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Identification and validation 
of BCL6 and VEGFA as biomarkers 
and ageing patterns correlating 
with immune infiltrates in OA 
progression
Ziyi Chen 1,2, Wenjuan Wang 1,2 & Yinghui Hua 1*

Osteoarthritis (OA), the most common type of arthritis, is a complex biological response caused by 
cartilage wear and synovial inflammation that links biomechanics and inflammation. The progression 
of OA correlates with a rise in the number of senescent cells in multiple joint tissues. However, the 
mechanisms by which senescent cells and their involvement with immune infiltration promote 
OA progression are not fully understood. The gene expression profiles and clinical information of 
OA and healthy control synovial tissue samples were retrieved from the Gene Expression Omnibus 
database, and then differential analysis of senescence regulators between OA and normal samples 
was performed. The random forest (RF) was used to screen candidate senescence regulators to predict 
the occurrence of OA. The reverse transcription quantitative real-time PCR experiments at tissue’s 
level was performed to confirm these biomarkers. Moreover, two distinct senescence patterns were 
identified and systematic correlation between these senescence patterns and immune cell infiltration 
was analyzed. The senescence score and senescence gene clusters were constructed to quantify 
senescence patterns together with immune infiltration of individual OA patient. 73 senescence 
differentially expressed genes were identified between OA patients and normal controls. The RF 
method was utilized to build an OA risk model based on two senescence related genes: BCL6 and 
VEGFA. Next, two distinct aging patterns were determined in OA synovial samples. Most patients 
from senescence cluster A were further classified into gene cluster B and high senescence score group 
correlated with a non-inflamed phenotype, whereas senescence cluster B were classified into gene 
cluster A and low senescence score group correlated with an inflamed phenotype. Our study revealed 
that senescence played an important role in in OA synovial inflammation. Evaluating the senescence 
patterns of individuals with OA will contribute to enhancing our cognition of immune infiltration 
characterization, providing novel diagnostic and prognostic biomarkers, and guiding more effective 
immunotherapy strategies.

Osteoarthritis (OA) is a common degenerative disease leading to pain, joint destruction and disability with senior 
citizens most  involved1,2. With an ageing population, it exerts a tremendous pressure on health-care systems and 
socioeconomic  cost2,3. Joint replacement surgery is effective when OA advancing into end stage, although with 
a mass of limitations such as the difficulty of postoperative recovery and lifespan of  prostheses1,4,5. Therefore, it 
is better to make early intervention, however, traditional early proactive management of OA consisting of pain 
medication could not prevent OA progresses into end  stage1. Additionally, due to the heterogeneity of OA clini-
cal manifestations, validated early-stage diagnostic criteria are also  unavailable1. Therefore, an effective model 
to predict the risk of OA is demanded.

Research into the pathophysiology of OA has focused on cartilage and peri-articular bone. However, there 
is increasing recognition that OA affects all joint tissues, particularly the  synovium6. Synovial inflammation is 
present in the OA joint and has been associated with radiographic changes and pain  progression7,8. Several OA 
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risk factors, including aging, obesity, trauma, and mechanical loading play a role in OA pathogenesis, likely by 
modifying synovial  biology7. In addition, other factors, such as mitochondrial dysfunction, damage-associated 
molecular patterns, cytokines, metabolites, and crystals in the synovium activate synovial cells and mediate joint 
 inflammation7. Therefore, a deeper understanding of the synovial molecular mechanisms associated with the 
occurrence and progression of OA is of great significance for developing early diagnostics and treatments for  OA9.

It is well accepted that aging is an important contributing factor in the development of  OA10. A rise in the 
number of senescent cells in joint tissues and the release of senescence-associated secretory phenotype (SASP) 
in cartilage degradation has been implicated in  OA11. In joint tissue cells, age-related mitochondrial dysfunction 
and associated oxidative stress might induce  senescence11. It may include an age-related pro-inflammatory state 
that has been termed as “inflamm-ageing”10.However, the mechanisms by which senescent cells contribute to 
OA progression are not fully understood and it remains uncertain which joint cells and SASP-factors contribute 
to the OA  phenotype11.

