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Identification of a cantilever beam’s 
spatially uncertain stiffness
Karl‑Alexander Hoppe *, Martin G. T. Kronthaler , Kian Sepahvand  & Steffen Marburg 

This study identifies non‑homogeneous stiffnesses in a non‑destructive manner from simulated noisy 
measurements of a structural response. The finite element method serves as a discretization for the 
respective cantilever beam example problems: static loading and modal analysis. Karhunen–Loève 
expansions represent the stiffness random fields. We solve the inverse problems using Bayesian 
inference on the Karhunen–Loève coefficients, hereby introducing a novel resonance frequency 
method. The flexible descriptions of both the structural stiffness uncertainty and the measurement 
noise characteristics allow for straightforward adoption to measurement setups and a range of 
non‑homogeneous materials. Evaluating the inversion performance for varying stiffness covariance 
functions shows that the static analysis procedure outperforms the modal analysis procedure in a 
mean sense. However, the solution quality depends on the position within the beam for the static 
analysis approach, while the confidence interval height remains constant along the beam for the 
modal analysis. An investigation of the effect of the signal‑to‑noise ratio reveals that the static loading 
procedure yields lower errors than the dynamic procedure for the chosen configuration with ideal 
boundary conditions.

Material parameters may be identified in various ways. The established methods can be categorized as destructive 
and non-destructive  methods1. “Destructive” implies that the measurement specimen has, for example, 
experienced plastic deformations during tensile tests and thus fails to comply with the product requirements 
after the test, i.e. it can no longer fulfill the original purpose. Often, these tests are carried out until the specimen 
fails. Non-destructive testing methods offer a way to identify material parameters while the specimen retains its 
properties. Therefore, these methods are popular for quality control purposes after the manufacturing process 
in order to ensure certain requirements.

On the one hand, dynamic methods are popular for testing engineering materials. Impact-echo or 
transmission measurements using elastic waves present popular high-frequency regime methods that evaluate 
the wave  onset2. However, considering the individual modes of guided ultrasonic waves contains more 
 information3–5. In general, wave fitting approaches in the high-frequency regime continue to  evolve6, where the 
utilization of the full waveform is  noteworthy7. In lower frequency regimes, standing waves can be utilized. In 
this case, the resonance frequency method uses the eigenfrequencies connected to the eigenmodes for material 
parameter identification or defect  detection8.

On the other hand, static methods may be considered as non-destructive when they are reversible and place 
the specimen in linear elastic loading conditions. Indentation tests and strain measurements with strain gauges 
are used in procedures that operate at the surface level, just as many displacement measurement techniques do. 
Within the latter, digital image correlation between a reference state and the deformed state of a specimen leads 
to a displacement  field9, where several techniques can be used for capturing the respective  images10.

Discontinuities like defects or cracks are typically the quantities of interest for nominally homogeneous 
 materials11. With non-homogeneous materials, local spatial variation of material properties is additionally 
introduced into the  system12. Depending on the severity of the non-homogeneity, it may have a relevant effect 
on the system response. This is certainly the case for engineering materials such as wood. The spatial variation of 
material properties has been quantified for individual  specimens13,14. Savvas et al.15 identify the mesoscale spatial 
variation of material properties given microscale information. However, rigorous descriptions of the spatial 
behavior are not readily available. Given this lack of data, the standard procedure is to assume a random spatial 
variation of the material properties. This spatial randomness of material properties can be described with the 
theory of random fields, which is extensively treated in the  literature16,17. Rasmussen and  Williams18 popularize 
this theory for regression, which is generalized by  Duvenaud19. The integration of spatial uncertainties with the 
finite element method (FEM) is covered in the  literature20,21.
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Spatial uncertainty is thus compatible with established uncertainty quantification  practices22. Sepahvand and 
 Marburg23 demonstrate this for the forward propagation of uncertainty in structural dynamics by representing 
material properties as random fields.

Knowledge of the sensitivities of the system outputs with respect to the system inputs is valuable. However, 
many non-destructive testing methods involve an inverse problem, as for instance the study on elasticity 
imaging by Gokhale et al.24. Since the quantities of interest as well as the measured parameters are fraught 
with uncertainties, a natural approach for the solution of the aforementioned inverse problems lies in Bayesian 
 inference25–27.

