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Variable effects of vegetation 
characteristics on a recreation 
service depending on natural 
and social environment
Masahiro Aiba 1*, Rei Shibata 2, Michio Oguro 3 & Tohru Nakashizuka 3

In this study, we examined roles of three vegetation characteristics in provisioning of a recreation 
service by applying a machine-learning method to 4,708,229 spatially-explicit records of hiking 
activity in Japan. Then, expected impacts of land-use changes assessed and mapped based on 
the model. Associations between a recreation service and three vegetation characteristics were 
considerably variable depending on the social and natural environment such as accessibility and 
altitude. As a consequence, expected impacts of unit changes in vegetation characteristics on the 
service flow were considerably heterogeneous throughout the study area. The signs (positive or 
negative) of the impact can be reversed depending on the contexts even among nearby sites. Such 
notable but variable contributions of vegetation on a recreation service should be carefully reflected 
in landscape management. Even moderate changes in either the quantity or quality of vegetation can 
have a considerable impact on the frequency of hiking activity. Landscape management for promotion 
of the recreation service should be carefully designed for each locality on the grounds of the context-
dependent effects of vegetation.

Understanding how various landscape characteristics including ecological, environmental, and social attributes 
influence an ecosystem service is essentially important for assessment, planning, and management for the sus-
tainable enjoyment1–4. Especially, identification of the relationships between ecological structures (e.g. species, 
communities, and vegetation characteristics) and ecosystem services is crucial to assess impacts of ecosystem 
changes on the services. This is because, without such knowledge, human impacts on the ecological structures 
(e.g. extinctions of species or vegetation shift due to climate change) cannot be fully reflected in an assessment 
of ecosystem services5. For example, empirical knowledge on wild bee’s dependence on some types of land-use 
available as nesting sites enabled to build an estimation model for crop pollination service6. The model was 
implemented in InVEST7 and has been used in numerous studies assessing impacts of land-use changes on the 
service8,9.

However, for cultural ecosystem services (CES), most of the assessments and forecasts have been performed 
without basis of knowledge of how ecological structures contribute to a service10. A common strategy for spatial 
assessments of CES is a proxy-based method that assigns a single value of a service to each land cover class based 
on an evidence collected often elsewhere outside of the study area3,11. Although the low reliability of the method 
that does not reflect ecological heterogeneity within a land cover class has been criticized, the method is still very 
popular possibly because, for CES, both collection of a primary data and development of a model that explicitly 
associates a service with ecological structures are difficult.

Recently, some empirical models have been developed to understand associations between ecological struc-
tures and CES12–17. These studies have revealed that CES can vary with ecological structures at least in some 
cases. For example, Ridding et al.13 demonstrated that proportion of forest positively associates with people’s 
preferences as a place of outdoor recreation. However, these models are often relatively simple and/or assume a 
consistent effect of ecological structures throughout a study area. This is possibly because modeling of CES often 
requires a relatively large number of explanatory variables encompassing ecological, environmental, and social 
factors, and therefore making the model further complex is not easy. However, there are plenty of evidences that 
an association between ecological structures and a CES, whose demand depends on sociocultural backgrounds 
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of beneficiaries, is complex and context-dependent. For example, Termansen et al.16, who analyzed a forest rec-
reation service in Denmark, found that people in areas characterized by higher average income enjoyed forest 
recreation more frequently. For another instance, Schirpke et al.14 showed that perception of Alpine landscapes 
is significantly different between tourists and residents.

If such a context-dependence is important for associations between a CES and ecological structures, spatial 
assessments of the services based on an average effect portrayed by a simple model (e.g. unit increase in natural 
vegetation uniformly promote a service flow throughout a study area irrespective of contexts) will be essentially 
misleading. One of the main purposes of a spatial assessment of an ecosystem service is to quantify spatial het-
erogeneity in effects of an artificial disturbance or a management policy on ecosystem services. Not only spatial 
heterogeneity in artificial disturbances but also heterogeneous responses of a service to unit change in ecological 
structures would be responsible for spatial heterogeneity in a CES. Therefore use of an over-simplified model that 
ignored heterogeneity in the association would skew the result. However, a relative impact of such heterogeneous 
associations in spatial assessments of a CES has been rarely examined.