Molecular classification of OA which is popular nowadays allows for the prediction of high-risk OA individ-
ual, the diagnosis of early OA, and the assessment of individual-based  therapy12,13. Single cell RNA sequencing of 
OA synovial tissues also revealed distinct cell subtypes with different dominant  function14,15. Nonetheless, study 
analyzing classification of distinct senescence clusters and analyzing its connection with immune infiltration was 
missing up to now. A better understanding of which senescence pattern individuals are and their association 
with inflammation may be critical in individual-based diagnosis, treatment, prognosis.

Here, in our study, we used gene expression profiling data of 182 senescence related genes for 74 tissues in the 
Gene Expression Omnibus (GEO) database to obtain the original data information. Two candidate senescence 
regulators (BCL6 and VEGFA) were selected to predict the risk of OA using RF model. We revealed two distinct 
senescence expression patterns and their correlation with immune infiltration in OA synovial tissues, and con-
structed a senescence scoring system in clinical cohorts with large-scaled expression. Our scoring system may 
work as an excellent tool for treatment response and prognosis in OA patients.

Materials and methods
Data access and preprocessing. Gene expression matrix and its clinical information were downloaded 
from the GEO (http:// www. ncbi. nlm. nih. gov/ geo/) database. A total of 74 synovial samples were included from 
the GSE1919, GSE41038, GSE55235, GSE82107 and GSE55457 datasets, with 38 cases of OA patients and 36 
healthy controls. To adjust the microarray, we employed the SVA method to merge the GSE1919, GSE41038, 
GSE55235, GSE82107 and GSE55457  datasets16. Also, 279 cell senescence regulator genes were obtained from the 
CellAge database (https:// genom ics. senes cence. info/ cells/)17. Finally, 182 senescence regulators were extracted 
to identify different senescence patterns in our study.

Identification of differentially expressed genes (DEGs) between OA and normal. Senescence 
related DEGs between OA and normal were screened out using the “limma” package with the criterion setting 
as P < 0.05 and |log fold change (FC)|>  118,19.

The feature genes were screened based on the RF analysis. To predict the occurrence of OA, we 
constructed a training model adopting both support vector machine (SVM) and RF methods. Boxplots of resid-
uals, reverse cumulative distribution of residuals and receiver operating characteristic (ROC) curve was used 
to compare the accuracy of the two models. The RF method was then selected to screen differentially express 
RNA modification regulators using the R library ‘randomForest’ with ‘mtry’ and ‘ntree’ setting to 3 and 500, 
 respectively20. The optimal ‘ntree’ was chosen according to minimum cross-validation error in tenfold cross-
validation and the significance of differentially-expressed RNA modification regulators with the optimal ntree 
were assessed. We then constructed a nomogram using the ‘rms’  package21,22. Calibration curves were used to 
evaluate the consistency between the observed and predicted values. Finally, we performed clinical impact curve 
and decision curve analyses to evaluate the clinical benefits of our model. A binary logistic regression test was 
conducted to evaluate the model using SPSS (version 23).

Identification of senescence clusters. Senescence patterns were identified based on senescence DEGs 
using the “ConsensusClusterPlus” R package was  used23. The principal component analysis (PCA) was con-
ducted to correlate the principal component with senescence  clusters24.

Single-sample gene-set enrichment analysis (ssGSEA). The relative infiltration levels of 23 immune 
cells in the GSE1919, GSE41038, GSE55235, GSE82107 and GSE55457 dataset were quantified using the ssGSEA 
 algorithm25. Spearman correlations were calculated for 23 immune infiltrating cells with 73 senescence regula-
tors, followed by visualization using the ‘ggplot2’  package26.

Functional enrichment analysis. DEGs between senescence clusters were screened using the “limma” 
 package19. Meanwhile, GO enrichment analyses (www. geneo ntolo gy. org/) and KEGG pathway (http:// www. 
kegg. jp/ kegg/ kegg1. html) were performed using the R package, including “clusterProfiler”, “org.Hs.eg.db”, 
“enrichplot”, “ggplot2”, “RColorBrewer”, “dplyr”, and “ComplexHeatmap”26–34. The P value < 0.05 was considered 
significantly enriched.