Parameter identification using the Bayesian framework holds two major advantages over other methods. 
Firstly, when limited test data on parameters exist, Bayesian methods provide us with an optimal tool to 
quantify  uncertainty28. This is crucial when one deals with expensive experiments in engineering. Using classical 
frequentist statistical models for such situations only yields reliable results when the number of data points 
is larger than a specific number, mostly 30, or when the data strictly follows a normal  distribution29. If these 
criteria are not met, the results generated with these methods either cannot be trusted to be valid or involve an 
increased level of uncertainty.

Secondly, the Bayesian framework involves available prior information about parameters that the statistical 
model  considers30. This prior information is then updated by information gained from observations. Available 
sources of prior information may include primary data, literature, online databases, and even the knowledge of 
experts. This is a substantial argument for using Bayesian methods in engineering applications, where data may 
be scarce but expertise on parameters is abundant.

Marzouk and  Najm31 pioneer the application of Bayesian inference to spatially varying quantities of interest 
via dimensionality reduction achieved by the Karhunen-Loève (KL) expansion. They use a surrogate for the 
forward model to reduce computational cost that is based on generalized Polynomial Chaos (gPC)21. The 
decoupling of spatial discretization of the computational domain from the random dimensionality makes inverse 
problems involving larger systems accessible.

Sun and  You32 provide an overview of sensitivities and damage features related to modal analysis in the context 
of non-destructive testing. Cugnoni et al.33 perform a deterministic identification of a composite plate material 
model using the combined information of natural frequencies and mode shapes. Sepahvand and  Marburg34,35 
compute the homogeneous elastic parameters of composite plates while accounting for uncertainty using 
experimental data. Note the contribution by Desceliers et al.36, who calculate the non-homogeneous beam 
stiffness from frequency response measurements using a maximum likelihood estimate. Batou and  Soize37 
consider a random field material model employing model order reduction and maximum likelihood estimation 
given frequency response functions. Mehrez et al.38 estimate the Young’s modulus of a composite structure at 
a set of nodes with Bayesian inference and gPC using frequency response functions acquired at those nodes. 
Debruyne et al.39 apply this general procedure to a honeycomb structure.

This study investigates the identification of spatially varying structural flexibility using both a dynamic and 
a static method. The dynamic method is a novel dimensionality-reduced Bayesian approach for identifying the 
elastic parameters of a structure using resonance frequency information. The static method follows a similar 
scheme as the research by Uribe et al.40, who reconstruct the stiffness fields given deflection observations using 
a modified version of the framework by Marzouk and  Najm31.

To provide comparability and insight into each method’s respective advantages, both the dynamic and static 
method use the same setup, namely a cantilever beam with spatially varying structural flexibility. Eigenfrequencies 
mark the starting point for the flexibility identification within the dynamic method, while deflections connected 
to static loading serve as data for the static method. For each method, Bayesian updating is then performed on 
a finite element method model of the cantilever beam with unknown structural flexibility, which is considered 
as a sample of a Gaussian random field along the cantilever beam. The truncated KL expansion represents this 
spatially varying flexibility, resulting in a description with reduced random dimensionality. Owing to the Bayesian 
inference setup, the solution’s uncertainty can then be compared between the dynamic and the static approach.

This paper is organized as follows: “Methods” introduces random fields and inverse problems, as well as the 
Bayesian inference setup shared between the dynamic and static approaches. “Application of the procedure” 
describes the integration of both the dynamic and static cantilever beam models into the inverse problem, and 
then the numeric results are presented in “Results and discussion”. Following the conclusion and an outlook on 
future research in “Conclusion”, we provide additional information in the Online appendix S1.

Methods
This study considers the spatially random fluctuation of material properties about a mean value. The connected 
covariance and the representation by the KL expansion are covered by “Preliminary concepts” alongside Bayes’ 
theorem. “Procedure” treats the inverse problem formulation and the latter’s integration into Bayesian updating 
by specifying the parametrization and measurement error model pertinent to the cantilever beam.

Preliminary concepts. Together with its mean value, a second-order random field is fully characterized by 
its covariance function. The covariance kernel Cov(t, t ′) is a function of the coordinates of two points t, t′ within 
the field’s domain, the bounded interval [0, L]. This study considers continuous, symmetric, and positive semi-
definite kernels such that the KL expansion can be used.

Several families of functions may be used as covariance functions. We adopt the isotropic exponential kernel 
from the  literature17. It is a function of Euclidean distance r and the length scale parameter l as
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where σ 2 is the  variance18. It is chosen because there exist analytical solutions to the connected eigenvalue 
problem that facilitate verifying the corresponding numerical  implementations41.

