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Identification and validation 
of oxidative stress 
and immune‑related hub 
genes in Alzheimer’s disease 
through bioinformatics analysis
Shengjie Li 1,2,3,5*, Jinting Xiao 4,5, Chuanjiang Huang 1,2,3 & Jikui Sun 1

Alzheimer’s disease (AD) is the leading cause of dementia in aged population. Oxidative stress and 
neuroinflammation play important roles in the pathogenesis of AD. Investigation of hub genes 
for the development of potential therapeutic targets and candidate biomarkers is warranted. The 
differentially expressed genes (DEGs) in AD were screened in GSE48350 dataset. The differentially 
expressed oxidative stress genes (DEOSGs) were analyzed by intersection of DEGs and oxidative 
stress-related genes. The immune-related DEOSGs and hub genes were identified by weighted gene 
co-expression network analysis (WGCNA) and protein–protein interaction (PPI) analysis, respectively. 
Enrichment analysis was performed by Gene Ontology and Kyoto Encyclopedia of Genes and 
Genomes. The diagnostic value of hub genes was assessed by receiver operating characteristic analysis 
and validated in GSE1297. The mRNA expression of diagnostic genes was determined by qRT-PCR 
analysis. Finally, we constructed the drug, transcription factors (TFs), and microRNA network of the 
diagnostic genes. A total of 1160 DEGs (259 up-regulated and 901 down-regulated) were screened 
in GSE48350. Among them 111 DEOSGs were identified in AD. Thereafter, we identified significant 
difference of infiltrated immune cells (effector memory CD8 T cell, activated B cell, memory B cell, 
natural killer cell, CD56 bright natural killer cell, natural killer T cell, plasmacytoid dendritic cell, 
and neutrophil) between AD and control samples. 27 gene modules were obtained through WGCNA 
and turquoise module was the most relevant module. We obtained 66 immune-related DEOSGs by 
intersecting turquoise module with the DEOSGs and identified 15 hub genes through PPI analysis. 
Among them, 9 hub genes (CCK, CNR1, GAD1, GAP43, NEFL, NPY, PENK, SST, and TAC1) were 
identified with good diagnostic values and verified in GSE1297. qRT-PCR analysis revealed the 
downregulation of SST, NPY, GAP43, CCK, and PENK and upregulation of NEFL in AD. Finally, we 
identified 76 therapeutic agents, 152 miRNAs targets, and 91 TFs regulatory networks. Our study 
identified 9 key genes associated with oxidative stress and immune reaction in AD pathogenesis. The 
findings may help to provide promising candidate biomarkers and therapeutic targets for AD.

Abbreviations
AD	� Alzheimer’s disease
DEGs	� Differentially expressed genes
DEOSGs	� Differentially expressed oxidative stress genes
WGCNA	� Weighted gene co-expression network analysis
PPI	� Protein–protein interaction
TFs	� Transcription factors
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Aβ	� Amyloid β-peptide
OSGs	� Oxidative stress-related genes
GO	� Gene ontology
KEGG	� Kyoto encyclopedia of genes and genomes
GSVA	� Gene set variation analysis
ROC	� Receiver operating characteristic
AUC​	� Area under the curve
qRT-PCR	� Quantitative real-time PCR
DGIdb	� Drug gene interaction database
SST	� Somatostatin
NPY	� Neuropeptide Y
GAP43	� Growth associated protein 43
NEFL	� Neurofilament light chain
CCK	� Cholecystokinin
CNR1	� Cannabinoid receptor 1
TAC1	� Tachykinin precursor 1
GAD1	� Glutamate decarboxylase 1
PENK	� Proenkephalin
pDC	� Plasmacytoid dendritic cell
DC	� Dendritic cell
GATA2	� GATA-binding protein 2
FOXC1	� Forkhead box C1
CREB1	� Cyclic adenosine monophosphate responsive element-binding protein 1

Alzheimer’s disease (AD) is an insidious, progressive, and devastating neurodegenerative disease, which is rec-
ognized as the leading cause of dementia in aged population. As a global health challenge, AD affects about 
47 million people worldwide, with an estimated number of cases increasing to 152 million by 20501,2. Patho-
logic features of AD are characterized by persistent deposition of the intercellular amyloid β-peptide (Aβ) plaques 
and intracellular tau protein and impairment of the neuron-to-neuron synaptic communication and nutrient 
transportation inside neuron3. Despite recent advances in new understanding of AD pathogenesis and improved 
management strategies, the mechanism underlying AD pathogenesis is not completely understood. Importantly, 
so far, there is no effective intervention strategy in preventing or curing of AD. The reported death rate of AD 
increased more than 145% between 2000 and 20194. There is an impendency to further explore the underlying 
mechanism of AD initiation and progression for developing effective intervention strategies.

Oxidative stress and neuroinflammation have been implicated in the pathogenesis of AD and the accel-
eration of neurodegeneration5,6. Oxidative stress is involved in the modulation of gene expression patterns 
and metabolic activities, characterized by the disruption of redox homeostasis7. Previous in vitro and in vivo 
studies revealed that oxidative stress caused by the accumulation of Aβ contributed to the initiation of AD8. 
Aβ-mediated oxidative stress results in mitochondrial dysfunction, impairment of glucose metabolism, loss 
of proteostasis and synaptic plasticity, altered signal transduction, neuroinflammation, and progressive loss of 
neurons9. Neuroinflammation has also been identified as another crucial component of AD pathogenesis. Glial 
cell activation is found in early AD, even before Aβ accumulation10,11. Upon AD-related proteins stimulation, 
activated microglia cells accumulate around amyloid plaques, responsible for the activation of innate immune 
response and maintenance of oxidative microenvironment. Activated microglia cells eventually lead to exacerba-
tion of neuronal degeneration and death through producing cytokines, chemokines, reactive oxygen species, and 
nitric oxide12. Besides, microglia-mediated neuroinflammation is also involved in the genetics and neuropathol-
ogy of late-onset AD13. Apart from microglia, astrocyte, an important player in maintenance of homoeostasis 
of brain tissue microenvironment, is found not to be an innocent bystander in AD pathogenesis14. In addition 
to internalization and degradation of Aβ, activated astrocyte is likely involved in exacerbating neuroinflamma-
tion through releasing cytokine, interleukin, nitric oxide, and other potentially cytotoxic molecules15. Emerging 
evidence has suggested that the disease severity, individual differences, and complicated pathogenesis of AD may 
be attributed to multiple genes and their variants15–17. Therefore, identification and comprehensive analysis of 
potential candidate genes will deepen our understanding of the gene regulation in oxidative stress and immune 
reaction, which may provide promising candidate biomarkers and therapeutic targets for AD.

Materials and methods
Data sources.  All the data we used in our study are publicly accessible at NCBI GEO (Accession Number: 
GSE48350 and GSE1297) database (https://​www.​ncbi.​nlm.​nih.​gov/​geo/). The GSE48350 dataset, contained 253 
samples, was based on GPL570 platform (HG-U133_Plus_2). Sample inclusion criteria were (1) hippocampal 
tissue; (2) age over 60-year-old. Because all genes expression levels in GSM300182 (Control) and GSM1176215 
(AD) were the same, these two samples were considered abnormal and were eliminated. Data of 24 hippocam-
pal control and 18 hippocampal AD samples were extracted for analysis. GSE1297 was based on GPL96 [HG-
U133A] Affymetrix Human Genome U133A Array, which included hippocampal samples of 22 AD patients and 
9 normal people. The inclusion criteria of GSE1297 were the same as those of GSE48350. GSE48350 was used as 
the training set and GSE1297 was used as the external validation set. 1399 oxidative stress-related genes (OSGs) 
were obtained from the GeneCards (https://​www.​genec​ards.​org/)18. The workflow of this study was shown in 
Fig. 1.

https://www.ncbi.nlm.nih.gov/geo/
https://www.genecards.org/
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Identification of differentially expressed genes (DEGs).  The Limma package was applied to iden-
tify the DEGs in AD19. DEGs were generated according to the following criterion: adj. P < 0.05. The results of 
DEGs were visualized by the heatmap and volcano plot, which were made by using “pheatmap” and “ggplot2” 
R packages. The differentially expressed oxidative stress genes (DEOSGs) were screened by the intersection of 
DEGs and OSGs with “VennDiagram” R package20.