Identification of senescence gene clusters. We first extracted the DEGs from the two senescence clus-
ters and performed consensus clustering to generate gene clusters using the “ConsensusClusterPlus” R  package23.

http://www.ncbi.nlm.nih.gov/geo/
https://genomics.senescence.info/cells/)
http://www.geneontology.org/
http://www.kegg.jp/kegg/kegg1.html
http://www.kegg.jp/kegg/kegg1.html
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Senescence score construction. We then constructed a scoring system to describe the senescence regu-
lator expression pattern for individuals based on DEGs between OA and normal using  PCA24. Principal compo-
nent 1 was used for score calculation.

where i is the expression of senescence phenotype-related genes.

Correlation between senescence gene signature and inflammation. The association between 
senescence clusters, gene clusters, senescence scores and immune filtration were analyzed. The abundance of 
23 immune cells in the two senescence gene clusters was assessed using ssGSEA method. Gene expression of 
Mitogen-activated protein kinases (MAPK) pathway were compared in the two senescence and gene clusters.

Sample collection. Synovial tissue from 3 patient of meniscus injury and 3 of OA were collected from 
Huashan hospital. All patients critically read and signed the informed consent form (KY2020-060) which as 
approved by the ethics committee of Huashan Hospital. The research followed the guidelines of the 1975 Dec-
laration of Helsinki.

Reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The total synovial tis-
sue RNA was extracted using Trizol (Servicebio) and then total RNA was reverse transcribed to complementary 
DNA (cDNA) using Servicebio®RT Enzyme Mix. The qRT-PCR was performed using the 2 × SYBR Green qPCR 
Master Mix (None ROX) (Servicebio). The primer sequence of genes used in our study was listed in Table S1. 
Genes were normalized to GAPDH. Relative levels of mRNA were expressed as fold-changes as calculated by the 
 2–ΔΔCT method. Each biological sample was technically performed in triplicate.

Statistical analysis. All statistical analyses in our study were performed with R software, version 4.1.1. The 
Wilcoxon test was performed for groups comparisons, and P < 0.05 was defined as a significant difference. No 
multivariable analysis was conducted in our study to adjust the P value of each of the DEGs.

Results
Analysis of expression characteristics of senescence regulators in OA synovial tissues. A total 
of 73 senescence regulators were finally identified in this study. The differences in senescence gene expression 
between groups were visualized in heatmap (Fig. 1A). The location of senescence related genes in chromosome 
was shown in Fig. 1B.

Construction of the OA predictive model using the SVM and RF methods. The prediction perfor-
mance between the SVM and RF methods were compared. “Boxplots of residual” (Fig. 2A), “reverse cumulative 
distribution of residual” (Fig. 2B), and a ROC curve (Fig. 2C) vealed that RF exhibited significantly high predic-
tive capability. According to the minimum cross-validation error in tenfold cross-validation, the best ‘ntree’ was 
selected (Fig. 2D). In total, we identified 30 senescence regulators and ranked them according to their impor-
tance (Fig. 2E). The calibration curves, clinical impact plots and decision curve analysis (DCA) showed that the 
nomogram model may be an ideal predictive model for OA (Fig. 2G,H,I). The nomogram evaluation model was 
constructed based on two senescence regulators (BCL6 and VEGFA) to predict the probability of OA (Fig. 2F). 
PCR results found that the mRNA levels of BCL6 (P < 0.001) and VEGFA (P < 0.05) were higher in normal tissue 
compared to OA which was consistent with the bioinformatics tools (Fig. 1C). The binary logistic regression 
analysis demonstrated that the model was a good fit, and the significance of Hosmer-lemeshaw test was 0.553 
(> 0.05).

Identification of two distinct senescence clusters. Two senescence clusters were identified (senes-
cence cluster A and B) based on 73 senescence DEGs between OA and normal synovial samples using consensus 
clustering (Fig. 3A–D). The boxplot and heatmap demonstrated the 73 senescence genes’ expression in the two 
distinct ageing groups (Fig. 3E, F). PCA was applied to verify the two distinct ageing clusters divided by consen-
sus clustering of the 73 senescence regulators (Fig. 3G).

Immune cell infiltration analysis in the two senescence phenotypes. A more significant infiltra-
tion was found in activated CD4+ T cell (P < 0.05), eosinophil (P < 0.05), natural killer (NK) T cell (P < 0.05) and 
type 2 T helper cell (P < 0.01) (Fig. 4A,B). PTTG1, HK3 and SMARCA4 were positively related to immune cell 
infiltration, while SIX1, VEGFA, TBX2, PIM1 and STAT5B were negatively connected (Fig. 4C–J).

