic ball of the dendrogram = ⌊log2(max Vi of dendrogram)⌋

(4)PUDHS = number of edges, Vi < Tpersonal universal dendrogram

j = 1, 2..m number of edges(in our calculations,m = 19, 57, 95, 190)

Vi =

k
∑

j=0

aj × 2j where aj = 1, 0

(5)Tdendrogram = 2maximal 2−adic ball of a particular block dendrogram in time series−z1

(6)T1dendrogram = 2maximal 2−adic ball of all block dendrograms in time series−z2
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and the T1dendrogram was set accordingly for all dendrograms.
Each dendrogram in the dendrogramic time series was marked by two numbers, E and E1, with values in 

the range 1–19 × number of windows. E indicated how many branches were smaller than the inter-system 
threshold—Tdendrogram , while E1 indicated how many branches were smaller than the intra-system thresh-
old—T1dendrogram.

For each value n in the range 1–19 × number of windows, we constructed a histogram F with bins centred at 
1,2…n. Each bin included a number that indicated the number of systems dendrograms in the time series whose 
E value was identical to the value of that bin’s centre-point. A similar histogram, F1, was constructed for the E1 
values. For histogram F, we chose randomly a fixed number, h, of bin centres. The chosen bin centres values were 
kept in the vector p with length h. For histogram F1, we again randomly chose the same fixed number, h, of bin 
centres. The chosen bin centres values were kept in the vector p1 with length h.

The patient’s personal block DH signature (PBDHS) was then calculated as follows:

This formulation makes it possible to combine the PBDHS and the two thresholds (inter- and intra-system), 
each of which reveals various features in different p-adic order levels of the block dendrograms, into one sig-
nature score.

To maximize the discrimination levels between groups, we calculated the PBDHS with various z1 and z2 
combinations. For each combination, we randomly chose different p and p1 bins out of the full histograms F and 
F1 and repeated these 1 million times. We thus obtained 64 × 3 million (3 different pairs of groups), and ROC 
AUC values for the differences between pairs of patient groups were calculated using PBDHS values. The sum 
of AUC values of the 3 groups was calculated for each run.

Ethical publication statement. We confirm that we have read the Journal’s position on issues involved in 
ethical publication and affirm that this report is consistent with those guidelines.

Results
Characterization and differentiating of participant groups according to PUDHS. The topologi-
cal structure of a patient’s dendrogram quantified as PUDHS shows high differentiation values for each patient 
group (all data following artefact removal; control: n = 96, 9516.6 ± 1.99; schizophrenia: n = 42; 9360.7 ± 1.62; 
p < 0.001; depression: n = 28; 6922.3 ± 2022.5; p < 0.001), Fig. 2D). The accuracy of the EEG-based PUDHSs in 
differentiating control subjects from patients with schizophrenia and depression is disclosed using receiver oper-
ating characteristic (ROC) curves. Control patients were differentiated highly accurately from patients with 
depression (AUC = 0.9986, p < 0.0001, Fig. 2A) and schizophrenia (AUC = 0.9908, p < 0.0001, Fig. 2B). Likewise, 
patients with schizophrenia showed high differentiation from those with depression (AUC = 0.9973, p < 0.0001, 
Fig. 2C). Artefacts in the EEG caused by eye blinks, muscle activation, or other movement artefacts were removed 
for each patient’s EEG as described in the methods.

To further ascertain that the patient groups themselves are distinct and to validate that the data does not 
contain other unwanted combinations of patients, we used 10 000 random groupings of all patients into three 
groups sized as our patient groups (96, 42 and 28) and calculated ROC of those 10 000 combinations (AUC: 
mean ± 3*STD, 96 & 28 = 0.485 ± 0.166; 96 & 42 = 0.489 ± 0.191; 42 & 28 = 0.501 ± 0.211; Fig. 2E). The separation 
capability of the PUDHS algorithm was kept robust and powerful even when artefacts were not removed (Fig 
S1). The AUC values are shown for control group vs schizophrenia group and schizophrenia group vs. depres-
sion group (control participants: n = 96, 9497.5 ± 2.1908; highly significantly different from participants with 
schizophrenia (n = 42; 8339.3 ± 966.6; p < 0.001) and depression (n = 28; 4139.1 ± 1867.7; p < 0.001), Fig. S1-D; 
control vs. depression: AUC = 0.9972, p < 0.0001 Fig. S1-A;control vs. schizophrenia: AUC = 0.9471, p < 0.0001, 
Fig. S1-B; schizophrenia vs. depression: AUC = 0.988, p < 0.0001, Fig. S1-C).