Karhunen‑Loève Expansion. The KL expansion represents a random field by taking into account the random 
field’s mean µ(t) and decomposing its covariance function. This method utilizes deterministic spatial functions 
together with random coefficients ξi for the representation of the random field. Truncating the KL expansion 
after s summands yields an approximation of the field with a finite random space  dimensionality42, such that

where �i are the eigenvalues and ϕi(t) are the eigenfunctions of the corresponding covariance  operator42. To 
obtain a sample path or realization of the random field, a sample of its parametrization ξ must be drawn.

If the considered material parameter follows a lognormal instead of a normal distribution, the generated 
samples may simply be exponentiated. However, the generalization of the KL expansion to non-Gaussian random 
fields is not straight-forward. Partially, this is due to correlations being induced between the random coefficients. 
When closed-form transformations are not readily available, a full-dimensional multivariate normal distribution 
may present a remedy. After transformation to [0, 1] using the Gaussian error function, the inverse cumulative 
distribution function of a desired arbitrary distribution can be applied. The resulting marginal distributions 
follow the prescribed distributions and retain the sample smoothness over the domain inherent to the initial 
correlation structure, see Vořechovský43.

Bayesian Inference. The above describes the quantity of interest, which is now declared as θ . The following 
introduces Bayesian inference, a method for estimating the quantity of interest using a model, data, and prior 
knowledge. Bayesian inference approaches attempt to solve the inverse problem while considering uncertainties 
along with prior knowledge about the quantities of interest and the likelihood of the observed data. Essentially, 
its outcome, the posterior, reflects how new data change our beliefs concerning the unknown quantities.

Using the logarithms of the probabilities to circumvent computational issues arising from the multiplication 
of small numbers and neglecting the normalizing constant that is the evidence, Bayes’ theorem reads as

 Here, q is the posterior distribution for θ given some data d , l is the likelihood of observing the data d given a 
model with parametrization θ , and lastly, p is the prior distribution on θ.

The reader is referred to the literature concerning the treatment of three major issues within the solutions 
of inverse problems: existence, non-uniqueness, and instability of the solution, with the latter also called 
ill-posedness44.

Procedure. Consider a forward model, see Fig. 1, of a cantilever beam

Here, its structural flexibility C(t) is considered as a function over the beam domain [0, L]. The operator G is 
used to transform this function to an output d . Static deflections and eigenfrequencies comprise d for the static 
analysis and the modal analysis, respectively. The measured output

is subject to measurement noise η . Solving the inverse problem is then to

(1)Cov(t, t ′) = σ 2 exp
(
−(|t − t ′|/l)2

)
,

(2)X(t, ξ) ≈ µ(t)+
s∑

i=1

√
�i ϕi(t) ξi ,

(3)q(θ |d) ≡ l(d|θ)+ p(θ).

(4)dtrue = G (C(t)).

(5)dmeas = dtrue + η = G (C(t))+ η

(6)find C(t) s.t. dtrue = G (C(t)), given dmeas.

Figure 1.  The figure shows a side view of the investigated cantilever beam model together with its profile and 
the coordinate system. The rectangular profile exhibits width g and height h. The beam length is L. Here, the 
beam coordinate is denoted as t, and the deflection coordinate reads as w.
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In practice, a finite-dimensional representation of the flexibility C(t) based on the parameter vector θ made up 
of the KL parameters and the mean of the flexibility field reads as

This leads to the discretized numerical forward model

Now, Eq. (3) may be adopted to the problem at hand with d = dmeas , and the finite-dimensional parametrization 
θ given in Eq. (7). The necessary truncation order of the KL expansion depends on the covariance and is 
independent of the spatial discretization chosen within the forward model. To determine s, the ratio of the 
variance covered by the truncated KL expansion to that covered by the full expansion should be compared 
to recommended threshhold  ratios45. Typically, s is less than 20, and is significantly smaller than the spatial 
discretization of the governing equations. This reduction in dimensionality from the spatial discretization to the 
number of KL coefficients is crucial for the efficiency of some Markov Chain Monte Carlo (MCMC) algorithms. 
Additionally, it allows for the use of surrogate model methods like  gPC31.