Functional enrichment analysis.  The clusterProfiler package was applied to perform the Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. GO analysis encompassed 
cellular component, biological function, and molecular function. A P < 0.05 was considered statistically signifi-
cant. KEGG was performed to analyze the associated enrichment pathways. Adjust P-value < 0.05 was consid-
ered statistically significant.

Immune infiltration analysis.  Gene Set Variation Analysis (GSVA) is a non-parametric, unsupervised 
algorithm. GSVA R package was applied in ssGSEA for the analysis of immune cell infiltration in AD and control 
samples21, which including activated CD4 T cell, activated B cell, activated CD8 T cell, activated dendritic cell, 
CD56bright natural killer cell, CD56dim natural killer cell, central memory CD4 T cell, effector memeory CD4 
T cell, central memory CD8 T cell, effector memeory CD8 T cell, gamma delta T cell, macrophage, eosinophil, 
immature B cell, immature dendritic cell, mast cell, MDSC, memory B cell, monocyte, neutrophil, plasmacytoid 
dendritic cell, regulatory T cell, T follicular helper cell, natural killer cell, natural killer T cell, Type 1 T helper 
cell, Type 2 T helper cell, and Type 17 T helper cell. Metagene of 28 immune cell subtypes was obtained from 
https://​www.​cell.​com/​cms/​10.​1016/j.​celrep.​2016.​12.​019/​attac​hment/​f353d​ac9-​4bf5-​4a52-​bb9a-​775e7​4d5e9​68/​

Figure 1.   Workflow to identify oxidative stress and immune-related genes of Alzheimer’s disease. WGCNA 
weighted gene co-expression network analysis, GO gene ontology, KEGG kyoto encyclopedia of genes and 
genomes, DEOSGs differentially expressed oxidative stress genes, PPI protein–protein interaction, TFs 
transcription factors, qRT-PCR quantitative real-time PCR, ROC receiver operating characteristic.

https://www.cell.com/cms/10.1016/j.celrep.2016.12.019/attachment/f353dac9-4bf5-4a52-bb9a-775e74d5e968/mmc3.xlsx
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mmc3.​xlsx22. We compared the difference in proportion of immune cells in AD and control samples via Wil-
coxon tests. A P-value ≤ 0.05 was considered statistically significant.

Weighted gene co‑expression network analysis (WGCNA).  WGCNA is a systematic biological 
method used to describe gene association patterns between different samples. We performed WGCNA by using 
R package23. To detect outliers and remove abnormal samples, we established clustering tree map. WGCNA was 
carried out according to the gene expression profiles extracted from GSE48350 dataset and data collected from 
previous analysis of immune infiltration in AD and control samples. The best soft-thresholding power β was 
chosen according to the criteria of approximate scale-free topology. The adjacency matrix was transformed to 
a topological overlap matrix for the construction of network analysis. The gene dendrogram and module color 
were generated based on the degree of dissimilarity. Subsequently, the initial modules were further divided 
according to the dynamic tree cut and merged with similar modules. After that, the correlations between mod-
ules and differentially infiltrating immune cells were calculated. The module which was most closely associ-
ated with the differentially infiltrating immune cells, was identified for subsequent analysis. The intersection of 
DEOSGs and genes in key modules were carried out by using the “VennDiagram” R package. The shared genes 
were defined as immune-related DEOSGs, which were used for subsequent analysis.

Protein–protein interaction  (PPI) network construction.  The immune-related DEOSGs were 
uploaded to the Search Tools for the Retrieval of Interacting Genes (STRING, http://​www.​string-​db.​org/)24. In 
the PPI network analysis, a confidence > 0.4 was defined as the cut-off criterion. MCODE plug-in (degree cut-
off = 2, node score cutoff = 0.2, K-core = 2, and max depth = 100) in Cytoscape (https://​cytos​cape.​org) was applied 
for the analysis of key gene modules in the PPI network. Key modules genes were defined as hub genes.

Receiver operating characteristic (ROC) curve analysis.  To verify the accuracy of screened hub 
genes, we performed ROC curve and area under the curve (AUC) analysis by using the “pROC” package. Genes 
with AUC > 0.7 were identified as useful for disease diagnosis. Two gene expression datasets including GSE48350 
and GSE1297 were applied for expression pattern analysis of hub genes generated in previous section. Boxplots 
of gene expression profile of hub genes were generated by using “ggplot2” in R package.

Quantitative real‑time  PCR (qRT‑PCR) analysis of diagnostic genes based on clinical sam‑
ples.  We performed qRT-PCR analysis to verify the expression of diagnostic genes in peripheral blood of AD 
patients. The blood samples were obtained from 9 AD patients and 9 healthy control individuals. Briefly, total 
RNA from peripheral blood was extracted using Takara RNAiso Plus (9108) Trizol reagent. After assessment of 
RNA quality and concentration, reverse transcription and qRT-PCR were performed using the Takara Prime-
Script RT Master Mix (RR036A) and SYBR Green Premix (RR420A), respectively. Primer sequences of target 
genes were as follows: forward 5′- CCC​CAG​ACT​CCG​TCA​GTT​TCT-3′, reverse 5′-CAT​TCT​CCG​TCT​GGT​
TGG​GT-3′ for SST; forward 5′-TGT​TCC​CAG​AAC​TCG​GCT​TG-3′, reverse 5′-TGCA TTG​GTA​GGA TGG​
GTG​G-3′ for NPY; forward 5′-GAG​CAG​CCA​AGC​TGA​AGA​GAAC-3′, reverse 5’-GCC​ATT​TCT​TAG​AGT​
TCA​GGC​ATG​-3’ for GAP43; forward 5′-CCA​AGA​CCT​CCT​CAA​CGT​GAAG-3′, reverse 5′-ATG​CTT​CCC​
ACG​CTG​GTG​AAAC-3′ for NEFL; forward 5′-TGA​GGG​TAT​CGC​AGA​GAA​CGGA-3′, reverse 5′-CGG​TCA​
CTT​ATC​CTG​TGG​CTGG-3′ for CCK; forward 5′-CTG​TTC​CTC​ACA​GCC​ATC​GACA-3′, reverse 5′-TGG​CTA​
TGG​TCC​ACA​TCA​GGCA-3′ for CNR1; forward 5′-CTG​AAT​TAC​TGG​TCC​GAC​TG-3′, reverse 5′-AGA​ACT​
GCT​GAG​GCT​TGG​-3′ for TAC1; forward 5′-TGG​TTT​TTA​GGG​GTT​TTT​TTT​TTT​GGA-3’, reverse 5′-ACA​
AAT​ACA​CCC​CCT​TTA​ATC​TAC​TCTCC-3’ for GAD1; forward 5′-TGC​AGG​TTT​CCC​AAA​TTT​TC-3′, reverse 
5′-GTG​CAG​CTA​CCG​CCT​AGT​G-3′ for PENK. qRT-PCR was performed in technical triplicate for per target 
gene. Relative transcript abundance was determined by using the ΔΔCt method and normalized to the averaged 
mRNA expression levels of β-actin. The protocol was reviewed and approved by the Ethics Committee of the 
First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital.

Correlation analysis of diagnostic genes and functional similarity analysis of diagnostic 
genes.  Corrplot package was applied for the correlation analysis of diagnostic gene. GOSemSim in R pack-
age (http://​bioco​nduct​or.​org/​packa​ges/2.​6/​bioc/​html/​GOSem​Sim.​html) was used to perform GO semantic 
similarity analysis25. The potential diagnostic biomarker was evaluated by using the geometric mean of semantic 
similarities.

Correlation analysis between infiltrating immune cells and diagnostic genes.  We calculated the 
Spearman correlation coefficient between diagnostic genes and differentially infiltrating immune cells by using 
“psych” package26. The results were visualized by “ggpubr” package27. Spearman’s correlation coefficients ranged 
between -1 and 1. The coefficients − 1, 0 and 1 indicated negative, no, and positive correlation, respectively.

Drug predication for diagnostic genes.  To screen candidate drugs targeting diagnostic genes, we uti-
lized the Drug Gene Interaction Database (DGIdb) (https://​dgidb.​genome.​wustl.​edu)28. The results were visual-
ized in Cytoscape.