The impressive segregation between the three groups (patients with schizophrenia, depression, or control 
participants) is independent of the chosen EEG segment. We validated this by moving the 500 s period ana-
lyzed by 200 s. We thus verified that the differences in topology of the dendrograms, which represent relations 
between events, are stable even after changing the EEG segment of our analysis (Fig S2; EEG segment moved 
by 200 s; control: n = 96, 9516.3 ± 2.64; schizophrenia: n = 42; 8220.6 ± 1072.6; p < 0.001; depression: n = 28; 
3622.9 ± 1823.4; p < 0.001, Fig. S2-D; control vs. depression: AUC = 0.9967, p < 0.0001, Fig. S2-A; control vs. 
schizophrenia: AUC = 0.9108, p < 0.0001, Fig. S2-B; schizophrenia vs. depression: AUC = 0.9863, p < 0.0001, 
Fig. S2-C). Changing the overall size of the dendrogram by using smaller dendrograms (fewer events) did not 
change the strength of segregation. Segregation values among the three groups were similar when the event analy-
sis for each patient lasted for only 200 s of EEG recording (Fig S3; EEG segment lengths reduced to 200 s; control: 
n = 96, 3797.9 ± 1.80; schizophrenia: n = 42; 3144.7 ± 605.4; p < 0.001; depression: n = 28; 1553.5 ± 649.9; p < 0.001, 
Fig. S3-D; control vs. depression: AUC = 0.9972, p < 0.0001, Fig. S3-A; control vs. schizophrenia: AUC = 0.9457, 
p < 0.0001, Fig. S3-B; schizophrenia vs. depression: AUC = 0.9568, p < 0 0.0001, Fig. S3-C).

Our results indicate that EEG events show a specific relationship commonly found in controls participants 
but much less so in patients with schizophrenia and still less in patients with depression.

Relationship‑block subsystems. Clinical use of our method might be limited due to constraints of com-
putational resources necessary for calculating dendrograms of the size described here. To tackle this, we dissected  

⌊(log2(max Vi from all dendrograms in the patient time series))⌋

(7)PBDHS = max((F
(

p
)

+ 1) ∗ (F1
(

p1
)

+ 1))/mean((F
(

p
)

+ 1) ∗ (F1
(

p1
)

+ 1))
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the EEG data as used above (500 s segments) into fragments of equal size (1 s, 3 s, 5 s, 10 s). For each sub-seg-
ment, we created a dendrogram accordingly. It is thus possible to construct a time series of smaller dendrograms, 
which significantly reduces the necessary computation power.

The topological structures of each patient’s time series of dendrograms are characterized by PBDHS when 
using two thresholds, Tdendrogram and T1dendrogram , as described in the methods. Assuming that each group of 
patients is characterized by a different sub-system topological structure of dendrograms, the PBDHS will reflect 
these different topological structures as unique for each patient group. Choosing a dendrogram time series with 
different edges (19, 57, 95 or 190), we show a preserved discrimination power of those dendrograms for separat-
ing the patient groups (Fig. 3). Focusing on the dendrogram time series reflecting only spatial (and not temporal) 
features (19 simultaneous recordings from 19 electrodes and a second vector for EEG data), we obtained a high 
discrimination between patient groups (Table 1; Fig. 3A). By adding temporal features to the spatial separation 
of EEG data (57, 95 and 190 edges), separation between PBDHS values increased accordingly, which is reflected 
in the AUC values as well as in the PBDHS cumulative distribution function (CDF; Table 1, Fig. 3B–D). EEG 
artefact removal as described above as well as in the methods part did not change the segregation capability of 
the PBDHS (Fig. S4 and Table 1).

Figure 2.  Accuracy of the EEG based personal universal DH signatures (PUDHSs) in differentiating control 
subjects from patients with schizophrenia and depression with artefact removal. Artefacts in the EEG caused by 
eye blinks, muscle activation, or other movement artefacts were removed for each patient’s EEG as described in 
the methods. Accuracy depicted as receiver operating characteristic (ROC) curves for (A) control vs. depression, 
AUC = 0.9986, p < 0.0001. (B) Control vs. schizophrenia 0.9908, p < 0.0001. (C) Schizophrenia vs. depression 
AUC = 0.9973, p < 0.0001. (D) Scatter plot of PUDHS values obtained from the control, schizophrenia, and 
depression patient groups. each range of PUDHS values belong exclusively to each clinical condition. each 
range of PUDHS values belong exclusively to each clinical condition. The insert shows a zoom-in of all control 
patients PUDHS values for better visuality. (E) Mean ± 3*std of AUC values obtained from ROC curves by 
10,000 random grouping of patients into 3 groups with the size of 96, 42 and 28 respectively.
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Topological and p‑adic meanings of the threshold. The thresholds described have a simple topologi-
cal and p-adical meaning. A threshold (graphically shown as a thick blue line in the characteristics dendrograms 
in Fig. 4) is defined as 2-adic ball value of each dendrogram disconnected subsystems (sub-dendrograms) of the 