Specifying the measurement noise model, a custom likelihood accommodates for flexible signal-to-noise 
ratios of the data components. This measurement error model assumes that the measurement vector dmeas of 
dimension κ is perturbed by independent noise components

with corresponding variances σ 2
j  . Now, for scalar-valued measurements at several frequencies or locations within 

the specimen and a single measurement run, the likelihood

becomes the product of the marginal likelihoods of its components. Vector-valued measurements as well as 
repeated measurements necessitate modifications of Eq. (10).

With fixed choices for the likelihood, the forward model, its parametrization and the latter’s endowment with 
prior densities, the right hand side of Eq. (3) can be evaluated. However, closed form solutions for the posterior 
probability density function are only available for special cases involving conjugacy. This necessitates sampling 
from the posterior, which can be achieved using Markov Chain Monte Carlo (MCMC) algorithms. This study 
employs the single variable slice sampling method as formulated by  Neal46. It is applied to each parameter 
separately, while the other parameters are fixed.

Application of the procedure
This section describes the application of the methods presented in “Methods”. Specifically, “Cantilever beam 
model” introduces the used cantilever beam model, while “Modal analysis” describes the system’s modal 
analysis and “Static analysis” covers the system’s static analysis. After the explanations concerning these forward 
models, “Flexibility identification using eigenfrequency measurements from modal analysis” provides the 
solution procedure for the inverse problem based on modal data and “Flexibility identification using deflection 
measurements from static analysis” details the procedure when deflection data is given.

Cantilever beam model. Consider the Timoshenko cantilever beam model shown in Fig. 1, where the 
boundaries are clamped on the left side and free on the right side. The beam exhibits length L and a rectangular 
cross-section with an area of A = g · h , where the cross-section width and height are denoted by g and h, 
respectively. The second moment of area is computed as I = gh3/12 , and the shear correction factor ks for a 
rectangular cross-section is ks = 5/6 . The material of the beam is characterized by Young’s modulus E and the 
shear modulus G, while considering Hooke’s law.

This problem is implemented with the finite element method via the SfePy Python  library47. The discretization 
of the deflection w, the angle ψ , and the corresponding weighting functions is performed using 2nd order 
polynomials that are defined on each element.

To model the spatially varying elastic modulus E, it is assumed to vary randomly over the beam coordinate 
t. The inverse of the elastic modulus, i.e. the elastic flexibility C = 1/E , is then assumed to be a realization of a 
Gaussian random field, where the standard deviation is a fraction of the mean value. The covariance function 
for the random flexibility is defined on the domain t ∈ [0, L] and an exponential kernel with arbitrarily chosen 
correlation length l = L/5 , as defined in Eq. (1), is chosen. The covariance function is evaluated at the nodes 
of the finite element mesh, yielding piece-wise constant material properties as shown for a coarse exemplary 
discretization in Fig. 2.

The domain is discretized with 100 finite elements. This results in 201 nodes for the evaluation of the 
covariance function. The resulting 201× 201 covariance matrix is used for synthesizing the reference flexibility 
vector. The Cholesky decomposition LLT of this covariance matrix achieves the realization of the reference 
 flexibility20. This alternative method is chosen for the reference model instead of the KL expansion to mitigate 
an inverse crime, as it is more accurate, albeit higher dimensional, than the KL expansion. With the prescribed 
mean bending flexibility µC,true and the lower triangular matrix L resulting from the Cholesky decomposition, 
the flexibility field reads as

(7)θ = {µC , ξ1, ξ2, . . . , ξs}T ∈ R
s+1.

(8)dmeas ≈ G (C(t, θ))+ η = G̃ (θ)+ η.

(9)ηj ∼ N(0, σ 2
j )

(10)L (dmeas|θ) =
κ∏

j=1

1

σj
√
2π

exp

(
−
1

2

(dmeas,j − G̃ (θ)j)
2

σ 2
j

)
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where ξ is a vector of uncorrelated standard Gaussian random numbers. Realizing ξ yields the reference sample 
of the flexibility.

Modal analysis. On the one hand, we consider the modal analysis of the cantilever beam described in 
“Cantilever beam model”. Here, the first κ eigenfrequencies of the system f1, f2, . . . , fκ obtained via solving 
the system’s eigenvalue problem make up the response vector. Specifically, the reference flexibility Ctrue of the 
cantilever beam leads to the connected reference eigenfrequencies. A vector of independent Gaussian random 
variables is then superimposed on these eigenfrequencies to emulate measurement noise.