Construction of gene‑miRNA regulatory network.  To construct gene-miRNA regulatory network, 
we utilized the miRNet database (https://​www.​mirnet.​ca/)29. Cytoscape was applied for the visualization of regu-

https://www.cell.com/cms/10.1016/j.celrep.2016.12.019/attachment/f353dac9-4bf5-4a52-bb9a-775e74d5e968/mmc3.xlsx
http://www.string-db.org/
https://cytoscape.org
http://bioconductor.org/packages/2.6/bioc/html/GOSemSim.html
https://dgidb.genome.wustl.edu
https://www.mirnet.ca/
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latory network. In the network, a green round dot represented a diagnostic gene and a light orange triangle dot 
represented a miRNA.

Construction of gene‑transcription factor regulatory network.  To construct gene-transcription 
factor (TF) regulatory network, we exploited the Network Analyst database (https://​www.​netwo​rkana​lyst.​ca/)30. 
Cytoscape was applied for the visualization of regulatory network. In the network, a green round dot represented 
a diagnostic gene and a blue triangle dot represented a TF.

Statistical analysis.  All statistical analysis were performed by using R software (v.4.1.0). Wilxcon test was 
utilized to compare the differences in immune cells between two groups. Spearman correlation coefficients were 
calculated to determine the correlation of diagnostic genes. ROC curves were generated with the R package 
“pROC”, and the corresponding AUC values were calculated. Student’s t test was used to determine the differ-
ences of qRT-PCR data between two groups. A p-value or if necessary adjusted P-value < 0.05 was considered 
statistically significant.

Results
Identification of DEGs and DEOSGs in AD.  1160 DEGs were identified from GSE48350 dataset, 
included 259 upregulated and 901 downregulated genes (AD vs. Control). Figure 2A,B demonstrated the vol-
cano plots and heatmaps of DEGs. The Venn diagrams showed that 111 DEOSGs were overlapped between 
DEGs and OSGs (Fig. 2C). The GO analysis suggested that DEOSGs were mainly enriched in oxidative stress 
response, regulation of peptide secretion, neuronal cell body, distal axon, protein serine/threonine kinase activ-
ity, and protein self-association (Fig. 2D). The KEGG enrichment analysis revealed that the DEOSGs were pre-
dominately related to pathways involved in neurodegeneration-multiple diseases, FoxO signaling pathway, and 
gap junction (Fig. 2E).

Immune infiltrating cell analysis of AD.  The profile of immune infiltration in AD was explored by using 
ssGSEA. The distribution of 28 infiltrating immune cells was demonstrated in the heatmap (Fig. 3A). Abundance 
of effector memory CD8 T cell, activated B cell, memory B cell, natural killer cell, CD56 bright natural killer cell, 
natural killer T cell, plasmacytoid dendritic cell, and neutrophil were found significantly higher in AD samples 
compared to those in control group (Fig. 3B). This result indicated the critical role played by immune cells in 
the pathogenesis of AD.

Identification of the key module and genes associated with oxidative stress and immune reac‑
tion in AD.  A sample dendrogram showed that two abnormal samples were removed, and 40 samples were 
analyzed (Fig. 4A). The best soft-threshold power of 14 was selected based on the construction of scale-free 
network (Fig. 4B). 27 gene modules were obtained through the construction of co-expression matrix (Fig. 4C). 
Based on the module-trait relationships in Fig. 4D, we found that the turquoise module was the one with highest 
relevance to plasmacytoid dendritic cell (Cor = − 0.84, p = 7e − 12). Therefore, the turquoise module was used 
for downstream analysis. We took the intersection of DEOSGs and genes in turquoise modules and identified 66 
immune-related DEOSGs (Fig. 4E).

Identification of hub genes associated with oxidative stress and immune reaction in AD.  PPI 
network was displayed in Fig. 5A. 15 hub genes (CCK, ACHE, GRM1, GAD1, TAC1, PENK, NEFH, CALB2, 
NPY, CNR1, GAP43, CRH, PDYN, NEFL, and SST) in AD were identified by using MCODE plug-in Cytoscape, 
and the PPI network of 15 hub genes was shown in Fig. 5B.

Evaluation of the diagnostic value of hub genes in AD.  We evaluated the diagnostic performance of 
hub genes by plotting ROC curves of GSE48350 and GSE1297 (Fig. 6A,B). The AUC values of 9 hub genes (CCK, 
CNR1, GAD1, GAP43, NEFL, NPY, PENK, SST, and TAC1) were larger than 0.7 in two datasets, which indicated 
that these hub genes possessed favorable diagnostic values in AD.

We further performed ROC curve analysis of the male and female samples in GSE48350 to evaluate the 
gender-specific effect of the above 9 hub genes. As illustrated in Fig. 7, the AUC values of CCK, CNR1, GAD1, 
GAP43, NEFL, NPY, PENK, SST, and TAC1 were 0.963, 0.907, 0.907, 0.944, 0.926, 0.87, 0.861, 0.963 and 0.833, 
respectively (Fig. 7A). The results demonstrated that the 9 hub genes had high diagnostic accuracy in the female 
patients with AD. For the male samples in GSE48350, NEFL, PENK, and TAC1 were identified with high diag-
nostic accuracy and the AUC values were 0.704, 0.769, and 0.722, respectively (Fig. 7B).

The gene expression levels of 9 diagnostic genes were significantly reduced in AD samples compared to control 
samples in GSE48350 and GSE1297 (Fig. 8A,B).

Verification of diagnostic genes in the clinical samples.  We next performed qRT-PCR experiments 
to validate the expression of diagnostic genes in the blood samples from AD patients. The data showed that the 
mRNA expression level of SST, NPY, GAP43, CCK, and PENK in AD significantly decreased compared with that 
of the control (Fig. 9; all P < 0.01). Conversely, the opposite result was observed for NEFL (P < 0.01). There were 
no significant differences between the two groups in terms of CNR1, TAC1, and GAD1 expression.

https://www.networkanalyst.ca/
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Functional enrichment analysis of diagnostic genes.  The GO and KEGG enrichment analysis indi-
cated that 9 diagnostic genes were mainly enriched in pathways related to distal axon, sensory perception of 
pain, neuropeptide hormone activity, and neuroactive ligand-receptor interaction (Fig. 10A).

Correlation analysis and functional similarity analysis of diagnostic genes.  The correlations 
among 9 diagnostic genes were analyzed in GSE48350 (Fig. 10B). There was a significant positive correlation 
among hub genes. Of these, NEFL and GAP43, as well as SST and NPY, had the strongest correlation with high 
correlation coefficients at 0.86. The results of functional similarity revealed a higher functional similarity of four 
hub genes including SST, NPY, CCK, and TAC1 (similarity score > 0.5) (Fig. 10C). Among them, SST had the 
highest functional similarity score.

Correlation analysis between diagnostic genes and immune cells.  For the purpose of better 
understanding the role of 9 diagnostic genes in immune infiltration, we performed spearman correlation analy-
sis to determine the correlation of hub genes with immune cell infiltration. Correlation analysis showed sig-
nificantly negative correlation of 5 hub genes (CNR1, GAD1, GAP43, NEFL, and SST) with the differentially 
infiltrating immune cells (effector memory CD8 T cell, activated B cell, memory B cell, natural killer cell, CD56 
bright natural killer cell, natural killer T cell, plasmacytoid dendritic cell, and neutrophil) (P < 0.05) (Fig. 11). 

Figure 2.   (A) Volcano plots of differentially expressed genes (DEGs). The red dots represent upregulated genes, 
and the green dots represent downregulated genes. (B) Heatmaps of DEGs. (C) An overlap of 111 DEOSGs 
between DEGs and OS-related genes in Venn diagram. (D) GO analysis of DEOSGs. (E) KEGG pathway 
enrichment analysis of DEOSGs.
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Other hub genes (CCK, NPY, TAC1, and PENK) also showed negative correlation with partial differentially 
infiltrating immune cells. Plasmacytoid dendritic cell (pDC) showed the strongest correlation with all hub genes 
compared with other differentially infiltrating immune cells.