Figure 3.  Accuracy of the EEG based personal block DH signatures (PUDHSs) in differentiating control, 
schizophrenia and depression patient groups. Accuracy depicted as receiver operating characteristic (ROC) 
curves for all pairs of clinical groups and CDFs of PBDHS values in each group. Each of the 500 s EEG 
recordings was separated into a time series of block dendrograms (A) 500 dendrogram of 19 edges each, (B) 166 
dendrogram of 57, (C) 100 dendrograms of 95 edges. (D) 50 dendrograms of 190 edges.
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main dendrogram (Fig. 4; thin light blue squares). These subsystems or sub-dendrograms merge at values that 
are lower than the threshold and closer to the root of the main dendrogram. Quantifying events that are lower 
than the threshold provides the number of disconnected subsystems with the same 2-adic ball radius. Thus, the 
PUDHS values indicate that in the control group, significantly more disconnected subsystems exist than e.g. in 
the schizophrenia group. Both control participants and patients with schizophrenia have more disconnected 
subsystems in their dendrograms than the group with depression. The distinct dendrogramic topology of each 
group of patients implies a simple physiological consequence: in the control group each EEG event is p-adically 
more distinct from each other, indicating that each event has its spatial location and temporal order, and serves 
as an autonomous information system that connects in a distinct manner to other spatio-temporal events. The 
information of events in the schizophrenia patients is comparably less segregated and more dispersed and even 
more so in the patients diagnosed with depression.

EEG mean band power. Traditionally, EEG recordings are compared using regular band power methods. 
To compare our results with these classic analysis, we calculated for each band (alpha, beta, gamma, delta) 
the mean power of each electrode of each patient in the same 500 s data. We then calculated by ROC analy-
sis the AUC values for each pair of patient groups at the same electrode (Fig. S5). AUC values of 0.7395 for 
comparing the  8th electrode mean power values between control and depression patients were found. This 
value indicates a lower separation efficacy by regular power spectrum methods. Moreover, the mean powers 

Table 1.  Relationship-block subsystems PUHD values and ROC. PBDHS separation efficacy. PBDHS 
mean ± SD values for each patient group (first 3 columns) in each size of block dendrogram (rows 1–4). ROC 
analysis between pairwise patient groups (columns 4–6) in each size of block dendrogram (rows 1–4). Row 
5 details analysis of EEG recording preprocessed with ICA artifact components rejection: first 3 columns-
PBDHS mean ± SD values for each patient group in block dendrogram size of 190 events. columns 4–6 of Row 
5 details ROC analysis between pairwise patient groups in block dendrogram size of 190 events.

PBDHS (mean ± SD) AUC 

Control Depression Schizophrenia Control vs. depression Control vs. schizophrenia Depression vs. schizophrenia

1 s (19 edges) 5.2962  ± 0.6973 2.0735 ± 0.2864 2.8188 ± 0.6941 0.9989
p < 0.0001

0.9830
p < 0.0001

0.8166
p < 0.0001

3 s (57 edges) 12.2860 ± 2.6594 2.8663 ± 0.3934 3.7547 ± 0.9776 0.9988
p < 0.0001

0.9951
p < 0.0001

0.8216
p < 0.0001

5 s (95 edges) 12.4465 ± 3.2506 2.7894 ± 0.7948 3.5595 ± 0.8084 0.9989
p < 0.0001

0.9989
p < 0.0001

0.8080
p < 0.0001

10 s (190 edges) 14.7254 ± 7.3934 3.3087 ± 0.5599 2.6613 ± 0.7781 0.9965
p < 0.0001

0.9938
p < 0.0001

0.8608
p < 0.0001

10 s (190 edges)
ICA artifacts rejection 
log2(BPDHS values)

16.2775 ± 5.0922 2.9302 ± 0.6714 3.8083 ± 0.8359 0.9981
p < 0.0001

0.9961
p < 0.0001

0.8446
p < 0.0001

Figure 4.  Illustration of dendrogramic topological differences between the control, schizophrenia, and 
depression groups. The max p-adic dendrogramic ball value is indicated by a circled level number on the 
left of each characteristic group dendrogram. The threshold, calculated as indicated (max p-adic ball of the 
dendrogram-Z), is seen as a thick blue horizontal line and creates disconnected subsystems (sub-dendrograms) 
of the main dendrogram. Each sub-dendrogram is encapsulated by a thin light blue square. The number of these 
sub-dendrograms, represent the PUDHS value.
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of each bands in each patient group do not show significant differences (0.5–4 Hz: controls 60.2183 ± 190.7046, 
schizophrenia  46.0907 ± 62.4803, depression  99.0352 ± 355.9049; 4–8  Hz: controls 19.9440 ± 60.5356, schizo-
phrenia  16.8882 ± 21.4367, depression 21.3134 ± 19.3526; 8–12  Hz, controls 18.6043 ± 20.6968, schizophre-
nia 15.6834 ± 12.4902, depression 19.8050 ± 16.0276; 12-30  Hz: controls 15.1538 ± 18.7423, schizophre-
nia 12.0568 ± 13.0867, depression 13.7774 ± 7.3449; 30–100  Hz: controls 30.8726 ± 52.5951, schizophrenia 
74.3426 ± 159.5121, depression 36.9532 ± 82.5962).