Function enrichment analyses of senescence types. GO annotation and KEGG pathway analyses 
were conducted on DEGs between the two senescence clusters. The biological process (BP) of GO term result 
emphasized multi-organism reproductive process, multi-multicellular organism process, response to lipopoly-
saccharide, response to molecule of bacterial origin, response to extracellular stimulus, response to glucocorti-
coid, response to corticosteroid, female pregnancy, fat cell differentiation, skeletal muscle cell differentiation; for 
the molecular function (MF) of GO term, DEGs were significantly enriched in transcription regulator complex, 
RNA polymerase II transcription regulator complex, neuronal cell body, nuclear outer membrane, cytoplasmic 
side of plasma membrane, cytoplasmic side of membrane, organelle outer membrane, outer membrane, cyto-

m6A score =

∑
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plasmic ribonucleoprotein granule and postsynaptic endosome; the cellular components (CC) terms highlighted 
that DEGs were mainly concentrated on DNA-binding transcription activator activity, RNA polymeraseII-spe-
cific DNA-binding transcription activator activity, cytokine receptor binding, G-protein alpha-subunit binding, 
C–C chemokine binding, chemokine binding, peroxidase activity, oxidoreductase activity acting on peroxide as 
acceptor, chemokine receptor binding and antioxidant activity (Fig. 4K). The KEGG result manifested that DEGs 
were found to be mostly related to IL-17 signaling pathway, TNF signaling pathway oxytocin signaling pathway, 
rheumatoid arthritis, NF-kappa B signaling pathway, FOXO signaling pathway and so on (Fig. 4L).

Generation of two senescence gene clusters and construction of senescence score. To fur-
ther investigate senescence expression patterns, we generated gene clusters and constructed a scoring system. 
Consensus clustering results based on DEGs in the two senescence groups classified the patients into two gene 

Figure 1.  Identification of differentially expressed senescence genes in OA. (A) Heatmap showing the 
significantly different expression of senescence regulator genes in OA and normal synovial tissues. (B) The 
location of these genes on the chromosome. (C) The relative expression of mRNA in the normal and OA group. 
(All figures *represents p < 0.05, **represents p < 0.01, ***represents p < 0.001) OA, osteoarthritis.
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clusters (gene cluster A and gene cluster B) (Fig. 5A–D). The heatmap showing that DEGs between gene cluster 
A and B is demonstrated in Fig. 5E.

We then constructed the senescence score using PCA based on DEGs between OA and normal. Next, we 
found that senescence score correlated with senescence (P = 0.032) and gene clusters (P = 0.011) (Fig. 6A,B); 
senescence cluster A and gene cluster B had higher senescence scores. Changes in individual patients among 
the GSE1919, GSE41038, GSE55235, GSE82107 and GSE55457 dataset were visualized in an alluvial diagram 
(Fig. 6C).

Figure 2.  Construction of OA risk predictive model using the SVM and RF methods. Boxplot of the residual 
distribution (A) and reverse cumulative distribution of residual (B) as a function of the values and ROC curves 
(C) showing the observed sensitivity between RF and SVM. (D) RF: prediction error curves based on tenfold 
cross-validation. (E) The importance of the 30 senescence regulators based on the RF model. (F) Nomogram 
graph of the predictive model based on two m6A regulators. The calibration curves (G), clinical impact plot (H) 
and DCA (I) were used to determine the clinical utility of risk prediction nomograms. SVM, support vector 
machine; RF, random forest; OA, osteoarthritis; ROC, receiver operating characteristic; DCA, decision curve 
analysis.
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Immune infiltration of senescence gene signatures. Figure 5F showed that activated B cell (P < 0.05), 
eosinophil (P < 0.01) and type 2 T helper cell (P < 0.001) infiltrated in gene cluster A more densely. Then we 
analyzed gene expression of MAPK pathway which is most related to inflammation in OA. Figure 6D displayed 
that MAP3K8 (P < 0.01), PELA (P < 0.05), JUN (P < 0.001), MYC (P < 0.001) and FOS (P < 0.001) in senescence 
cluster B. Figure 6E displayed that MAP3K8 (P < 0.05), MAP2K7 (P < 0.05) CHUK (P < 0.05), JUN (P < 0.001), 
MYC (P < 0.001) and FOS (P < 0.001) in gene cluster A.