Identification of potential therapeutic agents of diagnostic genes.  We tried to identify potential 
therapeutic agents modulating the expression of diagnostic genes in AD by using DGIdb. A total of 76 candi-
date agents for AD treatment were identified (Fig. 12A and Supplementary Table 1). In this study, we identi-
fied 39 agents (i.e. nabilone and olorinab) targeting CNR1 expression, 22 agents (i.e. digoxin and haloperidol) 
targeting TAC1 expression, 7 agents (i.e. cysteamine and streptozocin) targeting SST expression, 5 agents (i.e. 
rosiglitazone and bromocriptine) targeting NPY expression, 2 agents (chlorpromazine and diazoxide) targeting 
CCK expression, and 1 agent (methadone) targeting GAD1 expression. There was no specific type of interaction 
between 20 candidate agents and hub genes. Further investigation of these agents was still required. Specific 
types of interactions between other 56 candidate agents with hub genes were reported and visualized using 
Cytoscape software. Among the screened agents, 32 agents were reported potentially related to treatment of AD. 
Additionally, we did not identify any agents targeting NEFL, GAP43, or PENK in this database.

Prediction of potential miRNAs regulatory networks of diagnostic genes.  As illustrated in 
Fig. 12B, the interaction network consisted of 9 diagnostic genes and 152 miRNAs. NEFL was modulated by 79 
miRNAs (i.e. hsa-mir-103a-3p and hsa-mir-107). CNR1 was modulated by 22 miRNAs (i.e. hsa-mir-21-3p and 
hsa-mir-1-3p). GAD1 was modulated by 17 miRNAs (i.e. hsa-mir-122-5p and hsa-mir-202-3p). 13 miRNAs 
(i.e. hsa-mir-890 and hsa-mir-3125) were found targeting GAP43. 6 miRNAs (i.e. hsa-mir-574-5p and hsa-
mir-146a-5p) were found targeting CCK. 6 miRNAs (i.e. hsa-mir-106b-3p and hsa-mir-374b-3p) were found 
targeting SST, and 6 miRNAs (i.e. hsa-mir-130a-3p and hsa-mir-206) were found targeting TAC1. 2 miRNAs (i.e. 
hsa-mir-27a-3p and hsa-mir-302a-3p) were found targeting PENK, and hsa-mir-335-5p was found targeting 
NPY. In this network, hsa-mir-27a-3p regulated the largest number of hub genes with the highest connectively 
degree (= 5).

Prediction of potential TFs regulatory networks of diagnostic genes.  The interaction network 
consisted of 9 diagnostic genes and 91 TFs (Fig. 12C). CNR1 was modulated by 19 TFs (i.e. BRCA1 and FOS). 
GAD1 was modulated by 13 TFs (i.e. ARID3A and PRRX2), and GAP43 was modulated by 12 TFs (i.e. CREB1 
and GATA2). 11 TFs (i.e. ZNF354C and BRCA1) were found targeting CCK, and 9 TFs (i.e. CREB1 and FOXC1) 
were found targeting PENK. 8 TFs (i.e. SPIB and CREB1) were found targeting SST, and 8 TFs (i.e. JUN and 
CREB1) were found targeting TAC1. 6 TFs (i.e. BRCA1 and JUND) were found targeting NPY, and 5 TFs (i.e. 
GATA2 and YY1) were found targeting NEFL. In the gene-TF network, GATA2, FOXC1, and CREB1 showed 
the close interaction with hub genes.

Discussion
Available evidences suggest that AD pathogenesis is strongly associated with oxidative stress and immune micro-
environment. However, the mechanism of oxidative stress and neuroinflammation contributing to AD patho-
genesis is still not well defined. Intensive investigation of the underlying mechanism of oxidative stress and 
neuroinflammation in AD is prerequisite for developing effective interventions of AD. Via the PPI network and 
plotting ROC curve analysis, we identified 9 oxidative stress and immune-related hub genes (SST, NPY, GAP43, 
CCK, PENK, NEFL, CNR1, GAD1, and TAC1) with good diagnostic values in the training dataset GSE48350 
and external validation dataset GSE1297. In this study, we uncovered a significant negative correlation between 

Figure 3.   (A) Heatmap showing the distribution of 28 infiltrating immune cells in AD and normal samples. (B) 
ssGSEA analysis of immune infiltration of 28 immune cells.
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9 diagnostic genes and 8 differentially infiltrated immune cells. Somatostatin (SST), a well-known neuropeptide, 
is expressed throughout the brain in two different isoforms, SST-14 and SST-28. SST positive inhibitory neurons 
exert dendritic inhibition to regulate the firing activity of cortical neurons and maintain excitatory-inhibitory 
signal balance31. SST expression is found significantly reduced in the hippocampus of AD patients32. SST has 
been reported to be involved in regulating brain Aβ peptide metabolism and promoting aggregation of Aβ 
peptides32,33. Of note, our finding showed the highest functional similarity score of SST in functional similarity 
analysis of 9 diagnostic genes. Neuropeptide Y (NPY) is widely distributed in the nervous system, especially in 
GABAergic interneurons. Current finding suggests a remarkable impact of NPY in AD by reducing excitotoxic-
ity of glutamate and overactivity of glutamate receptor, decreasing neuroinflammation, preventing of oxidative 
stress and protecting of hippocampal and cortical cells from necrosis or apoptosis34. In this study, we found a 
close correlation between SST and NPY with high correlation coefficient of 0.86. Growth associated protein 43 
(GAP43), an axonal membrane protein and a biomarker of synaptic dysfunction, is essential to neural growth, 
axonal regeneration, and stabilization of synaptic function. GAP43 expression is downregulated within the brain 
tissues of AD patients35. The decreased level of exosomal GAP43 in blood is recognized as a potential biomarker 
for prediction of AD at the asymptomatic stage36. Neurofilament light chain (NEFL) is the most abundant 
cytoskeletal protein in large myelinated axons in adult central nervous system. Similar to plasma p-tau181, NEFL 

Figure 4.   (A) A sample dendrogram showed two abnormal samples were removed. (B) Analysis of the scale-
free fit index and mean connectivity through Scale-free network construction. (C) Clustering dendrogram. (D) 
Heatmap of module-trait relationships. The turquoise module was the most relevant module associated with 
plasmacytoid dendritic cell. (E) An overlap of 66 immune-related DEOSGs by intersection of DEOSGs and 
genes in turquoise modules.
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has been reported to be independently associated with cognition and neurodegeneration in AD37. Plasma NEFL 
may be superior to plasma t-tau in diagnostic and prognostic performance of AD38. Our finding revealed a close 
correlation between NEFL and GAP43 with relatively high correlation coefficient of 0.86. Neuropeptide cholecys-
tokinin (CCK) highly expresses in brain regions such as cerebral cortex and hippocampus, and selectively binds 
to CCK-B receptors in brain. CCK is important for memory retention and consolidation. CCK level is proposed 
as a possible compensatory protection in response to AD pathological progresses especially tau deposition39. 

Figure 5.   (A) PPI network construction for identification of hub genes. (B) 15 key modules genes (hub genes) 
were visualized by PPI network.
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Cannabinoids, a component of the endocannabinoid system, can temper the proinflammatory response medi-
ated by microglia in chronic neuroinflammation40. The expression of cannabinoid receptor 1 (CNR1) in the 
brain of AD patients is inconsistent41. Tachykinin precursor 1 (TAC1) is involved in encoding multiple types of 

Figure 6.   ROC curve validated the diagnostic significance of hub genes for AD in training dataset GSE48350 
(A) and external validation dataset GSE1297 (B). The AUC areas of 9 hub genes (CCK, CNR1, GAD1, GAP43, 
NEFL, NPY, PENK, SST, and TAC1) were greater than 0.7 in two datasets.
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neuropeptides in central nervous system, such as substance P and neurokinin42,43. Downregulation of substance 
P is found in the hippocampus of AD patients44. Substance P may play an important role in the processing of 
non-amyloidogenic amyloid precursor protein45. Expression alteration of glutamate decarboxylase 1 (GAD1), a 
primary GABA synthesizing enzyme, is found in the prefrontal and temporal cortex of AD patients46. The spe-
cific role of GAD1 in AD is poorly understood. Proenkephalin (PENK), a small endogenous opioid peptide, 
exerts depressive effects on cardiac and renal function47. Expression of midregional PENK A is downregulated 
in dementia disorders and acute neuroinflammation48. Given limited preliminary data, the molecular mecha-
nism of these 9 oxidative stress and immune-related hub genes contributing to AD pathogenesis is still poorly 
understood. More targeted researches are expected to unveil their roles and values in AD.