Discussion
The novel DH theory utilizes dendrogram representation of data as p-adic numbers to demonstrate the integra-
tion of the holistic brain function embodied in EEG signals with inert hierarchy of the brain signals. Namely, by 
extracting characteristic information patterns from dendrograms expressing the hierarchical treelike structure 
of information processing in the brain, encoded by p-adic numbers, we successfully differentiate and categorize 
the neuropsychiatric disorders depression and schizophrenia. Furthermore, AUCs showed high values, indicat-
ing high accuracy of differentiating patients with schizophrenia and depression from controls. This approach 
shows that the individual signatures described in the Results and Methods sections are useful for identifying 
those neuropsychiatric disorders.

Thus, it seems that during information processing, healthy brain functioning is characterized by significantly 
higher degrees of hierarchical interconnection, with high segregation of information across space and time 
compared to patients with schizophrenia or depression. The last statement, however, should be viewed with great 
caution, since EEG signals provide only a rough estimation of brain functioning.

The search for biomarkers that assist in diagnosing brain disorders has so far focused primarily on either 
biological samples, including serum or cerebrospinal fluid (CSF), or neuroimaging techniques, including mag-
netic resonance imaging (MRI) or functional MRI (fMRI). These methods are either invasive or expensive, and 
none has yielded an accurate biomarker for diagnosis of heterogeneous disorders such as major depression or 
 schizophrenia59–62. Several EEG data analysis techniques have been used in recent studies in attempts to diagnose 
psychiatric disorders like  schizophrenia8–11 and  depression12–16. A machine-learning algorithm approach with 
promising results has been developed by Wu et al., who used resting-state EEGs to predict treatment responses 
in major  depression63. Most studies use EEGs within a special research environment involving standardized 
situations, separate open and closed eye conditions, and artefact reduction. The clinical applicability of these 
methods for screening, diagnosis, and prediction of response to treatment is rather difficult and so we opted to 
use real-world EEG data. This enhances the generalizability but increases the risk that features of the clinical 
EEG recording environment might impact results. Recently, progress was made to accurately classify healthy 
subjects and patients with depression and schizophrenia by automated geometrical feature extraction of EEG 
 signals64–74. The accuracy of these methods to separate these groups is non-inferior to our presented method, 
although their algorithm uses multiple feature extractions and thus the physiological interpretation is difficult. 
Contrary to this, we postulate an inherent distinction between information produced in the brain, both in a 
spatial and temporal fashion, in a disease dependent manner. We found a concrete and mathematically coherent 
method relying only on one feature namely the spatio-temporal connections of information signals of the brain.

It should be noted that the current authors initiated their study of hierarchical/p-adic representation of 
brain signals in a previous study that was recently  published49. That study showed promising evidence of the 
power of hierarchical and topological features of dendrograms, quantified by the p-adic quantum potential, in 
discriminating among multiple neuropsychiatric disorders including depression, schizophrenia and cognitive 
decline. The method used previously relied on machine learning and quantified different topological features of 
dendrograms. A patient’s dendrogramic signature as described here provides a more refined characterization 
of mental state than of quantum potential. The relatively rough characterization of the relational hierarchy in 
information representation of the brain is a powerful enough mechanism for the quantification of cognition and 
diagnosis of mental disorders. Moreover, the new dendrogramic signature provides a unique range of values for 
each psychiatric disorder and mental state.

Further investigation is needed to study the combination of features quantified in the present study and 
expressed as patients’ dendrogramic signatures, alongside the quantum potential measure. Such comparative 
medical diagnostic studies may impact basic studies of cognition using PUDHS as a quantitative measure of 
cognitive processes. Moreover, further optimization of the threshold parameters is needed, especially consid-
ering the obvious expectation of applying this method to the diagnosis of other psychiatric, neurological and 
neurodegenerative disorders and to monitoring the response to treatment and progression of these disorders.

Data availability
The datasets generated and/or analysed during the current study are available in the DRYAD repository, https:// 
datad ryad. org/ stash/ share/ AWmC0- Afzx2 9cOkY DXQ6y2- 7HF4G BvG-J- 9i8hD QZsw.
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