Modeling the associations by using some types of machine-learning methods can be an effective solution 
of this problem. Given sufficiently large dataset, machine-learning technique such as boosted regression trees 
(BRT) enables efficiently building a flexible model where high-dimensional interactions and non-linear effects 
of numerous variables are properly accounted. Although previous studies that employed machine-learning to 
model a CES have focused only on average effects of the explanatory variables12,18, such flexibility of the tech-
nique is ideal for exploration of context-dependent contributions of ecological structures to a CES provisioning.

In this study, we applied BRT to 4,708,229 spatially-explicit records of hiking activity in Japan, which were 
obtained from a social networking service for hikers as a proxy of a recreation service flow. This dataset has 
advantage in interpretability of relationships between ecological structures and CES over data from general-
purpose social media (e.g. Flickr and Instagram) because all users of the service receive CES via a single activity, 
hiking. Number of records for 4244 approximately 10 km grids was modeled as a function of 50 ecological, envi-
ronmental, social and infrastructural variables. Then extent of context-dependence in association between the 
recreation service and three vegetation variables (total vegetation cover, proportion of natural vegetation to total 
vegetation, and proportion of primary vegetation to natural vegetation) was examined. Specific questions are (i) 
To what extent association between a recreation service and vegetation variables are context-dependent? (ii) What 
contexts are responsible for heterogeneity in association between the service and the vegetation variables?, and 
(iii) What is the importance of such context-dependent association for sustainable management of the service?

Results
Spatial patterns of the essential variables were summarized in Fig. 1. Thirty six percent of the variance of the 
number of hiking records were explained by our model (i.e. cross-validated R2 was 0.36). All of the fifty ecologi-
cal, environmental, and social/infrastructural variables were significant at P < 0.05 (Fig. 2). Among the variables, 
importance of maximum elevation in 10 km was dominant and followed by climate variables such as annual mean 
temperature and maximum snow depth and population density in multiple scales (Fig. 2). In terms of the absolute 
size of effects, importance of vegetation variables (i.e. total vegetation cover, proportion of natural vegetation to 
vegetation cover, proportion of primary vegetation to natural vegetation) were also not negligible. For example, 
mean absolute error increased 305% and 235% after permutation of proportion of primary vegetation in 10 km 
radius and total vegetation cover in 20 km radius, respectively. Although spatial scales at which each vegetation 
variables are most important were variable, hereafter we focus on variables at the scale of 10 km radius because 
land-use changes at the larger scales are unusual in Japan.

On average, associations of the record number with vegetation variables at the scale of 10 km radius seem 
weak (Fig. 3, black lines). However, the average trends are misleading because the estimated associations were 
quite variable among sites. For example, record number increased fourfolds or decreased by one-fourth with 
increasing proportion of primary vegetation from 0 to 1 depending on sites (Fig. 3c).

Friedman’s H values, which indicate importance of interactive effects as a proportion between 0 and 1, were 
relatively high for some variables, indicating that interactions with these variables are responsible for the het-
erogeneous associations (Fig. 4). The most important interactions were that with road density in 20 km for total 
vegetation cover, that with proportion of natural vegetation in 50 km for proportions of natural vegetation, and 
minimum elevation in 10 km for proportions of primary vegetation.

While associations with vegetation cover were consistently weak in less-accessible (road density in 20 km 
radius < 1 km km−2) sites but it was often considerably positive in more-accessible (road density in 20 km 
radius ≥ 5 km km−2) sites (Fig. 3a). Positive association with proportion of natural vegetation in 10 km was weaker 
in sites with higher proportion of natural vegetation at a regional (50 km) scale (Fig. 3b). Associations with pro-
portion of primary vegetation were often positive in high-altitude sites (minimum elevation in 10 km ≥ 200 m) 
but turned to negative in low-altitude sites (minimum elevation in 10 km < 10 m, Fig. 3c).

