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Utilization of temporal 
autoencoder for semi‑supervised 
intracranial EEG clustering 
and classification
Petr Nejedly 1,2,3*, Vaclav Kremen 3,4*, Kamila Lepkova 3,5, Filip Mivalt 3,6, Vladimir Sladky 3, 
Tereza Pridalova 2,3, Filip Plesinger 2, Pavel Jurak 2, Martin Pail 1,2,7, Milan Brazdil 1,7,8, 
Petr Klimes 2,7 & Gregory Worrell 3*

Manual visual review, annotation and categorization of electroencephalography (EEG) is a time‑
consuming task that is often associated with human bias and requires trained electrophysiology 
experts with specific domain knowledge. This challenge is now compounded by development of 
measurement technologies and devices allowing large‑scale heterogeneous, multi‑channel recordings 
spanning multiple brain regions over days, weeks. Currently, supervised deep‑learning techniques 
were shown to be an effective tool for analyzing big data sets, including EEG. However, the most 
significant caveat in training the supervised deep‑learning models in a clinical research setting is the 
lack of adequate gold‑standard annotations created by electrophysiology experts. Here, we propose 
a semi‑supervised machine learning technique that utilizes deep‑learning methods with a minimal 
amount of gold‑standard labels. The method utilizes a temporal autoencoder for dimensionality 
reduction and a small number of the expert‑provided gold‑standard labels used for kernel density 
estimating (KDE) maps. We used data from electrophysiological intracranial EEG (iEEG) recordings 
acquired in two hospitals with different recording systems across 39 patients to validate the method. 
The method achieved iEEG classification (Pathologic vs. Normal vs. Artifacts) results with an area 
under the receiver operating characteristic (AUROC) scores of 0.862 ± 0.037, 0.879 ± 0.042, and area 
under the precision‑recall curve (AUPRC) scores of 0.740 ± 0.740, 0.714 ± 0.042. This demonstrates that 
semi‑supervised methods can provide acceptable results while requiring only 100 gold‑standard data 
samples in each classification category. Subsequently, we deployed the technique to 12 novel patients 
in a pseudo‑prospective framework for detecting Interictal epileptiform discharges (IEDs). We show 
that the proposed temporal autoencoder was able to generalize to novel patients while achieving 
AUROC of 0.877 ± 0.067 and AUPRC of 0.705 ± 0.154.

Epilepsy is a common neurological disease affecting approximately 50–60 million people  worldwide1. Even with 
access to a wide array of anti-seizure medications, about one third of people with epilepsy have drug-resistant 
epilepsy (DRE) and continue to have  seizures2,3. Epilepsy surgery with resection of the brain region generating 
seizures is a treatment option for some  patients4. Intracranial EEG (iEEG) recording is an essential tool for the 
localization of epileptic seizure onset zones prior to resection surgery. Modern diagnostic approaches allow 
continuous iEEG monitoring for numerous days or weeks. The iEEG data size, signal complexity, and quality are 
increasing due to advanced acquisition systems with higher sampling rates (e.g. 25 kHz) and number of recording 
channels (e.g., 12 electrodes, each with 12–15 contacts). Spatial sampling across multiple brain structures creates 
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large-scale heterogeneous patient-specific data sets. These novel recording capabilities necessitates automatizing 
iEEG signal analysis,  storage5,  visualization6, classification, and clustering.

Many patients are not suitable resective surgery candidates, due to multifocal epilepsy or seizure onset local-
ized in the eloquent cortex. Electrical brain stimulation is a FDA approved therapy for patients unable to undergo 
resection  surgery7–9. Novel implantable devices capable of both sensing and electrical stimulation are emerging 
at the cutting edge of neuromodulatory treatments for  epilepsy10–12 and  comorbidities13. However, even with 
modern devices capable of continuous sensing (months to years in patients implanted with sensing devices), 
optimizing closed-loop neuromodulatory treatment is challenging and critically depends on accurate, automated 
classification of normal and pathological electrophysiological recordings.