The GO and KEGG enrichment analysis indicated that 9 hub genes were mainly enriched in distal axon, neu-
ropeptide hormone activity, neuroactive ligand-receptor interaction. The neuroactive ligand-receptor interaction 
signaling pathway plays an important role in the regulation of neuron function through modulating transcription 
factors and gene expression49. Disruption of the genes involved in neuroactive ligand-receptor interaction can 
lead to diminished memory function50. Our finding revealed a significant negative correlation between diagnostic 
genes and differential immune cells. Notably, pDC showed the strongest correlation with all diagnostic genes. 
pDC is first recognized as an important regulator of the immune response to virus infection because of its capac-
ity of producing large amounts of IFN-α51. In recent years, it becomes apparent that pDC performs a broad range 
of functions, including innate, adaptive, activating, regulative, protective, and pathogenic functions52. A recent 
study reports that dendritic cell (DC)-based vaccination may be useful in the treatment of neurodegenerative 
diseases53. Enhancement of immune response with DC-based vaccine therapy could potentially enhance antibody 
production, renewal of neuronal cell, and protection of neuronal cell.

To our best knowledge, there is no definitive drug available in AD treatment. Development of effective phar-
macological intervention is still a long-standing challenge. We applied the DGIdb database to identify potential 
therapeutic agents targeting 9 hub genes. A list of 76 potential therapeutic agents against AD were screened. 
Except for NEFL, GAP43, and PENK, one or more potential therapeutic agents were identified for other hub 
genes. Among the screened agents, 31 agents have been reported in AD treatment through different mechanisms. 
For example, cannabidiol can exert a neuroprotective effect and the mechanism may involve the upregulation of 
pro-caspase 3 expression and simultaneously downregulation of caspase 3 expression54. Quetiapine can alleviate 
psychotic symptoms and hostility of AD subjects via potentiating the anti-butyrylcholinesterase (BuChE) activity 
of donepezil55. Digoxin shows its anti-inflammatory and anti-oxidative effects in animal study on dementia, and 
significantly reduces memory loss by decreasing hippocampal cell death56. Further animal and clinical researches 
are needed to verify the safety and effectiveness of these candidate agents in AD treatment.

Our study further revealed the features of potential miRNA-hub gene and TF-hub gene regulatory networks, 
which may provide valuable knowledge about cellular functions and biological processes in AD. Among the 
152 miRNAs, hsa-mir-27a-3p appeared to be the most closely related to the 5 hub genes including CNR1, SST, 
PENK, CCK, and NEFL. Few data are available on the role of hsa-mir-27a-3p in AD. Preliminary evidence shows 
that hsa-miR-27a-3p expression is downregulated in cerebrospinal fluid of AD patients, which is accompanied 
by high level of tau protein and low level of β-amyloid protein57. Cellular and animal experiments reveal that 
downregulation of mir-27a-3p expression is critical for lncRNA NEAT1 regulation in AD development58. TF-
hub gene network analysis suggested that GATA2, FOXC1, and CREB1 shared the closest interactions with the 
hub genes. GATA-binding protein 2 (GATA2) has been extensively studied in haematologica59,60, and recently 

Figure 7.   Gender-specific effect of 9 hub genes. The AUC values of 9 hub genes were greater than 0.7. 
The results demonstrated that 9 hub genes had high diagnostic accuracy in the female patients with AD. For the 
male patients, NEFL, PENK, and TAC1 were identified with high diagnostic accuracy with AUC values greater 
than 0.7.
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recognized as a crucial TF in modulating the expression of monoamine oxidase A in neuronal/cardiovascular 
disease61. As a member of the forkhead box transcription factor family, forkhead box C1 (FOXC1) is involved 

Figure 8.   Comparison of diagnostic genes expression between AD and control samples in training dataset 
GSE48350 (A) and external validation dataset GSE1297 (B). The 9 diagnostic genes including CCK, CNR1, 
GAD1, GAP43, NEFL, NPY, PENK, SST, and TAC1 were significantly reduced in AD samples compared with 
the control group.
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in the development of embryo, multiple organs, and tumor62. FOXC1 can positively regulate cell viability and 
resistance to oxidative stress in eye63. FOXC1 is crucial for cerebellar development and FOXC1 loss correlates 
with the pathogenesis of Dandy-Walker malformation64. Cyclic adenosine monophosphate responsive element-
binding protein 1 (CREB1), a leucine-zipper TF, is critical for the formation and consolidation of memory65. 
Impairment of CREB signaling can exacerbate cognitive decline in vascular dementia66. CREB-phosphorylation 
in microglia is involved in Aβ-induced neuronal toxicity and transient memory loss67. Further experiments are 
required to fully elucidate the specific roles of hsa-miR-27a-3p, GATA2, FOXC1, and CREB1 in the regulation 
of oxidative stress and inflammatory immune response in AD pathogenesis.

There were some limitations in present study. Our findings were based on limited genetic data from GEO data-
base. The qRT-PCR analysis was based on a relatively small sample size. Moreover, the key DEGs and pathways 
related to oxidative stress and inflammatory immune response in AD pathogenesis were not identified according 
to different stages of AD. The findings presented in this study prompt us to believe that these identified potential 
biomarkers are specific for AD to some extent. However, whether these biomarkers are specific enough to other 
types of dementia, still requires further verification.

Conclusion
Based on overlapping DEGs between oxidative stress and inflammatory immune response in AD pathogen-
esis, we identified 9 hub genes (SST, NPY, GAP43, CCK, PENK, NEFL, CNR1, GAD1, and TAC1) with good 
diagnostic values for AD. Furthermore, we revealed the miRNAs and TFs regulatory networks, as well as the 
potential therapeutic agents targeting these hub genes. Our findings highlighted the importance of genetic 

Figure 9.   Experimental validation of diagnostic genes by qRT-PCR analysis. Data revealed the downregulation 
of SST, NPY, GAP43, CCK, and PENK and upregulation of NEFL in the blood of AD patients compared to 
healthy control subjects. *P-value < 0.05 and **P-value < 0.01.
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factors in oxidative stress and inflammatory immune response and provided new insights for future studies on 
the molecular mechanisms and therapeutic targets of AD. Further researches are needed to elucidate the clinical 
application value of biomarkers in AD, and to determine the generalizability of our findings.

Figure 10.   (A) Functional enrichment analysis of 9 diagnostic genes. The GO and KEGG enrichment analysis 
indicated that 9 diagnostic genes were mainly enriched in distal axon, sensory perception of pain, neuropeptide 
hormone activity, and neuroactive ligand-receptor interaction. (B) Correlations analysis of diagnostic genes. 
There was a positive correlation between genes. Among them, NEFL and GAP43, SST and NPY had the 
strongest correlation. (C) Functional similarity analysis of 9 diagnostic genes. SST had the highest functional 
similarity score.
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Figure 11.   Correlation analysis between diagnostic genes and immune cells. Five hub genes including CNR1, 
GAD1, GAP43, NEFL, and SST, had significantly negative relationship with the differentially infiltrating 
immune cells including effector memeory CD8 T cell, activated B cell, memory B cell, natural killer cell, CD56 
bright natural killer cell, natural killer T cell, plasmacytoid dendritic cell, and neutrophil.
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Data availability
All the data we used in our study are publicly accessible at NCBI GEO database (accession number: GSE48350 
and GSE1297; https://​www.​ncbi.​nlm.​nih.​gov/​geo/).

Figure 12.   (A) Drug–gene interaction diagram. Green circle indicated the related diagnostic gene and pourpre 
ellipse indicated the drug. A total of 76 candidate drugs for AD treatment were identified by using DGIdb 
database. (B) Potential miRNAs regulatory networks. The interaction network consisted of 9 diagnostic genes 
and 152 miRNAs. The top three hub genes were NEFL (modulated by 79 miRNAs), CNR1 (modulated by 22 
miRNAs), and GAD1 (modulated by 17 miRNAs). (C) Potential TFs regulatory networks. The interaction 
network consisted of 9 diagnostic genes and 91 TFs. The top three hub genes were CNR1 (modulated by 19 
TFs), GAD1 (modulated by 13 TFs), and GAP43 (modulated by 12 TFs). GATA2, FOXC1, and CREB1 shared 
the closest interactions with the diagnostic genes.

https://www.ncbi.nlm.nih.gov/geo/


17

Vol.:(0123456789)

Scientific Reports |          (2023) 13:657  | https://doi.org/10.1038/s41598-023-27977-7

www.nature.com/scientificreports/

Received: 27 July 2022; Accepted: 11 January 2023

References
	 1.	 Zhang, T., Liu, N., Wei, W., Zhang, Z. & Li, H. Integrated analysis of weighted gene coexpression network analysis identifying six 

genes as novel biomarkers for Alzheimer’s disease. Oxid. Med. Cell Longev. 2021, 9918498. https://​doi.​org/​10.​1155/​2021/​99184​98 
(2021).