Figure 3.  Identification of two senescence clusters. (A–D) Clustering of OA synovial samples based on 
senescence regulators. (E) Bloxplot showing the gene expression of senescence regulators. (F) Heatmap 
demonstrating the DEGs of the two senescence clusters. (G) PCA was used to verify the two senescence 
clusters. (All figures *represents p < 0.05, **represents p < 0.01, ***represents p < 0.001) OA, osteoarthritis; DEGs, 
differentially expressed genes; PCA, principal component analysis.
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Figure 4.  Immune cell infiltration and function enrichment analyses. (A) Heatmap showing the correlation 
between the expression of the 73 senescence regulators and immune cells infiltration using the ssGSEA method. 
(B) Boxplot showing the infiltrating immune cells in the two senescence clusters. (C–J) Correlation between key 
genes (SIX1, PTTG1, VEGFA, TBX2, PIM1, STAT5B, HK3 and SMARCA4) and immune cell infiltration. (K) 
The bubble diagram showing the top 10 terms of GO categories of BP, MF and CC. (L) Barplot diagram showing 
the KEGG enrichment analysis. (All figures *represents p < 0.05, **represents p < 0.01, ***represents p < 0.001) 
ssGSEA, single-sample gene-set enrichment analysis; GO, gene ontology; KEGG, Kyoto Encyclopedia of Gene 
and Genome; BP, biological process; MF, molecular function; CC, cellular component.
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Discussions
OA is the most common joint disorder which involves biomechanics, inflammation, and complex biological 
responses of the immune  system35. Although risk factors such as joint injury, obesity and genetics have all been 
linked to OA, the most prevalent risk factor is  age36. There were several studies that suggested that underly-
ing age-related changes could increase systemic and local inflammation and contribute to the development of 
 osteoarthritis10. Local changes within the joint have been associated with increased production of inflammatory 
mediators and the secretion of the  SASP10. However, researches about distinct senescence phenotypes of OA and 
their correlation with immune response is still blank in this field. In this study, we systematically investigated 
the senescence patterns in the OA immune microenvironment of synovial tissues.

Firstly, we observed a significant difference in the expression of 73 senescence regulator factors between syno-
vial samples of OA patients and normal controls. Consistent results were obtained via RT-qPCR, which validated 
our findings. These results indicated that senescence regulators may be used as predictors of OA and involved in 
OA development. Based on the review of relevant literature, we found that nomograms are commonly used to 
predict OA occurrence and  progression37,38. Similarly, we established a senescence nomogram for predicting the 
risk of OA from the perspective of cell senescence. This reaffirmed the important role of senescence regulatory 
factors in OA. Different scores were assigned to factors such as BCL6 and VEGFA. The total score was obtained 
by adding the scores of each factor. The total score was less than 35, the probability of OA was less than 0.1, and 
probability of OA was greater than 0.9 if the total score was greater than 75.

Moreover, we investigated the association between senescence regulatory factors and the immune properties 
of OA, including the gene set for immune cell infiltration and immune response. Unsupervised clustering of OA 
samples using senescence regulator expression profiles led to two subtypes with distinctive senescence patterns. 
Furthermore, the DEGs from 2 senescence clusters were further used to classify gene clusters by consensus clus-
tering and 73 senescence DEGs was used to generate senescence scores for every patient by PCA. Most patients 
from senescence cluster B were further classified into gene cluster A and low m6A score group; whereas patients 
from m6A cluster A were classified into gene cluster B and high m6A score group. Our results also indicated 
that immune cells infiltrated more in senescence cluster B and gene cluster A, and gene expression of MAPK 
pathway which is the mostly related inflammation mechanism in OA were higher in senescence cluster B and 
gene cluster  A39. Considering that each subtype has its immune characteristics, we believe that classification 

Figure 5.  Clarification of two senescence gene clusters. (A–D) Clustering of OA synovial samples based 
on DEGs of the two senescence clusters. (E) Heatmap showing expression of DEGs in the two gene clusters. 
(F) Immune cell infiltration in the two gene clusters. (All figures *represents p < 0.05, **represents p < 0.01, 
***represents p < 0.001) OA, osteoarthritis; DEGs, differentially expressed genes.
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based on immunophenotypes of different senescence modulators is feasible and will help in comprehensively 
understanding the mechanisms of immune regulation.