Making clinical sense of large complex data sets requires trained electrophysiology experts and it is not pos-
sible without spending a substantial amount of time reviewing and annotating the iEEG datasets. It is nearly 
impossible without automated tools. For instance, the precise localization of pathological tissue in the brain is 
essential to target surgical and electrical stimulation therapy for epilepsy patients. It has been shown that the 
level of agreement in interpretation between experts varies and is biased by the subjective experience of the 
 clinician14–16. Manual labeling can often create bias and inaccurate gold standards, which results in machine 
learning systems that don’t perform well, because they learned from incorrectly labeled or biased data. Therefore, 
a manual review of iEEG is expensive, subjective, and time-consuming. It is not sustainable as an approach that 
can scale up to the amount of iEEG data generated by currently available clinical and research systems.

Recently, machine learning (ML), and deep learning (DL) has become a state-of-the art tool for classification 
due to its efficacy when trained on big labeled datasets. The power of DL in signal and image recognition is well 
 established17, including biological applications, e.g. ECG  classification18 or  transcriptomics19. A subclass of deep 
neural networks, a convolutional neural network (CNN), has been widely applied in signal processing, including 
EEG  analysis20–22, sleep  scoring23, and  polysomnography24. The main advantage of these methods is that they find 
optimal features and connections without relying on manual feature  engineering25. Recently, we and others have 
shown that supervised deep learning methods can be utilized for iEEG classification. For example, deep neural 
networks were shown to allow seizure forecasting in humans with neurostimulation  devices26, scalp  EEG27, and 
canine epilepsy  models28 . However, excellent model performance requires large, accurately labeled datasets. This 
means a large portion of data must be scored by an expert(s) (electrophysiologist).

Large-scale databases with ground truth (gold-standard) labels are still rare in iEEG. To overcome this issue, 
we propose using semi-supervised ML technique that enables exploiting features from large-scale unlabeled 
EEG datasets, with subsequent class assignments based on small amounts of expert gold standard labels. Here, 
we design and describe an unsupervised autoencoder that is aware of temporal context. The essential key of 
the method is projecting time series data points into a low-dimensional embedding space. For this purpose, 
we utilize a neural network autoencoder with a self-attention mechanism as a pre-processing step to perform 
a dimensionality reduction.. This allows an iterative approach where the technology assists the domain expert, 
preprocess data, and suggests samples to review to refine class boundaries based on newly provided expert gold 
standard labels (Active learning). All this aims to speed the learning and analysis up and to create better and 
more reliable models.

We propose this method to help to automate review of biomarkers in iEEG presurgical monitorings or for 
big EEG data from continuous iEEG sensing in neurostimulation  trials10,11. This still remains challenging and 
it is an active area of clinical and basic research. In general, the aim of this method is in localizing artifacts and 
abnormal epileptic activity such as interictal epileptiform discharges (IEDs)29–31 or high-frequency oscillations 
(HFOs)32–35. In order to support the results of the method, we further provide its pseudo-prospective application 
that was based on the clinical use case of automated IEDs detection.

Methods
Data. In this research, we utilize the publicly available iEEG dataset that was published by our  group36. We 
recommend checking the manuscript that describes the data in genuine detail. There, we thoroughly discuss the 
labeling process, data verification, and estimation of reviewer agreement. Furthemore, the following text pro-
vides a brief description of the data to help to understand its utilization within the scope of this work.