	 2.	 Aggleton, J. P., Pralus, A., Nelson, A. J. & Hornberger, M. Thalamic pathology and memory loss in early Alzheimer’s disease: Moving 
the focus from the medial temporal lobe to Papez circuit. Brain 139, 1877–1890. https://​doi.​org/​10.​1093/​brain/​aww083 (2016).

	 3.	 Querfurth, H. W. & LaFerla, F. M. Alzheimer’s disease. N. Engl. J. Med. 362, 329–344. https://​doi.​org/​10.​1056/​NEJMr​a0909​142 
(2010).

	 4.	 2021 Alzheimer’s disease facts and figures. Alzheimers Dement 17, 327-406, doi:https://​doi.​org/​10.​1002/​alz.​12328 (2021).
	 5.	 Butterfield, D. A. & Halliwell, B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat. Rev. Neurosci. 

20, 148–160. https://​doi.​org/​10.​1038/​s41583-​019-​0132-6 (2019).
	 6.	 Li, J. et al. Conservation and divergence of vulnerability and responses to stressors between human and mouse astrocytes. Nat. 

Commun. 12, 3958. https://​doi.​org/​10.​1038/​s41467-​021-​24232-3 (2021).
	 7.	 Forman, H. J. & Zhang, H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat. Rev. Drug 

Discov. 20, 689–709. https://​doi.​org/​10.​1038/​s41573-​021-​00233-1 (2021).
	 8.	 Butterfield, D. A. & Boyd-Kimball, D. Redox proteomics and amyloid beta-peptide: Insights into Alzheimer disease. J. Neurochem. 

151, 459–487. https://​doi.​org/​10.​1111/​jnc.​14589 (2019).
	 9.	 Hampel, H. et al. The amyloid-beta pathway in Alzheimer’s disease. Mol. Psychiatry 26, 5481–5503. https://​doi.​org/​10.​1038/​s41380-​

021-​01249-0 (2021).
	10.	 Nordengen, K. et al. Glial activation and inflammation along the Alzheimer’s disease continuum. J. Neuroinflamm. 16, 46. https://​

doi.​org/​10.​1186/​s12974-​019-​1399-2 (2019).
	11.	 Kummer, M. P. et al. Ear2 deletion causes early memory and learning deficits in APP/PS1 mice. J. Neurosci. 34, 8845–8854. https://​

doi.​org/​10.​1523/​JNEUR​OSCI.​4027-​13.​2014 (2014).
	12.	 Hansen, D. V., Hanson, J. E. & Sheng, M. Microglia in Alzheimer’s disease. J. Cell Biol. 217, 459–472. https://​doi.​org/​10.​1083/​jcb.​

20170​9069 (2018).
	13.	 Jansen, I. E. et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. 

Nat. Genet. 51, 404–413. https://​doi.​org/​10.​1038/​s41588-​018-​0311-9 (2019).
	14.	 Zhao, J. et al. APOE epsilon4/epsilon4 diminishes neurotrophic function of human iPSC-derived astrocytes. Hum. Mol. Genet. 

26, 2690–2700. https://​doi.​org/​10.​1093/​hmg/​ddx155 (2017).
	15.	 Heneka, M. T. et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 14, 388–405. https://​doi.​org/​10.​1016/​S1474-​4422(15)​

70016-5 (2015).
	16.	 Efthymiou, A. G. & Goate, A. M. Late onset Alzheimer’s disease genetics implicates microglial pathways in disease risk. Mol. 

Neurodegener. 12, 43. https://​doi.​org/​10.​1186/​s13024-​017-​0184-x (2017).
	17.	 Bradshaw, E. M. et al. CD33 Alzheimer’s disease locus: Altered monocyte function and amyloid biology. Nat. Neurosci. 16, 848–850. 

https://​doi.​org/​10.​1038/​nn.​3435 (2013).
	18.	 Qiu, X., Hou, Q. H., Shi, Q. Y., Jiang, H. X. & Qin, S. Y. Identification of hub prognosis-associated oxidative stress genes in pancreatic 

cancer using integrated bioinformatics analysis. Front. Genet. 11, 595361. https://​doi.​org/​10.​3389/​fgene.​2020.​595361 (2020).
	19.	 Ritchie, M. E. et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 

43, e47. https://​doi.​org/​10.​1093/​nar/​gkv007 (2015).
	20.	 Chen, H. & Boutros, P. C. VennDiagram: A package for the generation of highly-customizable Venn and Euler diagrams in R. 

BMC Bioinform. 12, 35. https://​doi.​org/​10.​1186/​1471-​2105-​12-​35 (2011).
	21.	 Hanzelmann, S., Castelo, R. & Guinney, J. GSVA: Gene set variation analysis for microarray and RNA-seq data. BMC Bioinform. 

14, 7. https://​doi.​org/​10.​1186/​1471-​2105-​14-7 (2013).
	22.	 Charoentong, P. et al. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of 

response to checkpoint blockade. Cell Rep. 18, 248–262. https://​doi.​org/​10.​1016/j.​celrep.​2016.​12.​019 (2017).
	23.	 Langfelder, P. & Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 9, 559. https://​

doi.​org/​10.​1186/​1471-​2105-9-​559 (2008).
	24.	 Szklarczyk, D. et al. STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43, 

D447-452. https://​doi.​org/​10.​1093/​nar/​gku10​03 (2015).
	25.	 Yu, G. et al. GOSemSim: An R package for measuring semantic similarity among GO terms and gene products. Bioinformatics 26, 

976–978. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btq064 (2010).
	26.	 Zhang, L. et al. Dysregulated circulating apoptosis- and autophagy-related lncRNAs as diagnostic markers in coronary artery 

disease. Biomed. Res. Int. 2021, 5517786. https://​doi.​org/​10.​1155/​2021/​55177​86 (2021).
	27.	 Cheng, Q., Chen, X., Wu, H. & Du, Y. Three hematologic/immune system-specific expressed genes are considered as the potential 

biomarkers for the diagnosis of early rheumatoid arthritis through bioinformatics analysis. J. Transl. Med. 19, 18. https://​doi.​org/​
10.​1186/​s12967-​020-​02689-y (2021).

	28.	 Cotto, K. C. et al. DGIdb 3.0: A redesign and expansion of the drug-gene interaction database. Nucleic Acids Res. 46, D1068–D1073. 
https://​doi.​org/​10.​1093/​nar/​gkx11​43 (2018).

	29.	 Fan, Y. & Xia, J. miRNet-functional analysis and visual exploration of miRNA-target interactions in a network context. Methods 
Mol. Biol. 215–233, 2018. https://​doi.​org/​10.​1007/​978-1-​4939-​8618-7_​10 (1819).

	30.	 Zhou, G. et al. NetworkAnalyst 3.0: A visual analytics platform for comprehensive gene expression profiling and meta-analysis. 
Nucleic Acids Res. 47, W234–W241. https://​doi.​org/​10.​1093/​nar/​gkz240 (2019).

	31.	 Song, Y. H., Yoon, J. & Lee, S. H. The role of neuropeptide somatostatin in the brain and its application in treating neurological 
disorders. Exp. Mol. Med. 53, 328–338. https://​doi.​org/​10.​1038/​s12276-​021-​00580-4 (2021).

	32.	 Gonzalez-Rodriguez, M. et al. Somatostatin and astroglial involvement in the human limbic system in Alzheimer’s disease. Int. J. 
Mol. Sci. 22, 8434. https://​doi.​org/​10.​3390/​ijms2​21684​34 (2021).

	33.	 Saito, T. et al. Somatostatin regulates brain amyloid beta peptide Abeta42 through modulation of proteolytic degradation. Nat. 
Med. 11, 434–439. https://​doi.​org/​10.​1038/​nm1206 (2005).

	34.	 Zheng, Y., Zhang, L., Xie, J. & Shi, L. The emerging role of neuropeptides in Parkinson’s disease. Front. Aging Neurosci. 13, 646726. 
https://​doi.​org/​10.​3389/​fnagi.​2021.​646726 (2021).