Static analysis. On the other hand, we consider the cantilever beam described in “Cantilever beam model” 
when subjected to static loading F at t = L . Here, κ equispaced static deflection measurements comprise the 
response vector. After applying the reference flexibility Ctrue to the cantilever beam model, we calculate the 
connected reference deflections. To simulate measurement noise, the static deflections are superimposed with 
independent and identically distributed Gaussian random variables.

Identification of spatially varying flexibility using synthetic noisy measurements. Flexibility 
identification using eigenfrequency measurements from modal analysis. Next, we use noisy measurements of the 
first 10 simulated eigenfrequencies of the cantilever beam with the reference flexibility vector. Then, the reference 
flexibility is estimated for all positions within the beam from these noisy eigenfrequency measurements. Note 
that the reference flexibility is unknown in the context of the inversion procedure.

Figure 4 shows a flowchart of the inference procedure, while the following paragraphs describe it in greater 
detail.

Reconstructing the unknown reference flexibility with the methods described in “Methods” necessitates the 
strong assumption of the flexibility mean being constant, that is stationary, and that of the flexibility covariance. 
We assume the same covariance, an exponential covariance kernel with correlation length l = L/5 and an 
exponent of γ = 2 , as used for the reference model to maintain comparability of the flexibility parameterization. 
These assumptions may be relaxed by a parameterized family of kernels and an inference of their parameterization 
together with the KL  parameters48. The reconstruction FE model exhibits 50 quadratic elements leading to a 
spatial evaluation of the flexibility at 101 nodes. This coarser discretization in comparison with the reference 
model is once again chosen to avoid an inverse  crime49.

To reduce the random dimensionality, we discretize the unknown random field with the KL expansion from 
Eq. (2) truncated to s = 6 terms. Assuming a constant mean, this yields s + 1 unknown random variables that 
make up the discrete vector of unknowns θ , namely the mean and the s KL parameters. Following Huang et al.45, 
this configuration accounts for α = 98% of the variance of the random flexibility.

By using the KL expansion, we essentially apply a Gaussian process prior on the flexibility. Within this prior 
probability, the flexibility mean is distributed according to

and the KL parameters are endowed with a normal prior:

(11)Ctrue = µC,true + Lξ ,

(12)µC ∼ N

(
µ = 5× 10−12 m2

N
, σ 2 =

(
1× 10−12 m2

N

)2
)

(13)ξi−1 ∼ N

(
µ = 0 , σ 2 =

(
1× 10−11m

2

N

)2
)

∀i > 1.

Figure 2.  The graph shows an arbitrarily chosen stiffness distribution over the beam coordinate at ten discrete 
positions within the numerical model of the cantilever beam. The discretization is purposefully chosen as 
coarse for the illustration. Because the stiffness is assigned to nodes as opposed to elements, the stiffnesses at the 
bounds are half as wide compared with those assigned to interior elements.
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These prior distributions may be interpreted analogously to regularization in optimization. The chosen normal 
prior on the flexibility mean represents a weak assumption, while the prior on the KL coefficients encodes an 
assumption on the flexibility variance.

The real noise standard deviations present the ideal choice for the likelihoods standard deviations, 
because inaccurate measurements are not erroneously interpreted as accurate, and conversely, more accurate 
measurements are not assumed as excessively noisy, thus leading to a loss of information. In practice, the error or 
noise characteristics are unknown, but may be estimated from the statistical information gained from repeated 
measurements. We define the likelihoods with a higher standard deviation than that of the synthetic measurement 
noise used and thus underestimate the measurements’ accuracy. The numerical values are compiled together 
with all parameters that are necessary for reproducing the results in the Online appendix S1. The likelihood 
function for vector-valued measurements in Eq. (10) implies that each eigenfrequency is measured only once 
and not repeatedly.

The likelihood’s standard deviation increases quadratically with the number of the corresponding 
eigenfrequency, see Fig. 3. Matching low eigenfrequencies is thus given more importance.

The slice sampling algorithm generates samples θ (i) from the posterior in Eq. (3). Multiple chains with 
different initial values help attenuate the influence of the initial value of the sampled Markov chain alongside 
the exclusion of burn-in samples from the number of samples used U. Evaluating the applied KL expansion at 
the posterior samples then produces the corresponding samples of the posterior random field.

Along with the flexibility’s expected value,

we compute confidence intervals that contain 95% of the values of C(u)(tj) for each position tj . Finally, the root 
mean square percentage error (RMSPE) with respect to the reference flexibility is obtained as

Flexibility identification using deflection measurements from static analysis. The identification of the structural 
flexibility using static deflection data follows the same general procedure as described in “Flexibility identification 
using eigenfrequency measurements from modal analysis”. This section does not repeat the steps shared between 
the two procedures, it highlights the differences instead.