Three independent reviewers manually annotated signals using the power distribution matrix technique 
(PDM), where each annotated mark was checked in the raw data  domain32. Visual inspection and manual data 
annotation were performed in SignalPlant software—free software used for signal post-processing, annotation, 
and  examination6. First, signals were filtered by a band-pass filter to highlight high-frequency activity. Then, 
the PDM approach applied the Hilbert transform on filtered signals to obtain the signal power envelope. A high 
power envelope was detected in signals and subsequently visually inspected. Based on visual inspection of EEG 
graphoelements, the segments were classified into one of four classes (Fig. 1): physiological activity (no epilep-
tic biomarkers and no artifactual signals), pathological activity (containing epileptiform graphoelements, e.g., 
pathologic HFOs and IEDs), muscle artifacts, and power line noise. The pathological activity segments (IEDs, 
and HFOs) were extracted mainly from seizure onset zones and irritative zones. The segments are considered 
pathologic if HFO, IED, or HFO superimposed on an IED are present (e.g., Nejedly et al.20 Fig. 1). Finally, classi-
fied segments were divided into 3-s segments (15,000 samples); the window duration was empirically estimated 
based on evidence from our former  study21.

In order to test the generalizability of our approach, we also include 12 novel patients with drug-resistant 
epilepsy undergoing pre-surgery evaluation from St. Anne’s University Hospital (FNUSA) that were used for 
pseudo-prospective testing (Fig. 2). One channel of iEEG recording (30 min while awake and resting, which is 
standard protocol for HFO  evaluation32 at FNUSA) was selected and manually annotated for IEDs. The data for 
pseudo-prospective analysis is used in its entire length, which provides a real-world testing benchmark where 
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IEDs have their natural prevalence. No preprocessing for artifact rejection or removal was employed in this data. 
The proposed test shows a model performance on established clinical  protocol32.

St. Anne’s University Hospital dataset. The St. Anne’s University Hospital (FNUSA) dataset was 
derived from 14 (public dataset)36 and 12 (Table 1 ,pseudo-prospective test) patients who underwent pre-surgi-
cal iEEG monitoring for DRE. Patients were implanted with standard intracranial depth electrodes (5, 8, 10, 12, 
15 and 18 contact semi-flexible multi-contact platinum electrodes (DIXI or ALCIS), with a diameter of 0.8 mm, 
a contact length of 2  mm, contact surface area of 5.02  mm2, and inter-contact distance 1.5  mm). Data was 
recorded with a custom BrainScope acquisition system (25 kHz sampling frequency; 192 channels). A sampling 
frequency of 25 kHz was applied during 30 min of recording and subsequently followed by 2 kHz low-pass filter-
ing and 5 kHz down-sampling for further processing and to avoid aliasing. The data are from interictal periods 
while the patient was awake and  resting32.

Figure 1.  Example of iEEG segments from each classification group in the dataset.

Figure 2.  Description of the dataset used in this study. The datasets from Nejedly et al. 2020 were used for 
model training and validation. Novel data from 12 patients from FNUSA hospital were used for pseudo-
prospective testing.
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Mayo Clinic dataset. The Mayo Clinic  dataset36 was derived from 25 patients that underwent pre-surgi-
cal iEEG monitoring for DRE. Patients were implanted with stereotactic depth AD-Tech electrodes (AD-Tech 
Medical Instrument Corp., Racine, WI or PMT, Chahassen, MN, USA) consisting of 4 or 8 Platinum/Iridium 
contacts (2.3 mm long, 1 mm diameter, spaced 5 or 10 mm center-to-center) and AD-Tech subdural grids and 
strips electrodes that had 4.0 mm diameter Platinum/Iridium discs (2.3 mm exposed) with 10 mm center-to-
center distance. Data was recorded by the Neuralynx Cheetah system (Neuralynx Inc., Bozeman MT, USA; 
25 kHz sampling frequency). From the continuous interictal recordings, we selected 2 h long phases (1 AM–3 
AM) for our dataset. The data were filtered by a 1 kHz low pass filter and down-sampled to 5 kHz for further 
processing and analysis.

In total, we used 193,118 and 155,182 3-s iEEG segments from the St. Anne’s University Hospital and Mayo 
Clinic subjects. Segment distributions for each labeling group are described in Table 2. The dataset consists 
of four groups: physiological in different behavioral states (wake, wake-relax, sleep), pathophysiological with 
different biomarkers (IEDs, HFOs), muscle artifacts, and power line noise (50 Hz or 60 Hz depending on the 
origin of recording—EU/US).