	35.	 Goetzl, E. J. et al. Decreased synaptic proteins in neuronal exosomes of frontotemporal dementia and Alzheimer’s disease. FASEB 
J. 30, 4141–4148. https://​doi.​org/​10.​1096/​fj.​20160​0816R (2016).

	36.	 Jia, L. et al. Blood neuro-exosomal synaptic proteins predict Alzheimer’s disease at the asymptomatic stage. Alzheimers Dement. 
17, 49–60. https://​doi.​org/​10.​1002/​alz.​12166 (2021).

	37.	 Moscoso, A. et al. Longitudinal associations of blood phosphorylated tau181 and neurofilament light chain with neurodegenera-
tion in Alzheimer disease. JAMA Neurol. 78, 396–406. https://​doi.​org/​10.​1001/​jaman​eurol.​2020.​4986 (2021).

https://doi.org/10.1155/2021/9918498
https://doi.org/10.1093/brain/aww083
https://doi.org/10.1056/NEJMra0909142
https://doi.org/10.1002/alz.12328
https://doi.org/10.1038/s41583-019-0132-6
https://doi.org/10.1038/s41467-021-24232-3
https://doi.org/10.1038/s41573-021-00233-1
https://doi.org/10.1111/jnc.14589
https://doi.org/10.1038/s41380-021-01249-0
https://doi.org/10.1038/s41380-021-01249-0
https://doi.org/10.1186/s12974-019-1399-2
https://doi.org/10.1186/s12974-019-1399-2
https://doi.org/10.1523/JNEUROSCI.4027-13.2014
https://doi.org/10.1523/JNEUROSCI.4027-13.2014
https://doi.org/10.1083/jcb.201709069
https://doi.org/10.1083/jcb.201709069
https://doi.org/10.1038/s41588-018-0311-9
https://doi.org/10.1093/hmg/ddx155
https://doi.org/10.1016/S1474-4422(15)70016-5
https://doi.org/10.1016/S1474-4422(15)70016-5
https://doi.org/10.1186/s13024-017-0184-x
https://doi.org/10.1038/nn.3435
https://doi.org/10.3389/fgene.2020.595361
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1186/1471-2105-12-35
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1016/j.celrep.2016.12.019
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1093/nar/gku1003
https://doi.org/10.1093/bioinformatics/btq064
https://doi.org/10.1155/2021/5517786
https://doi.org/10.1186/s12967-020-02689-y
https://doi.org/10.1186/s12967-020-02689-y
https://doi.org/10.1093/nar/gkx1143
https://doi.org/10.1007/978-1-4939-8618-7_10
https://doi.org/10.1093/nar/gkz240
https://doi.org/10.1038/s12276-021-00580-4
https://doi.org/10.3390/ijms22168434
https://doi.org/10.1038/nm1206
https://doi.org/10.3389/fnagi.2021.646726
https://doi.org/10.1096/fj.201600816R
https://doi.org/10.1002/alz.12166
https://doi.org/10.1001/jamaneurol.2020.4986


18

Vol:.(1234567890)

Scientific Reports |          (2023) 13:657  | https://doi.org/10.1038/s41598-023-27977-7

www.nature.com/scientificreports/

	38.	 Illan-Gala, I. et al. Plasma tau and neurofilament light in frontotemporal lobar degeneration and Alzheimer disease. Neurology 
96, e671–e683. https://​doi.​org/​10.​1212/​WNL.​00000​00000​011226 (2021).

	39.	 Plagman, A. et al. Cholecystokinin and Alzheimer’s disease: A biomarker of metabolic function, neural integrity, and cognitive 
performance. Neurobiol. Aging 76, 201–207. https://​doi.​org/​10.​1016/j.​neuro​biola​ging.​2019.​01.​002 (2019).

	40.	 Young, A. P. & Denovan-Wright, E. M. The dynamic role of microglia and the endocannabinoid system in neuroinflammation. 
Front. Pharmacol. 12, 806417. https://​doi.​org/​10.​3389/​fphar.​2021.​806417 (2021).

	41.	 Cristino, L., Bisogno, T. & Di Marzo, V. Cannabinoids and the expanded endocannabinoid system in neurological disorders. Nat. 
Rev. Neurol. 16, 9–29. https://​doi.​org/​10.​1038/​s41582-​019-​0284-z (2020).

	42.	 Palamiuc, L. et al. A tachykinin-like neuroendocrine signalling axis couples central serotonin action and nutrient sensing with 
peripheral lipid metabolism. Nat. Commun. 8, 14237. https://​doi.​org/​10.​1038/​ncomm​s14237 (2017).

	43.	 He, Z. X. et al. Nucleus accumbens tac1-expressing neurons mediate stress-induced anhedonia-like behavior in mice. Cell. Rep. 
33, 108343. https://​doi.​org/​10.​1016/j.​celrep.​2020.​108343 (2020).

	44.	 Eapen, P. M., Rao, C. M. & Nampoothiri, M. Crosstalk between neurokinin receptor signaling and neuroinflammation in neuro-
logical disorders. Rev. Neurosci. 30, 233–243. https://​doi.​org/​10.​1515/​revne​uro-​2018-​0021 (2019).

	45.	 Severini, C., Petrella, C. & Calissano, P. Substance P and Alzheimer’s disease: Emerging novel roles. Curr. Alzheimer Res. 13, 
964–972. https://​doi.​org/​10.​2174/​15672​05013​66616​04011​14039 (2016).

	46.	 Schwab, C., Yu, S., Wong, W., McGeer, E. G. & McGeer, P. L. GAD65, GAD67, and GABAT immunostaining in human brain and 
apparent GAD65 loss in Alzheimer’s disease. J. Alzheimers Dis. 33, 1073–1088. https://​doi.​org/​10.​3233/​JAD-​2012-​121330 (2013).

	47.	 Jantti, T. et al. Predictive value of plasma proenkephalin and neutrophil gelatinase-associated lipocalin in acute kidney injury and 
mortality in cardiogenic shock. Ann. Intensive Care 11, 25. https://​doi.​org/​10.​1186/​s13613-​021-​00814-8 (2021).

	48.	 Ernst, A. et al. Midregional Proenkephalin A and N-terminal Protachykinin A are decreased in the cerebrospinal fluid of patients 
with dementia disorders and acute neuroinflammation. J. Neuroimmunol. 221, 62–67. https://​doi.​org/​10.​1016/j.​jneur​oim.​2010.​
02.​004 (2010).

	49.	 Wei, J., Liu, J., Liang, S., Sun, M. & Duan, J. Low-dose exposure of silica nanoparticles induces neurotoxicity via neuroactive 
ligand-receptor interaction signaling pathway in zebrafish embryos. Int. J. Nanomed. 15, 4407–4415. https://​doi.​org/​10.​2147/​IJN.​
S2544​80 (2020).

	50.	 Papassotiropoulos, A. & de Quervain, D. J. Failed drug discovery in psychiatry: Time for human genome-guided solutions. Trends 
Cogn. Sci. 19, 183–187. https://​doi.​org/​10.​1016/j.​tics.​2015.​02.​002 (2015).

	51.	 Mitchell, D., Chintala, S. & Dey, M. Plasmacytoid dendritic cell in immunity and cancer. J. Neuroimmunol. 322, 63–73. https://​
doi.​org/​10.​1016/j.​jneur​oim.​2018.​06.​012 (2018).

	52.	 Leylek, R. & Idoyaga, J. The versatile plasmacytoid dendritic cell: Function, heterogeneity, and plasticity. Int. Rev. Cell Mol. Biol. 
349, 177–211. https://​doi.​org/​10.​1016/​bs.​ircmb.​2019.​10.​002 (2019).

	53.	 Sabahi, M. et al. Modification of glial cell activation through dendritic cell vaccination: Promises for treatment of neurodegenera-
tive diseases. J. Mol. Neurosci. 71, 1410–1424. https://​doi.​org/​10.​1007/​s12031-​021-​01818-6 (2021).

	54.	 Li, H. et al. Overview of cannabidiol (CBD) and its analogues: Structures, biological activities, and neuroprotective mechanisms 
in epilepsy and Alzheimer’s disease. Eur. J. Med. Chem. 192, 112163. https://​doi.​org/​10.​1016/j.​ejmech.​2020.​112163 (2020).