As a result of these context-dependent associations as well as the nonlinear, and sometimes non-monotonic, 
associations in the BRT model, expected responses of the recreation service flow to unit (0.1) decrease in vegeta-
tion variables were considerably heterogeneous throughout the study area (Fig. 5a–c). For all the three vegetation 
variables, the 0.1 decreases caused more than ± 30% change in the service flow at least in some sites. Because the 
variables responsible for the context-dependence, e.g. road density in 20 km, can greatly differ at a scale of tens 
of kilometers, predicted impacts of vegetation degradation were also variable at the relatively small spatial scale.
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Discussion
Vegetation variables, physical environment and social/infrastructural environment at various spatial scales were 
all important determinant of number of hiking records, which we considered as a surrogate of a recreation 
service flow. Importance of interactive effects among these variables sometimes exceeded 20% of the total effect 
of each variable, indicating that the relationships between these environmental variables and the service can be 
context-dependent. These results reinforce our previous finding that the recreation service is provisioned through 
interactions of biotic, abiotic and social environment at multiple spatial scales, which was obtained in the analysis 
performed on a tiny subset of the data analyzed in this study12. Associations between number of hiking records 
and vegetation characteristics considerably varied depending on contexts such as accessibility and elevation. As 
a result, the average trends of the associations can be misleading summaries of the associations. For example, on 
average, number of hiking records appears almost independent of proportion of primary vegetation at the 10 km 
scale although either positive or negative associations were expected in numerous sites. Hereafter we focus on 
such context-dependent associations between the recreation service and vegetation characteristics. For general 
discussions the delivery process of the service, see Aiba et al.12.

Frequency of hiking activity increased with total vegetation cover only in a highly accessible sites, which are 
often characterized also by dense population in the surrounding area. In contrast, total vegetation cover was 
not sufficient for attraction of hikers in less-accessible, sparsely-populated areas. It seems reasonable that urban 
residents who live in highly developed environment appreciate activities in easily accessible vegetated areas 
irrespective of the vegetation quality. It seems also reasonable that some difference of vegetation cover in rural 
area, where vegetation cover is generally high, cannot be a key factor for both local residents and visitors from 
cities. Although both vegetation cover13,19,20 and accessibility12,13,21 have been identified as an important factor for 
CES, to our knowledge this is the first evidence for importance of their interaction. As a result, negative effect of 
0.1 decrease in proportion of vegetation cover was expected mainly in suburban area close to densely populated 
areas such as Tokyo and Osaka throughout a year (see Figs. 5a and S1 with Fig. 1b). In contrast, the expected 
effects of 0.1 decrease were often positive in some isolated, highly-vegetated (total vegetation cover > 0.9), alpine 
areas such as the Japanese Alps and the Daisetsuzan mountains especially in winter. This is possibly because high 

Figure 1.   Maps of important variables in the study area summarized for the standard grids. (a) Number of 
hiking records, (b) population density in 10 km radius from the center of each grid with some big cities, (c) 
maximum altitude in 10 km, (d) total vegetation cover in 10 km, (e) proportion of natural vegetation to total 
vegetation cover in 10 km, (f) proportion of primary vegetation to natural vegetation in 10 km. The maps were 
drawn using R 4.1.1 software package29 with public data of the border (https://​www.​gsi.​go.​jp/​kanky​ochiri/​gm_​
jpn.​html).

https://www.gsi.go.jp/kankyochiri/gm_jpn.html
https://www.gsi.go.jp/kankyochiri/gm_jpn.html
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vegetation cover act as a surrogate of inaccessibility of these areas which are not well-captured by other variables 
in our model e.g. long walking time, absence of public transport, closure of a road in winter15.

Positive associations between hiking record number and proportion of natural vegetation in 10 km was rather 
consistent in regions with low to mid proportions of natural vegetation at a regional (50 km) scale. The associa-
tion was most remarkable and widespread in spring and autumn (Fig. S2), suggesting that seasonal attractions 
of natural vegetation, e.g., spring ephemerals, fresh green, and autumn colors, are important for the pattern. 
Hikers cannot expect these attractions in plantations because plantation species are mostly evergreen conifers. 
As a result, in spring and autumn, negative impacts of loss of natural vegetation were expected in numerous sites 
of both suburban and rural areas. In contrast, the positive association was weak in sites where proportion of 
natural vegetation is very high at a regional (50 km) scale. It is not surprising that proportion of natural vegeta-
tion cannot be a key for destination choice in an area where natural vegetation is generally high.