Data preprocessing. The iEEG segments were converted into spectrograms by a short-time Fourier trans-
form (STFT) with a window size of 256 samples and a 128 sample overlap. Subsequently, the spectrograms were 

Table 1.  Clinical description of 12 patients from St. Anne’s University Hospital that were used for pseudo-
prospective testing. M male, F female; SEEG stereoelectroencephalography; E extratemporal; T temporal; PO 
parieto-occipital; FT fronto-temporal; RX/LT right/left; GTM medial temporal gyrus; SOZ seizure onset zone; 
AMTR anteromedial temporal resection; DNET dysembryoplastic neuroepithelial tumor; AVM arteriovenous 
malformation; FCD focal cortical dysplasia; HS hippocampal sclerosis; VNS vagus nerve stimulation.

Subject Gender Age at SEEG
Precipitating 
event

Age at Seizure 
onset

MRI before 
SEEG (signs 
of)

SEEG 
monitoring 
(days)

Type and side 
of epilepsy SOZ

Intervention/
histopathology

Postoperative 
outcome Engel 
(follow-up, 
year)

1 M 26 – 10 Normal 10 E/RX
Orbitofrontal 
subgenual 
cortex

Resection of T 
pole, subgenual 
and dorsal part 
of orbitofrontal 
cortex

IA (6)

2 M 24 – 14
Lesion (caver-
noma) in dorsal 
part of left 
cingulate gyrus

12 E/LT Dorsal part of 
cingulate gyrus

Lesionectomy/
AVM IB (5)

3 F 27 – 19

Low grade 
gliom/DNET 
within posterior 
part of right 
cingulate gyrus

10 E/RX mesial PO area
Lesionectomy/
oligodendro-
glia-like cells

IIIA (5)

4 F 58 – 12
Postsurgical 
changes (left 
AMTR)

9 T/bilaterally
Hippocampus 
bilaterally 
(mainly right 
side)

VNS

5 F 49 – 20 Normal 9 T/RX
Anterior part 
of GTM, hip-
pocampus

AMTR/negat IA(5)

6 M 45 Commotio 
cerebri 16

Left T pole 
agenesis, arach-
noid cyst

10 T/LT T pole Cortectomy/
FCD III NOS IA(5)

7 M 28 – 12
suspected FCD 
in dorsal part of 
right superior T 
gyrus

10 T/RX T pole. superior 
temporal sulcus

Cortectomy/
FCD IIB, nodu-
lar heterotophy

IVA (4)

8 M 27 – 10 Normal 8 E/RX Not founded VNS

9 F 25 Meningoen-
cephalitis 5

Postencepha-
litic changes of 
left frontal lobe, 
left hippocam-
pal sclerosis

10 T/LT Hippocampus AMTR/HS 
type I IA (4)

10 M 47 Commotio 
cerebri 6

Nonspecific 
white matter 
lesions FT 
bilaterally

9 E/RX Anterior insula Cortectomy/
FCD Ib IIIA (4)

11 M 23 – 15 Normal 7 E/LT
Anterior 
operculoinsular 
area

Cortectomy/
FCD IIa IC (3)

12 M 27 Commotio 
cerebri 14 Normal 11 E/LT Posterior part 

of lingual gyrus
Cortectomy/
negat IC(3)
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row and column normalized, forming a three-dimensional tensor [CH, F, T] with CH representing normaliza-
tion (row and column), F is a spectrogram frequency axis, and T is a spectrogram temporal axis.

Model architecture. The autoencoder consists of two functional blocks: an encoder and a decoder. The 
encoder produces low-dimensional embedding space as an output, and the decoder reconstructs the low-
dimensional embedding space while minimizing a loss function representing a distance between input and 
reconstructed output, e.g. mean square error (MSE) or mean absolute error (MAE). Temporal autoencoders 
are used for time series dimensionality reduction and usually utilize long-short term memory (LSTM) layers or 
gated recurrent units (GRU) layers that provide low dimensional embedding summarizing the temporal evolu-
tion of the input signal. The primary goal of the autoencoder is to learn an input representation mapped in the 
low dimensional latent space. The autoencoder that is used here (Fig. 3) also utilizes a self-attention mecha-
nism, which improves forgetting problems in encoder-decoder architectures when the model processes long 
sequences.