	55.	 Sikora, J. et al. Quetiapine and novel PDE10A inhibitors potentiate the anti-BuChE activity of donepezil. J. Enzyme Inhib. Med. 
Chem. 35, 1743–1750. https://​doi.​org/​10.​1080/​14756​366.​2020.​18187​39 (2020).

	56.	 Erdogan, M. A., Kirazlar, M., Yigitturk, G. & Erbas, O. Digoxin exhibits neuroprotective properties in a rat model of dementia. 
Neurochem. Res. https://​doi.​org/​10.​1007/​s11064-​022-​03528-w (2022).

	57.	 Sala Frigerio, C. et al. Reduced expression of hsa-miR-27a-3p in CSF of patients with Alzheimer disease. Neurology 81, 2103–2106. 
https://​doi.​org/​10.​1212/​01.​wnl.​00004​37306.​37850.​22 (2013).

	58.	 Dong, L. X. et al. LncRNA NEAT1 promotes Alzheimer’s disease by down regulating micro-27a-3p. Am. J. Transl. Res. 13, 8885–
8896 (2021).

	59.	 Katerndahl, C. D. S. et al. Tumor suppressor function of Gata2 in acute promyelocytic leukemia. Blood 138, 1148–1161. https://​
doi.​org/​10.​1182/​blood.​20210​11758 (2021).

	60.	 Qiu, C. et al. The critical role of SENP1-mediated GATA2 deSUMOylation in promoting endothelial activation in graft arterio-
sclerosis. Nat. Commun. 8, 15426. https://​doi.​org/​10.​1038/​ncomm​s15426 (2017).

	61.	 Gupta, V., Khan, A. A., Sasi, B. K. & Mahapatra, N. R. Molecular mechanism of monoamine oxidase A gene regulation under 
inflammation and ischemia-like conditions: Key roles of the transcription factors GATA2, Sp1 and TBP. J. Neurochem. 134, 21–38. 
https://​doi.​org/​10.​1111/​jnc.​13099 (2015).

	62.	 Han, B. et al. FOXC1: An emerging marker and therapeutic target for cancer. Oncogene 36, 3957–3963. https://​doi.​org/​10.​1038/​
onc.​2017.​48 (2017).

	63.	 Berry, F. B. et al. FOXC1 is required for cell viability and resistance to oxidative stress in the eye through the transcriptional regula-
tion of FOXO1A. Hum. Mol. Genet. 17, 490–505. https://​doi.​org/​10.​1093/​hmg/​ddm326 (2008).

	64.	 Haldipur, P. et al. Phenotypic outcomes in mouse and human foxc1 dependent dandy-walker cerebellar malformation suggest 
shared mechanisms. Elife https://​doi.​org/​10.​7554/​eLife.​20898 (2017).

	65.	 Bartolotti, N. & Lazarov, O. CREB signals as PBMC-based biomarkers of cognitive dysfunction: A novel perspective of the brain-
immune axis. Brain Behav. Immun. 78, 9–20. https://​doi.​org/​10.​1016/j.​bbi.​2019.​01.​004 (2019).

	66.	 Han, X. R. et al. Effects of CREB1 gene silencing on cognitive dysfunction by mediating PKA-CREB signaling pathway in mice 
with vascular dementia. Mol. Med. 24, 18. https://​doi.​org/​10.​1186/​s10020-​018-​0020-y (2018).

	67.	 Gao, Y. et al. Microglia CREB-phosphorylation mediates amyloid-beta-induced neuronal toxicity. J. Alzheimers Dis. 66, 333–345. 
https://​doi.​org/​10.​3233/​JAD-​180286 (2018).

Author contributions
S.L. and J.X. conceived and designed the study, and prepared the manuscript. J.X., C.H. and J.S. collected and 
analyzed the data. S.L. revised the manuscript. All authors read and approved the final manuscript.

Funding
This study was supported by National Natural Science Foundation of China (Grant No. 82001318), Shandong 
Provincial Natural Science Foundation (Grant No. ZR2020QH119), Science and Technology Support Plan for 
Youth Innovation Teams of Colleges and Universities of Shandong Province of China (2021KJ095), Special Fund-
ing for Qilu Sanitation and Health Outstanding Young Yalent Cultivation Project to Shengjie Li, and Academic 
Promotion Programme of Shandong First Medical University (2019LJ005).

Competing interests 
The authors declare no competing interests.

https://doi.org/10.1212/WNL.0000000000011226
https://doi.org/10.1016/j.neurobiolaging.2019.01.002
https://doi.org/10.3389/fphar.2021.806417
https://doi.org/10.1038/s41582-019-0284-z
https://doi.org/10.1038/ncomms14237
https://doi.org/10.1016/j.celrep.2020.108343
https://doi.org/10.1515/revneuro-2018-0021
https://doi.org/10.2174/1567205013666160401114039
https://doi.org/10.3233/JAD-2012-121330
https://doi.org/10.1186/s13613-021-00814-8
https://doi.org/10.1016/j.jneuroim.2010.02.004
https://doi.org/10.1016/j.jneuroim.2010.02.004
https://doi.org/10.2147/IJN.S254480
https://doi.org/10.2147/IJN.S254480
https://doi.org/10.1016/j.tics.2015.02.002
https://doi.org/10.1016/j.jneuroim.2018.06.012
https://doi.org/10.1016/j.jneuroim.2018.06.012
https://doi.org/10.1016/bs.ircmb.2019.10.002
https://doi.org/10.1007/s12031-021-01818-6
https://doi.org/10.1016/j.ejmech.2020.112163
https://doi.org/10.1080/14756366.2020.1818739
https://doi.org/10.1007/s11064-022-03528-w
https://doi.org/10.1212/01.wnl.0000437306.37850.22
https://doi.org/10.1182/blood.2021011758
https://doi.org/10.1182/blood.2021011758
https://doi.org/10.1038/ncomms15426
https://doi.org/10.1111/jnc.13099
https://doi.org/10.1038/onc.2017.48
https://doi.org/10.1038/onc.2017.48
https://doi.org/10.1093/hmg/ddm326
https://doi.org/10.7554/eLife.20898
https://doi.org/10.1016/j.bbi.2019.01.004
https://doi.org/10.1186/s10020-018-0020-y
https://doi.org/10.3233/JAD-180286


19

Vol.:(0123456789)

Scientific Reports |          (2023) 13:657  | https://doi.org/10.1038/s41598-023-27977-7

www.nature.com/scientificreports/

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​023-​27977-7.

Correspondence and requests for materials should be addressed to S.L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023

https://doi.org/10.1038/s41598-023-27977-7
https://doi.org/10.1038/s41598-023-27977-7
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Identification and validation of oxidative stress and immune-related hub genes in Alzheimer’s disease through bioinformatics analysis
	Materials and methods
	Data sources. 
	Identification of differentially expressed genes (DEGs). 
	Functional enrichment analysis. 
	Immune infiltration analysis. 
	Weighted gene co-expression network analysis (WGCNA). 
	Protein–protein interaction (PPI) network construction. 
	Receiver operating characteristic (ROC) curve analysis. 
	Quantitative real-time PCR (qRT-PCR) analysis of diagnostic genes based on clinical samples. 
	Correlation analysis of diagnostic genes and functional similarity analysis of diagnostic genes. 
	Correlation analysis between infiltrating immune cells and diagnostic genes. 
	Drug predication for diagnostic genes. 
	Construction of gene-miRNA regulatory network. 
	Construction of gene-transcription factor regulatory network. 
	Statistical analysis. 

	Results
	Identification of DEGs and DEOSGs in AD. 
	Immune infiltrating cell analysis of AD. 
	Identification of the key module and genes associated with oxidative stress and immune reaction in AD. 
	Identification of hub genes associated with oxidative stress and immune reaction in AD. 
	Evaluation of the diagnostic value of hub genes in AD. 
	Verification of diagnostic genes in the clinical samples. 
	Functional enrichment analysis of diagnostic genes. 
	Correlation analysis and functional similarity analysis of diagnostic genes. 
	Correlation analysis between diagnostic genes and immune cells. 
	Identification of potential therapeutic agents of diagnostic genes. 
	Prediction of potential miRNAs regulatory networks of diagnostic genes. 
	Prediction of potential TFs regulatory networks of diagnostic genes. 

	Discussion
	Conclusion
	References