Context dependence was most remarkable for the association between the recreation service and proportion 
of primary vegetation. Hiking record number increased with increasing proportion of primary vegetation in 
10 km in high-altitude sites but decreased with the variable in low-altitude sites. Positive associations (negative 
impacts of primary vegetation loss) were detected widely in montane area in spring and autumn but in summer 
they were observed only in alpine areas of central Japan (see Fig. S3 with Fig. 1c). This seasonal pattern suggests 
that fresh green and autumn colors, which are common features in cool-temperate primary forests, attract hikers 
in spring and autumn, respectively while alpine meadows in high mountains do so in summer. Although both 
fresh green and autumn colors are normally found in cool-temperate natural forests, some tree species popular 
for their beauty (e.g., beech for fresh green and some maple species for autumn color) are characteristic to a 
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Figure 2.   Importance of explanatory variables for total number of hiking records. The bar indicates 95% 
interval after 100 permutations. Values with an asterisk are statistically significant at p < 0.05. The values in 
parentheses are the spatial scale (distance from the center of each grid, radius).
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primary forest22. In the study area, many alpine flower species can be observed mostly in protected primary 
vegetation on a high mountain.

In contrast, the associations were consistently negative (impacts of primary vegetation loss were positive) 
throughout a year in low-altitude sites of central Japan. The avoidance of primary vegetation in lowland by hik-
ers may be partly explained by the fact that secondary forests can be deciduous forests even at a site originally 
covered with warm-temperate evergreen forests22. As described above, evergreen forests lack attractions for hikers 
such as fresh green, spring ephemerals, and autumn colors. In addition, in Japan, many citizens prefer deciduous 
forests because they consider a deciduous secondary forest is an essential component of a typical, traditional, 
and culturally important suburb landscape (i.e. satoyama)23,24. Although such people’s preference for deciduous 
forests may partly derive from the Japanese culture, similar trends that prefer a deciduous forest to an evergreen 
forest in a recreation use have been reported also in studies in Western countries16,25.

The notable but complex, context-dependent associations between the recreation service and vegetation 
characteristics should be reflected appropriately in the management of the landscape. Our analysis demonstrated 
that even moderate modification in either quantity and quality of vegetation at a local scale can have a consider-
able impact on a frequency of hiking activity, i.e. a recreation service flow. Ill-advised landscape management 
would generate a negative effect on not only hiker’s well-being but also local economy relying on consumption 
of visitors. For example, only 0.1 (i.e. 10%) decrease in proportion of natural forest can result in > 10% decline 
of the service flow (Fig. 5b) in exchange for increased timber production. Another implication of our analysis is 
that landscape management for promotion of the recreation service should be carefully designed for each locality 
on the ground of the context-dependent associations with vegetation. For example, a policy to increase any type 
of vegetation will be effective in a suburban area while strict protection of primary vegetation and conversion of 
plantation to natural forest will be more successful in a rural area.

Although it is difficult to obtain these insights without using a huge data accumulated on a social media, care 
should be taken to the potential bias inherent to such kind of dataset26,27. In general, users of a social media may 
not be a random sample of the beneficiaries of a service and, the users may be biased in, for example, gender, age, 
and location. In our case, assessment of such bias is difficult because the attributes of the users were not public in 
many cases. Therefore, potential influences of such biases on our results should be kept in mind. For example, if 
the users of the service are biased to relatively young hikers, and hiker’s preference to vegetation is age-dependent, 
importance of vegetation on the recreation service quantified in this study may be under- or over-estimated.