Semi‑supervised training workflow. Before model training, we prepared a tenfold cross-validation test-
ing scheme to provide reliable statistical results (Fig. 4). First, the whole dataset was randomly split into 10 folds, 
where each fold had the same data label distribution. The 9 folds were used as a training set, and one was used 
for testing (leave one out cross-validation). Furthermore, the training set was randomly divided into training 
(90%) and validation (10%). At this point, data labels for the training set were completely discarded, simulating 

Table 2.  Labeling categories for iEEG data and the number of samples collected across institutions. The full 
dataset information can be found  in36.

Category St. Anne’s University Hospital Mayo Clinic Reference to results

Physiological activity 94,560 56,730 Class 3

Pathological activity 52,470 15,227 Class 2

Artifacts 32,599 41,303 Class 1

Power line noise (50 Hz/60 Hz) 13,489 41,922 Class 0

Total # of 3-s segments 193,118 155,182

Figure 3.  Neural network encoder-decoder architecture. The figure shows a block diagram of neural network 
encoder-decoder architecture utilizing an attention mechanism for unsupervised iEEG feature extraction. 
Input consists of iEEG data spectrograms propagated through gated recurrent units (GRU) encoder providing 
low-dimensional embedding space. Subsequently, the GRU decoder reconstructs the input spectrograms while 
minimizing the unsupervised loss function (mean square error).
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unlabeled data. The validation set used N (experiments with 10, 20, 30, 50, 70, 100, 200, 300, 500, 700, 1000) 
randomly selected gold-standard samples from each classification group, and the rest of the labels were again 
completely discarded.

We prepared four datasets: training set without labels (TRSw/o), validation set without labels (VSw/o), a 
subset of validation subset with N gold standard labels in each group (VS), and testing set (TS) with available 
gold standard labels. The testing set gold standard labels were used to evaluate model classification performance. 
This experiment was evaluated for each cross-validation group for each N.

The model was trained for 10 epochs using the training set without labels while minimizing MSE loss func-
tion by adaptive moment estimation (ADAM)37,38 with learning rate of  10−3 and batch size of 128 examples. The 
reconstruction model performance was monitored by evaluating cosine similarity between input image and 
reconstruction image on the validation set without labels (data was not used for training). The model with the 
highest reconstruction performance out of the tenfold training batch was selected as the model for subsequent 
inference on the test set.

Kernel density maps estimation. Subsequently, for the autoencoder feature extraction (128-dimen-
sional feature space), we employed the kernel density estimation (KDE) technique to estimate the non-para-
metric probability density function for each class individually (Fig. 5). The validation set with labels (VS, N gold 
standard samples in each classification group) was used to estimate KDE maps.

Inference and visualization. The model inference starts with converting the testing samples to the spec-
trograms, which are processed by the autoencoder providing low-dimensional embeddings. Subsequently, 
embeddings are compared with the KDE maps, and the class with the highest KDE probability is selected as the 
model output (Table 3). Such an approach basically simulates the Naive Bayes classifier.

To visually check whether the autoencoder provides reasonable embeddings (i.e,. similar iEEG segments 
should be closer to each other in the embedding space), we can further project embeddings into two-dimensional 
space (Figs. 6, 7, 8) using uniform manifold approximation and projection (UMAP). The testing set embeddings 
are UMAP projected and colored using its gold-standard (Fig. 7, top) and model predictions (Fig. 7, bottom).

Ethics statement. This study was carried out in accordance with the approval of the Mayo Clinic Institu-
tional Review Board with written informed consent from all subjects. The protocol was approved by the Mayo 
Clinic Institutional Review Board and St. Anne’s University Hospital Research Ethics Committee and the Ethics 
Committee of Masaryk University. All subjects gave written informed consent in accordance with the Declara-
tion of Helsinki. All methods were performed in accordance with the relevant guidelines and regulations.