Here, noisy measurements of the simulated static deflections of the cantilever beam with the reference 
flexibility constitute the data. With these 10 equispaced static deflections, we estimate the unknown reference 
flexibility Ctrue.

Replacing modal with static analysis and eigenfrequencies with static deflections, respectively, in the 
procedure diagram, see Fig. 4, yields the inversion procedure using static analysis.

Contrary to inversion via modal analysis, we choose a constant likelihood standard deviation for the static 
analysis. The likelihood follows Eq. (10), where the static deflections are measured once at each equispaced 
position.

Results and discussion
This section presents the findings of the present study. “Modal analysis” and “Static analysis” consider the 
confidence interval of the solution over the beam coordinate and “The effects of signal-to-noise ratio and 
flexibility correlation length” explores the effects of signal-to-noise ratio as well as flexibility correlation length.

(14)µC,post(tj) =
1

U

U∑

u=1

C(u)(tj),

(15)εRMSPE =

√√√√1

k

k∑

j=1

(
µC,post(tj)− Ctrue(tj)

Ctrue(tj)

)2

· 100%.

2 4 6 8 10
0

20

40

Eigenfrequency number
σ
j
(H

z)

Figure 3.  The measurement likelihood standard deviation is expressed as a function of the frequency. 
The graph shows the chosen quadratic increase of the measurement likelihood standard deviation σj over 
the number of the corresponding eigenfrequency. This weighting emphasizes the influence of the first few 
eigenfrequencies. The higher likehihood standard deviation for the higher eigenfrequencies reflects the 
expectation that measurement accuracy deteriorates with increasing frequency.
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Figure 5 shows the results of the procedure for one exemplary realization of the random flexibility. Here, 
the dashed-dotted lines mark the a priori unknown reference flexibility. Figure 5a shows the result using the 
dynamic method and Fig. 5b illustrates the result for the static deflection-based method for comparison. Note 
that the proposed Bayesian approach yields a chain of samples for θi . These samples can be used to estimate the 
posterior distribution’s higher statistical moments in addition to mean and variance. Restricting the analysis of 
the results to mean and variance would disregard any skewness of the posterior at any location, which is visible 
in Fig. 5 through the asymmetrical confidence intervals. Additionally, note that the procedure has produced a 
non-stationary posterior random field as these moments are not constant over the beam length.

The following paragraphs interpret the confidence interval properties along the beam coordinate t based on 
a total of 100 realizations of the flexibility such that the interpretations are applicable in a general sense.

Modal analysis. With the eigenfrequency-based approach and with the chosen likelihood structure, the 
size of the confidence interval is roughly constant along the beam coordinate t. The present choice of the first 10 
eigenfrequencies thus leads to a comparable amount of flexibility information for all spatial positions.

Avoiding non-physical signs of the flexibility is straightforward using the eigenfrequency-based model, since 
negative flexibility leads to a negative squared eigenfrequency. For this case, the likelihood of corresponding 
solution candidates is simply set to zero and we thus obtain a purely positive estimation of the flexibility here.

Static analysis. With the static deflection-based approach, the confidence interval increases as the distance 
from the clamping grows. This is consistent with the intuition that the bending moment within the beam varies 
linearly along the beam axis, with the maximum absolute value being at the clamping. Because the impact 
of flexibility fluctuations on the deflection depends directly on the bending moment, these fluctuations have 

Covariance
function Cov,
flexibility stan-
dard deviation
σC , and prior
distributions
on µC , ξ

Posterior samples
of KL expansion

coefficients
ξ and of µC

Flexibility
assignment
in FE model
and numerical
modal analysis

Eigenfrequencies

Likelihood

Covariance
function Cov,
flexibility

mean µC,true

and standard
deviation σC

Synthesization
of reference

flexibility and
assignment
in FE model

Numerical
modal analysis

Reference
eigenfrequencies

Online part
+ synthesized
noise

Figure 4.  General procedure for reconstructing the reference random field given noisy eigenfrequencies and 
assuming the reference covariance, priors, and measurement noise characteristics with Bayesian inference. 
The top part refers to the calculation of the reference eigenfrequency from the reference flexibility. Given noisy 
observations of these reference frequencies, the aim of the procedure detailed at the bottom is to estimate the 
reference flexibility. Here, the dashed line marks the part of the inference that must be computed at every step in 
the chain.
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their biggest impact close to the clamped boundary. Conversely, the deflections contain proportionately more 
information about the flexibility on the left side than on the right side. This facilitates error propagation from the 
left to the right part of the domain and it finally leads to the narrow confidence interval in the left part and the 
wide confidence interval in the right part of the beam.