Conclusions
We demonstrated that associations between vegetation variables and number of hiking records as a surrogate of 
a recreation service flow are considerably variable. Even the signs of the associations are reversed among nearby 
sites depending on other variables such as accessibility and altitude. Such complexity may arise from backgrounds 
of beneficiaries (e.g. natural riches of their resident area) and functional responses of vegetation to a disturbance 
(e.g. dominance of deciduous species in a secondary forest). As a result of the variability as well as nonlinearity, 
expected impacts of 0.1 decreases in the vegetation variables varied over a range of ± 30% change in the service 
flow. Such essential heterogeneity in associations between the service and vegetation variables should be care-
fully reflected in landscape management.
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Figure 3.   Individual conditional expectation plots for (a) Total vegetation cover in 10 km, (b) Proportion of 
natural vegetation to total vegetation cover in 10 km, (c) Proportion of primary vegetation to natural vegetation 
in 10 km. Partial effects of each explanatory variable were shown in log scale. Expected responses for each grid 
were centered to be zero at the low end of an explanatory variable. The value of a variable whose interaction 
with a vegetation variable was important was shown by color of a line. Filled circles indicate observed values 
of a vegetation variable for each site. A black line indicates an average effect. Five hundred sites were randomly 
sampled for visualization to avoid the plots being too dense.
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Methods
Study area.  We focused on hiking activity in the four main islands of Japan (Honshu, Hokkaido, Kyushu, 
and Shikoku) and nearby small islands connected to the main islands by a bridge (Fig. 1a). These islands lie 
between latitudes 31.0° and 45.5°N, and the total area is 361,000 km2. The islands are generally mountainous and 
tallest mountains in central Honshu exceed 3000 m a.s.l. (Fig. 1c). In Tokyo, mean monthly temperatures range 
between 5.2 °C in January and 26.4 °C in August, while they range between − 18.4 °C in January and 6.2 °C in 
August at the summit of the highest mountain, Mt. Fuji (3776 m a.s.l., Japan Meteorological Agency). In north-
ern Honshu and Hokkaido, snow depth can exceed 1 m even at low elevations and high mountains are covered 
with snow even in southern Japan.

Vegetation excluding farmland and pasture covers 70.9% of the study area and the 93.9% is forest. Plantations 
of mostly evergreen conifers such as Japanese cedar (Cryptomeria japonica) occupy 37.6% of the vegetation area 
(National Surveys on the Natural Environment by the Biodiversity Center of Japan 2nd–7th; http://​www.​biodic.​
go.​jp/​trial​System/​top_​en.​html). Secondary vegetation after past human disturbances occupies 39.4% of the total 
vegetation and the remaining 23.0% is primary vegetation. The typical primary vegetation types are, from north 
to south, boreal mixed forest, deciduous broad leaved forest, and evergreen broad leaved forest.
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Figure 4.   Relative importance of interactive effects evaluated by Friedman’s H statistic for each of the three 
vegetation variables. Only variables with Friedman’s H ≥ 0.05 were shown. The values in parentheses are the 
spatial scale (distance from the center of each grid, radius).

http://www.biodic.go.jp/trialSystem/top_en.html
http://www.biodic.go.jp/trialSystem/top_en.html
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Grid squares.  Records of hiking activity were summarized for 4244 secondary grid squares based on Stand-
ard Grid Square System, which was defined by the Minister’s Order of Administrative Management Agency 
in 1973. In the system, the secondary grid was defined as a grid of 5′ in latitude and 7′ 30″ in longitude, which 
roughly corresponds to a 10 km grid in the study area. This is the standard grid system of the government and 
we adopted the system for convenience in future application uses and communication with practitioners. The 
grids, which are defined by latitude and longitude, are different in the area up to 22% between the north and 
south ends. Therefore, area of each grid was included in a model as an offset term.

Hiking activity.  According to a government survey in 2016, (the Survey on Time Use and Leisure Activi-
ties by the Statistics Bureau of Japan, http://​www.​stat.​go.​jp/​engli​sh/​data/​shakai/​index.​htm), 10.0% (about 10.7 
million people) of Japan’s population age 15 or over enjoyed hiking/mountaineering in the last year. The census 
showed also that hiking is more popular among urban residents in the metropolitan areas. Both multi-day expe-
dition to high mountains and day trek to low mountains in suburban areas are popular. Because of the severe 
winter climate, unskilled hikers use the high mountains in summer and early autumn only. During a summer 
vacation, whose peak time in Japan is August, many hikers enjoy multi-day trips to distant mountains. Spring 
and autumn are also popular seasons because of the mild weather and the scenic beauty of the fresh green or 
autumn colors.