Figure 4.  Model training, validation and testing pipeline. The model was tested using tenfold cross-validation 
methodology.



7

Vol.:(0123456789)

Scientific Reports |          (2023) 13:744  | https://doi.org/10.1038/s41598-023-27978-6

www.nature.com/scientificreports/

Results
Cross‑validation results. We ran the model training for various cardinalities of labeled data from 10 to 
1000 segments per category , and then the model classified the rest of the data from all 39 patients across two 
institutions. Table 4, shows results using the area under the receiver operating characteristic (AUROC) and the 
area under the precision-recall curve (AUPRC) as a quantification of the model performance (Table 4). Scores 
are given for all data in each institution. The scores were calculated as averages over all four training classes and 
10 cross-validation batches. The values are written in the form avg ± std. Figure 9 shows that the model performs 
well (minimum AUROC 0.85 for FNUSA dataset) when at least 100 training samples are supplied to the KDE 
classifier as training data.

Pseudo‑prospective testing for automated detection of Interictal Epileptiform Discharges. To 
show the power of the technique and its generalizability, we also tested the method’s ability to detect pathologi-
cal segments (i.e., IEDs) in novel data. We utilize novel data from 12 patients for a pseudo-prospective analysis 
(Table 1). An approximately 30-minute long iEEG recording from patients that were not included in the dataset 
for training and validation was manually verified, and every single IED was scored. Gold standards were made 
by a single expert. The pretrained model was deployed on this data, and data embeddings were subsequently pro-
jected into 2D space via UMAP to visualize the resulting data distribution. Visual inspection of Figure 10 reveals 
that most segments containing IED (orange dots) were clustered together, while physiological signals (blue dots) 
were clustered together. The cluster separation indicates that the autoencoder model could generalize to the 
novel data. The segments with IED have similar embeddings, and their distribution might be easily estimated by 
the pretrained KDE method. The results (Table 6) show AUROC and AUPRC scores.

Figure 5.  The architecture of the Naive Bayes classifier. The classifier utilizes kernel density estimates (KDE) 
for prediction of class dependent probability distribution functions. The input to the classifier is the low 
dimensional embedding extracted from the autoencoder.

Table 3.  The confusion matrix for the model shown in the uniform manifold approximation and projection 
(UMAP) in Fig. 5.

Class Power line noise (50 Hz/60 Hz) Artifacts Pathological activity Physiological activity

Power line noise (50 Hz/60 Hz) 1348 0 0 0

Artifacts 0 2472 241 547

Pathological activity 0 30 4608 609

Physiological activity 0 131 245 9080

Figure 6.  Figure shows pipeline for model inference and uniform manifold approximation and projection 
(UMAP) visualization of an output autoencoder embeddings.
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Figure 7.  A representative example of uniform manifold approximation and projection (UMAP) of 
autoencoder embeddings from the testing set. The top picture depicts gold-standard data projections, and 
the bottom picture depicts predictions of the model. The shown model used 700 annotated examples in each 
classification category for training and achieved an F1-score of 0.91 evaluated on the out-of-sample test set. The 
classes are ordered as follows: 0-Power line noise, 1-Artifacts, 2-Pathological Activity, 3-Physiological Activity.

Figure 8.  UMAP data projection with examples of iEEG segments from different clusters. The classes are 
ordered as follows: 0-Power line noise, 1-Artifacts, 2-Pathological Activity, 3-Physiological Activity.
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Discussion
In this work, we introduced a semi-supervised method for iEEG clustering and classification.The main purpose 
of the method is to enable objective and fast inspection of novel big electrophysiological data (presurgical evalua-
tion of iEEG or long-term data from neurostimulator with sensing). The operator can use the method to generate 
data clusters with similar iEEG patterns (e.g., IEDs or artifacts) and then quickly label them to clinically useful 
categories quickly. The ultimate goal of the method is to make the annotation process objective and optimized 
for large-scale datasets and thus minimize the workload and time of an expert.