With the static deflection-based model, some issues may arise with the flexibility’s sign, owing to the Gaussian 
random field’s support C(tj) ∈ R within the reconstruction. Here, the estimation violates the physical restriction 
of the flexibility being positive at some locations on the right side of the beam. The reason for this is a mixture of 
the characteristics of the beam and the assumed measurement noise. The cantilever beam exhibits a small bending 
moment on its right side, leading to a small curvature on this side. To simulate the deflection measurements, 
we add synthetic Gaussian noise to the deflections. In regions on the right side with a low reference curvature, 
the curvature of the noise is likely to dominate the total curvature within the simulated measurements. As the 
bending moment links the flexibility and the curvature, the reconstruction essentially estimates the curvature 
of the beam. This explains why the curvature component resulting from the synthetic measurement noise may 
propagate to the estimated flexibility and consequently lead to negative values for the flexibility in some cases.

The effects of signal‑to‑noise ratio and flexibility correlation length. This study focuses on 
investigating and comparing two non-destructive methods for material parameter identification. To study 
the efficacy of the dynamic and static method, we demonstrate the strategic variation of the inverse problem’s 
configuration. Specifically, we expect both larger correlation lengths of the flexibility and larger signal-to-noise 
ratios to improve the inversion quality and did indeed obtain these expected results.

The effect of the signal-to-noise ratio (SNR) on the solution quality is investigated with a systematic variation 
of noise standard deviation, see Fig. 6a. To obtain representative results, the described procedure is carried out for 
100 unique realizations of the reference flexibility per signal-to-noise ratio. The error described in Eq. (15) is then 
averaged over the 100 realizations. The error decreases non-lineary for the chosen SNR scale. Comparatively low 
signal-to-noise ratios produce a plateau in the error. After a kink in the curve, higher measurement noise entails 

Figure 5.  The figures show the results for the inference workflow for a specific reference flexibility. The left 
graph corresponds to the modal analysis, while the right figure is connected to the static analysis. The respective 
dashed-dotted lines show the reference flexibility, while the respective solid lines represent its estimated 
posterior mean. Low heights of the confidence intervals indicate a higher certainty of the inference results at the 
respective location.

Figure 6.  Comparison of the methods’ performance influenced by changing inverse problem configurations. 
The left graph shows the effect of changing signal-to-noise ratios, while the right graph shows the impact of 
flexibility correlation length.
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flattening error behavior. We observe a consistently lower RMSPE when employing the approach using static 
deflection measurements and a higher order of error convergence for the resonance frequency method. Note that 
more accurate measurements can be obtained in practice by averaging over several repeated measurement runs.

The variation of the flexibility correlation length shown in Fig. 6b exhibits the expected outcome. The error 
decreases non-linearly with increasing ground truth correlation lengths. The error gap between the static 
and dynamic methods narrows with growing correlation lengths. The comparatively large errors in the small 
correlation length regime result from the higher complexity of the unknown function. This in turn corresponds 
to an increasingly complex parameter space that the inference procedure needs to traverse. On the contrary, an 
infinitely large correlation length would correspond to a constant flexibility. This represents the simplest case 
and we expect the smallest errors here.

Concerning the static analysis, this study does not account for uncertainty in the load and its application to the 
specimen. These uncertainties propagate through the system to the deflections. Additionally, the measurement of 
the deflections is subject to measurement errors. Measurement noise challenges for micro-scale applications are 
linked to physical restrictions in  optics50. Macro-scale applications like the one studied in this paper on the one 
hand rely on methods such as digital image  correlation51. On the other hand, they use optical active or passive 
marker systems that typically involve camera  setups52. Here, a compromise must be found between the covered 
area and the camera distance, the two of which are coupled by the viewing angle. Maletsky et al.53 report a non-
linear relationship between camera distance and SNR and find an overall SNR of 45 dB for a generic setup. In 
fact, SNRs of higher than 60 dB are already achievable for dynamic response measurement  setups54. Accounting 
for this measurement accuracy of dynamic methods exceeding that of static  methods8, an unfavorable light is 
cast on the modal analysis.