Data collection.  In this study, we used number of hiking records accumulated on the most popular social 
networking service for hikers in Japan (Yamareco; https://​www.​yamar​eco.​com) as a surrogate for flow of recrea-
tion service. For all the registered destinations in the study area, the number of hiking records for each month 
and the latitude and longitude of the destination were collected from the service in September 2016 with the 
rvest28 package in R software29. This service launched in October 2005 hosts records of the hiking route, photos, 
participants, and impressions of a hiking trip and facilitates communication among users. Although monthly 
number of records for each destination is always available on the site, the exact date of each hiking record is not 
always public information for privacy reasons; therefore, all of the records from the almost 11 years since the 
start of the service were lumped together in our analysis. Hikers may record multiple places in a single trip, so 
the total number of records must be larger than the number of unique trips. Users of the service sometime record 
a place that is not a destination, e.g. start points and stations of trails, parking areas, stations of transports, and 
bus stops. Such records were excluded before analyses as far as it can be judged from the name of the place. As 
a result, the total number of hiking records was 4,708,229 records for 16,179 destinations. Finally, these records 
were assigned to the 4244 grids based on the latitude and longitude of each destination and then total number 
of records for each grid was used as a surrogate of the recreation service flow in our analysis. Not only total 
number but also monthly number was used in our analysis to examine seasonal changes in associations between 
the service and vegetation. Total record number of the grids was strongly right-skewed; no record (handled as 
0 in our analysis) was found in 2036 grids while mean and maximum record number were 1109 and 350,384, 
respectively.

Explanation variables.  Fifty ecological, environmental, and social/infrastructural variables (Table  S1) 
were prepared for each grid by using ArcGIS version 10.5 (ESRI, Redlands, CA, USA). For vegetation and land-
use attributes, National Surveys on the Natural Environment by the Biodiversity Center of Japan (2nd–7th; 
http://​www.​biodic.​go.​jp/​trial​System/​top_​en.​html) and National Land Numerical Information (http://​nlftp.​mlit.​
go.​jp/​ksj-e/​index.​html) were used. The proportion of sea, that of total vegetation cover (excluding agricultural 

Figure 5.   Expected impacts of 0.1 decrease in the three vegetation variables on total number of hiking records. 
(a) Impacts of loss in vegetation cover, (b) proportion of natural vegetation, and (c) proportion of primary 
vegetation. For maps of each month, see Figs. S1–3. The maps were drawn using R 4.1.1 software package29 with 
public data of the border (https://​www.​gsi.​go.​jp/​kanky​ochiri/​gm_​jpn.​html).

http://www.stat.go.jp/english/data/shakai/index.htm
https://www.yamareco.com
http://www.biodic.go.jp/trialSystem/top_en.html
http://nlftp.mlit.go.jp/ksj-e/index.html
http://nlftp.mlit.go.jp/ksj-e/index.html
https://www.gsi.go.jp/kankyochiri/gm_jpn.html
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land and pasture) to land area, that of agricultural land (including pasture) to land area, that of natural vegeta-
tion (vegetation excluding plantations) to total vegetated area, and that of primary vegetation (vegetation with 
no record or evidence of a disturbance) to natural vegetation were summarized at four spatial scales: a radius of 
10 km, 20 km, 50 km, and 100 km from the center of each grid. Spatial patterns of the three vegetation variables 
in 10 km radius were summarized in Fig. 1d–f.

Maximum elevation, minimum elevation, and ruggedness (index of topographic heterogeneity30) were sum-
marized at the four spatial scales based on a digital elevation model (10-m resolution) provided by the Geospatial 
Information Authority of Japan (https://​fgd.​gsi.​go.​jp/​downl​oad/​menu.​php). For climatic variables (annual and 
monthly mean temperature, annual and monthly precipitation, annual and monthly hours of sunshine, and 
annual maximum snow depth), the National Land Numeric Information provided by the Ministry of Land, Infra-
structure, Transport and Tourism of Japan (http://​nlftp.​mlit.​go.​jp/​ksj-e/​index.​html) was referenced. Densities 
of population and roads at the four spatial scales were prepared from population census data from the Statistics 
Bureau of Japan (http://e-​stat.​go.​jp/​SG2/​eStat​GIS/​page/​downl​oad.​html) and the National Land Numeric Infor-
mation. For calculation of these densities, the sea surface was excluded. In addition, latitude and longitude of 
center of each grid were also used as explanatory variables to average effects of spatial coordinates.