We propose a temporal context-aware method for semi-supervised classification in an active learning sce-
nario using expert-in-the-loop. We applied the approach to heterogeneous multiscale electrophysiology data of 
two independent centers collected from 39 patients in hospitals across EU and the US. Furthermore, we present 
a method use case applied to IED detection where we tested the method pseudo-prospectively on 12 patients 
(Table 6, Fig. 10). We showed that the model was able to generalize to novel data. The model was able to cluster 
and differentiate IEDs from normal physiological iEEG in a 30-min long iEEG data segment and thus localize 
the data with IEDs. The presented method automatically processes one iEEG channel of 30-min recording in a 
few seconds. This enables substantially faster review of the data in comparison with the manual approach that 
can take tens of minutes (depending on the IED rate and capabilities of software used for EEG review).

The method utilizes data embeddings from the temporal autoencoder and visualizes it as a part of the expert-
in-the-loop active learning process, where physicians subsequently label only a few members of each category 

Table 4.  Description of cross-validation results for FNUSA and MAYO datasets. The table shows area under 
receiver operating curve (AUROC) and area under precision-recall curve (AUPRC).

Segments per category

AUROC AUPRC

FNUSA MAYO FNUSA MAYO

1000 0.895 ± 0.036 0.896 ± 0.042 0.794 ± 0.071 0.749 ± 0.042

700 0.886 ± 0.039 0.898 ± 0.041 0.782 ± 0.075 0.755 ± 0.041

500 0.885 ± 0.031 0.893 ± 0.041 0.778 ± 0.064 0.744 ± 0.041

300 0.881 ± 0.036 0.896 ± 0.037 0.768 ± 0.066 0.751 ± 0.037

200 0.873 ± 0.030 0.886 ± 0.044 0.756 ± 0.060 0.729 ± 0.044

100 0.862 ± 0.037 0.879 ± 0.042 0.740 ± 0.066 0.714 ± 0.042

70 0.851 ± 0.032 0.861 ± 0.043 0.721 ± 0.053 0.678 ± 0.043

50 0.842 ± 0.031 0.855 ± 0.043 0.710 ± 0.056 0.663 ± 0.043

30 0.826 ± 0.025 0.849 ± 0.042 0.681 ± 0.039 0.647 ± 0.042

20 0.821 ± 0.036 0.825 ± 0.042 0.682 ± 0.057 0.611 ± 0.042

10 0.803 ± 0.021 0.806 ± 0.046 0.654 ± 0.033 0.580 ± 0.046

Figure 9.  Performance of the model on two datasets related to the cardinality of training data for kernel 
density estimates (KDE) classifier. The plot shows the area under the precision-recall curve (AUPRC) metrics. 
The picture shows that 100 training examples per class achieve good model performance while requiring a 
reasonable amount of training labels.
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Figure 10.  The figure shows a uniform manifold approximation and projection (UMAP) projection of a 30-min 
iEEG recording from a patient that was not included in the training, validation, or model testing process. The 
labels show gold-standard iEEG segments with 0-physiological iEEG, 1-interictal epileptiform discharges 
(IEDs). The separation between labels indicates that the autoencoder was able to generalize to novel data and 
cluster the data from two distinct categories to two minimally overlapping segments.

Table 5.  Comparison of the proposed method with fully supervised state-of-the-art method.

Method

AUROC AUPRC

FNUSA MAYO FNUSA MAYO

Fully supervised Nejedly et al.36 (tens of thousands training samples) 0.92 0.97 0.80 0.93

Proposed method with 1000 KDE training samples per class 0.895 0.896 0.794 0.749

Proposed method with 100 KDE training samples per class 0.862 0.879 0.740 0.714

Table 6.  The table shows AUROC, AUPRC, and F1 results for the IED detection in pseudo-prospective testing 
of the proposed method.