Notably, BCL6 and VEGFA were upregulated in OA tissues. Follicular helper T cells which is located in the 
follicles of lymphoid tissue, induce B cells to produce immunoglobulins and express various distinguishing 
genes such as B-cell lymphoma 6 (BCL-6)40. A study showed that OA patients showed higher percentages of 
follicular helper T cell and the expression of the cells was positively correlated with the disease activity of  OA41. 
Additionally, numerous studies have also suggested that vascular endothelium growth factor A (VEGFA) plays 
an important role in cartilage development and OA  progression42. Hamilton et al.’s research demonstrated that 
the expression of VEGFA in the synovium, articular cartilage and synovial fluid has been found to be significantly 
correlated with the grade of OA severity and the degree of  pain43. These evidences confirmed that BCL6 and 
VEGFA may be used as a predictive biomarker of OA.

Moreover, our study demonstrated that there was a significant difference of CD4+ T cell, type 2 T helper cell, 
NK T cell infiltration and the expression of IL17 pathways genes in the two distinct senescence clusters. T cells 
are the main components of synovial infiltration in OA patients, and both CD4+ T cells and CD8+ T cells have 
been found in synovial  aggregates40. When stimulated by IL-4, naïve CD4+ T cells differentiate into type 2 T 
helper  cells40. NK cells are a principal tissue-infiltrating lymphocyte subset in OA inflammation, and exhibit a 
quiescent phenotype consistent with post-activation  exhaustion44. Type 17 T helper cells (Th17) secrete IL17 and 
provide protection against bacterial infections and are associated with the development of autoimmune diseases 
through recruitment of granulocyte cells, particularly  neutrophils40. Existed researches demonstrated that Th17 
cells accumulated in the synovial fluid and synovial tissue of OA patients; however, the exact role of Th17 cell 
response in the biology of OA needs further  investigation40. Therefore, we assumed that different senescence 
modes can affect the immune microenvironment of OA, thus influencing the occurrence and development of OA.

However, there are still some limitations in our study that need to be pointed out. Firstly, control samples were 
all from patients with relatively normal synovial tissues, such as those undergoing surgery for meniscus injury, 
rather than real healthy controls. Secondly, due to the epidemiologic feature of OA patients, it was inevitable 
that there were age differences between OA samples and controls. Furthermore, no multiplicity was applied in 
our study to adjust the P value of each of the DEGs.

Figure 6.  Construction of senescence signatures. (A) The senescence score in the two senescence clusters. (B) 
The senescence score in the two gene clusters. (C) Alluvial diagram showing the changes of senescence clusters, 
gene cluster and senescence score. (D) Bloxplot showing the gene expression of MAPK pathway in the two 
senescence clusters. (E) Bloxplot showing the gene expression of MAPK pathway in the two senescence gene 
clusters. (All figures *represents p < 0.05, **represents p < 0.01, ***represents p < 0.001) MAPK, mitogen-activated 
protein kinases.
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In conclusion, our study revealed a potential mechanism of senescence regulation in the immune microen-
vironment of OA synovial tissues. We revealed two distinct senescence patterns, identified a strong correlation 
between different senescence patterns and immune cell infiltration, and constructed a novel scoring system to 
quantify senescence pattern in individual patients. Meanwhile, the developed senescence OA nomogram can 
help assess the risk of OA, thus providing a reference for the clinical diagnosis of OA. Our findings provided 
novel ideas for identifying different OA inflammatory phenotypes, promoting personalized immunotherapy, 
and opening up new horizons for future research on the pathogenesis of OA.

Data availability
The datasets presented in this study were obtained from the GEO (https:// www. ncbi. nlm. nih. gov/ geo/) (GSE1919, 
https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi/; GSE41038, https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi/; 
GSE55235, https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi/; GSE82107, https:// www. ncbi. nlm. nih. gov/ geo/ 
query/ acc. cgi/; GSE55457, https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi/).
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