This study considers the modal and static analyses of an identically configured, clamped cantilever beam 
and does not account for uncertainty in the boundary conditions. However, an experimental modal analysis is 
typically conducted with free-free boundary conditions that are more accurately reproducible in practice than 
other mounting  conditions55. Here, this benefit of the method is traded for comparability with respect to the 
static analysis.

Debruyne et al.39 find the usefulness of experimental modal analysis doubtful for their model updating 
procedure, when the measurement quality is not excellent. Their conclusion is confirmed by our results that 
stem from a setting with deterministically known modeling errors. Mehrez et al.38 state that their number of 
data points prove suitable for their problem configuration. Our results complement this by setting the SNR and 
error into relationship, which enables an estimate for the required number of data points to achieve an error 
tolerance given the SNR of a single measurement. Their confidence region makes up for ≈30% of the mean value. 
Our resonance frequency method matches this estimation accuracy for high signal-to-noise ratios and ground 
truth random field correlation lengths close to or greater than L. This is due to the gradient-agnostic sampling 
algorithm used in this study on the one hand and due to the difference in information provided to the method 
on the other hand, as local instead of global data is used in the study Mehrez et al.38.

Conclusion
We develop a new Bayesian resonance frequency method with reduced stochastic dimensionality for identifying 
the spatially varying structural flexibility of a cantilever beam. It exhibits a major advantage compared to existing 
non-destructive methods for determining local macro-scale material properties using dynamic data. As it does 
not rely on local information as conventional methods do, it can operate without line-of-sight to the specimen. 
This is especially valuable in the context of the advent of functionally graded materials. The latter is furthering 
spatially varying material properties within geometrically complex assemblies. Here, our method enables non-
destructive testing when undercuts are present.

We obtain results for the non-linear error characteristics with respect to SNR and the flexibility correlation 
length. Considering the influence of SNR highlights that a saturation of the error occurs at low signal-to-noise 
ratios. These results are set in relation to those obtained from applying the Bayesian procedure to the cantilever 
subjected to static linear elastic loading.

In conclusion, using identical noise and flexibility correlation length characteristics:

• inversion based on static deflections yields lower absolute errors.
• the confidence interval widens with growing distance from the clamping for the static approach.
• the confidence interval height using the dynamic approach stays constant along the beam.

We further conclude that, generally:

• larger flexibility correlation lengths lead to improved reconstruction.
• higher signal-to-noise ratios reduce the estimation error.

In practice, the choice of method should carefully consider the reproducibility of the real boundary conditions 
within the numerical models and especially the signal-to-noise ratios achievable by the experimental setups.

Currently, no reliable data describing the spatial randomness of material properties are available, and Matérn 
covariance models or special cases like isotropic exponential kernels are used as a fallback,  see48. Identifying the 
covariance from such data systematically for common material classes, the connected manufacturing processes, 
and engineering applications that introduce heterogeneity would eliminate the need for many assumptions that 
are currently necessary. Future research needs to study the influence of these identified covariance models and 
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their respective parameters on the efficacy of our method. This may include the construction of compound 
covariance kernels from base kernels, for example using addition or multiplication, see Hofmann et al.56. This 
property could be used to combine kernels across spatial dimensions and model, among others, anisotropically 
heterogeneous materials.

This paper shows the solution of the inverse problem for a single quantity of interest that depends on a spatial 
coordinate. In practice, more than one parameter can be relevant. In the context of isotropic materials, the shear 
modulus or Poisson’s ratio as well as the mass density may be relevant. For anisotropic materials, the spatial 
components of the elastic properties are additionally needed to fully characterize the material. This complicates 
the inverse problem. However, taking into account for additional information promises to mitigate these effects. 
For some material classes, the spatial components of the elastic properties are linearly correlated. Specifically for 
wood, the Young’s modulus in a tree’s growth direction correlates linearly with the Young’s modulus in the radial 
direction orthogonal to the growth rings. Often, Pearson’s coefficient for linear correlation exceeds r = 0.5 here. 
Preliminary investigations have shown that incorporating knowledge of the cross-correlation is not uniformly 
beneficial. Conversely, the method’s success depends on the cross-correlation amplitude and the algorithm used 
to sample from the posterior distribution, among others. Future research needs to address this research gap and 
produce encompassing results that serve as a guideline for researchers.

Data availability
The raw data generated during the current study are available from the corresponding author on reasonable 
request.
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