Patient AUROC AUPRC Macro F1 score Weighted F1 score

1 0.866 0.623 0.77 0.93

2 0.843 0.619 0.71 0.80

3 0.964 0.88 0.90 0.96

4 0.919 0.863 0.88 0.90

5 0.909 0.708 0.81 0.96

6 0.816 0.67 0.76 0.83

7 0.948 0.901 0.91 0.92

8 0.738 0.396 0.68 0.87

9 0.833 0.701 0.55 0.54

10 0.93 0.856 0.84 0.9

11 0.803 0.57 0.71 0.8

12 0.887 0.84 0.82 0.82

MED 0.877 0.705 0.79 0.89

STD 0.067 0.154 0.11 0.12
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(e.g., 100). Subsequently, the method estimates the KDE maps and trains the KDE classifier. We believe that this 
approach using the temporal context-aware autoencoder can be easily adopted in real-world scenarios where large 
amounts of unlabeled data are available and need to be reviewed. We tested the model on a previously published 
dataset of iEEG data. The model showed solid and reliable performance on datasets from both hospitals while 
using only 100 gold standard examples per class (Tables 4, 5, Figs. 7, 8).

The proposed approach achieved satisfactory results compared with fully supervised techniques previously 
presented in our  study20 (Table 5). The two main benefits of the method are as follows. First, only a small num-
ber of labels can be used in comparison to the fully supervised techniques that require higher cardinality of the 
labeled data. Thus the method is less expensive. Second, the visual inspection of KDE maps can be used to suggest 
the best candidates for gold-standard scoring that will be subsequently used for training and optimization loops.

We believe that the proposed method might be efficiently used in the active learning expert-in-the-loop clas-
sification paradigm, where the expert is iteratively providing gold-standard labels that are automatically processed 
in order to generalize onto data points without labels. For example, this can be efficiently used for the detection 
of artifacts or epileptiform spikes in long-term recordings. The human expert can select a few examples, and the 
model automatically scans through the whole recording while marking similar data segments and suggesting 
other borderline and outlier samples in successive iterations for labeling by an expert to adapt to the changing 
nature of iEEG data. Clearly, in smaller datasets, this would save the time of the expert. In large datasets, it would 
enable the labeling of data that could not be reviewed at all.

In summary, the proposed method improves and accelerates review and annotation of large-scale datasets. In 
contrast with results of previously established works, we show that our system only requires 100 labeled instances 
of data per class to train the model that performs well (Table 5).

Limitations. Our method was trained, validated and tested on iEEG data collected from patients with drug 
resistant epilepsy. The novel pseudo-prospective testing set was scored only by one expert iEEG scientist, under 
the supervision of an expert physiologist.

Currently, we can not infer the method’s performance on scalp EEG, which in general has a large spectrum 
of neurological diseases. The generalization to scalp EEG would need follow-up study (Table 6).

Conclusion
We proposed a semi-supervised method utilizing a temporal autoencoder for iEEG data classification. The 
proposed method achieved AUROC scores of 0.862 ± 0.037 and 0.879 ± 0.042 while using only 100 training 
examples per classification category scored by an expert. The method performed similarly in datasets from two 
different institutions, where iEEG recordings were captured with different acquisition systems and during dif-
ferent behavioral states (resting state and overnight Intensive Care Unit monitoring). We also tested the method 
pseudo-prospectively for IED detection, and the method achieved the AUROC of 0.877 ± 0.067 and AUPRC of 
0.705 ± 0.154. Our results showed that the proposed method could massively shorten the time needed for manual 
ground-truth annotation. Therefore, it enables fast, efficient, unbiased data exploration in heterogeneous time-
series large-scale datasets (e.g., clinical research settings).

Data availability
The datasets used for model training and cross-validation are publicly available for download at figshare reposi-
tory (https:// doi. org/ 10. 6084/ m9. figsh are.c. 46812 08). The information about data might be obtained from our 
data descriptor  paper36.
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