Statistical analysis.  In this study, we employed BRT, a machine-learning method based on regression 
trees31 for modeling the complex relationship between a CES flow and landscape attributes12. BRT is an ensem-
ble learning method where multiple regression trees are sequentially combined to minimize the loss function by 
means of gradient descent. This technique has advantage in the development of a model with a high predictive 
performance, in which high-dimensional interactions among explanatory variables and nonlinear responses are 
fully accounted for. In ecology, BRT has been frequently used for modeling of a species distribution32.

Total and monthly numbers of hiking records were modeled as a function of the 50 variables described above 
under the assumption of a Poisson response. For temperature, precipitation, and hours of sunshine, annual and 
monthly average were used for the analysis of total and monthly records, respectively. In modeling by BRT, 
parameters for building of each learner and assembly of the learners must be carefully chosen to maximize gen-
eralization ability of a model31. In our case, candidate parameters were 2, 5, and 10 for the maximum depth of 
variable interactions for each learner; 2, 5, 10, and 20 for the minimum number of observations in the terminal 
nodes for each learner; 0.5 and 0.75 for the proportion of training data used for building each learner; and 1000, 
2000, 4000, 6000, 8000 and 10,000 for the total number of learners (Table S2). In the model assembling process, 
the value of 0.01 was used as a shrinkage parameter. Ten-fold cross validation was used to obtain the best suites 
of parameters. R2 based on sum of squares:

was used for evaluation of the model’s prediction performance. The importance of explanatory variables was 
evaluated as an increase of mean absolute error after 100-times permutation of a variable33.

Effects of each explanatory variable (a landscape attribute) on the response variable (record number) and 
the context dependence were visually inspected by individual conditional expectation (ICE) plot34. ICE plot 
visualizes the effect of a given explanatory variable for each observation by connecting outcome of a model for 
shifting values of the focal explanatory variable throughout the range while keeping other explanatory variables 
as the original value. Predictions were performed in log-scale and each line was centered to be zero at the left 
end of the x-axis to show relative effects of explanatory variables (c-ICE plot sensu Goltstein et al.34). Each line in 
ICE plot can be colored based on value of the second explanatory variable to assist assessment of the interactive 
effects of the two predictors. Friedman’s H statistic35 was used to detect explanatory variables whose interaction 
with the vegetation variables are important and therefore should be used for color-coding of an ICE plot. Fried-
man’s H is defined as a proportion of variance of partial dependence estimates explained by interactive effects 
for arbitrary suites of explanatory variables.

Then, expected impacts of 0.1 decrease in the three local vegetation variables were assessed by the trained 
model and mapped. Although vegetation variables were sometimes more important at larger spatial scales (see 
“Results”), we focused on vegetation at a local (10 km radius) scale because most changes in vegetation occur 
at the scale in Japan (National Surveys on the Natural Environment by the Biodiversity Center of Japan, https://​
www.​biodic.​go.​jp/​kiso/​fnd_​list_h.​html).

All statistical analyses were performed using the R software packag29. The gbm36 package was used for BRT, 
the iml37 package was used for calculation of Friedman’s H statistic, and the cv.models (Oguro, https://​github.​
com/​March​en/​cv.​models) packages was used for cross validation and parameter tuning.

Data availability
All data are public and available online. Hiking records were obtained from https://​www.​yamar​eco.​com. For 
assessment of reproducibility, we provide the original data that we collected in September 2016 as needed. 
Explanation variables were available at the following URLs: vegetation (http://​www.​biodic.​go.​jp/​trial​System/​
top_​en.​html), land-use (http://​nlftp.​mlit.​go.​jp/​ksj-e/​index.​html), digital elevation model (https://​fgd.​gsi.​go.​jp/​
downl​oad/​menu.​php), climate (http://​nlftp.​mlit.​go.​jp/​ksj-e/​index.​html), and population (http://e-​stat.​go.​jp/​SG2/​
eStat​GIS/​page/​downl​oad.​html).
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