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Thermodynamic fluctuation 
theorems govern human 
sensorimotor learning
P. Hack *, C. Lindig‑Leon , S. Gottwald  & D. A. Braun 

The application of thermodynamic reasoning in the study of learning systems has a long tradition. 
Recently, new tools relating perfect thermodynamic adaptation to the adaptation process have been 
developed. These results, known as fluctuation theorems, have been tested experimentally in several 
physical scenarios and, moreover, they have been shown to be valid under broad mathematical 
conditions. Hence, although not experimentally challenged yet, they are presumed to apply to 
learning systems as well. Here we address this challenge by testing the applicability of fluctuation 
theorems in learning systems, more specifically, in human sensorimotor learning. In particular, 
we relate adaptive movement trajectories in a changing visuomotor rotation task to fully adapted 
steady‑state behavior of individual participants. We find that human adaptive behavior in our task is 
generally consistent with fluctuation theorem predictions and discuss the merits and limitations of the 
approach.

The study of learning systems with concepts borrowed from statistical mechanics and thermodynamics has a 
long history reaching back to Maxwell’s demon and the ensuing debate on the relation between physics and 
 information34. Over the last 20 years, the informational view of thermodynamics has experienced great devel-
opments, which has allowed to broaden its scope form equilibrium to non-equilibrium  phenomena10, 22. Of 
particular importance are the so-called fluctuation  theorems7, 20, 42, which relate equilibrium quantities to non-
equilibrium trajectories allowing, thus, to approximate equilibrium quantities via experimental realizations of 
non-equilibrium  processes32, 53. Among the fluctuation theorems, two results stand out, Jarzynski’s  equality4, 19, 

21 and Crooks’ fluctuation  theorem6, 8, as they aim to bridge the apparent chasm between reversible microscopic 
laws and irreversible macroscopic  phenomena29.

The advances in non-equilibrium thermodynamics have recently also led to new theoretical insights into 
simple learning  systems12, 13, 16, 31, 35, 46. Abstractly, thermodynamic quantities like energy, entropy or free energy 
can be thought to define order relations between  states14, 25, which makes them applicable to a wide range of 
problems. In the economic sciences, for example, such order relations are typically used to define a decision-
maker’s preferences over  states30. Accordingly, a decision-maker or a learning system can be thought to maximize 
a utility function, analogous to a physical system that aims to minimize an energy function. Moreover, in the 
presence of uncertainty in stochastic choice, such decision-makers can be thought to operate under entropy 
constraints reflecting the decision-maker’s  precision31, 34, resulting in soft-maximizing the corresponding utility 
function instead of perfectly maximizing it. This is formally equivalent to following a Boltzmann distribution with 
energy given by the utility. Therefore, in this picture, the physical concept of work corresponds to utility changes 
caused by the environment, whereas the physical concept of heat corresponds to utility gains due to internal 
 adaptation46. Like a thermodynamic system is driven by work, such learning systems are driven by changes in 
the utility landscape (e.g. changes in an error signal). By exposing learning systems to varying environmental 
conditions, it has been hypothesized that adaptive behavior can be studied in terms of fluctuation  theorems12, 16, 
which are not necessarily tied to physical processes but are broadly applicable to stochastic processes satisfying 
certain  constraints18.

Fluctuation theorems are usually deployed in statistical mechanics; particularly, the study of nonequilibrium 
steady states in thermodynamics. In this setting, one normally assumes a probabilistic description of an ensem-
ble of many particles, i.e., the kinds of systems usually considered in statistical thermodynamics. However, as 
described  in41, 42, exactly the same principles and fluctuation theorems also apply to the path of a single particle, 
leading to stochastic thermodynamics. This suggests that fluctuation theorems may not only be applicable to the 
statistics of ensembles of many learners, but also when describing the trajectory of a single participant during 
a learning process.
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Although fluctuation theorems have been empirically observed in numerous experiments in the physical 
 sciences1, 5, 11, 28, 37, 44, there have been no reported experimental results relating fluctuation theorems to adaptive 
behavior in humans or other living beings. Here, we test Jarzynski’s equality and Crooks’ fluctuation theorem 
experimentally in a human sensorimotor adaptation task. In this context, the fluctuation theorem establishes a 
linear relationship between the externally imposed utility changes driving the learning process (which are directly 
related to non-predicted information and energy  dissipation46) and the log-probability ratio between forward 
and backward adaptation trajectories, when exposing participants to the sequence of environments either in the 
forward or reverse order. Accordingly, such learners can be quantitatively characterized by a hysteresis effect that 
can also be observed in simple physical systems.

Results
In a visuomotor adaptation task, human participants controlled a cursor on a screen towards a single stationary 
target by moving a mechanical manipulandum that was obscured from their vision under an overlaid screen—see 
Fig. 1A. Crucially, in each trial n, the position of the cursor could be rotated with angle θn relative to the actual 
hand position so that participants had to adapt when moving the cursor from the start position to the target. 
To measure participants’ adaptive state, we recorded their movement position at the time of crossing a certain 
distance from the start position, so that their response could be characterized by an angle xn . The deviation 
between participants’ response xn and the required movement incurs a sensorimotor loss En24 in trial n, that can 
be quantified as an exponential quadratic error

Figure 1.  (A) Schematic representation of an experimental trial with deviation angle θ . The dotted line 
represents the participant’s hand movement and the continuous line represents the rotated movement observed 
on the screen. (B) Experimental protocol. The continuous line represents the deviation angles θ imposed during 
one experimental cycle, where trials 1 to 25 constitute the forward process and trials 34 to 58 constitute the 
backward process. The dotted line represents the beginning of the next cycle. (C) Illustration of the equilibrium 
distributions (2) with b, θn = 0 resulting from the exponential quadratic error (1) and, respectively, β = 1, 1.5, 2 . 
The shaded area represents the target, which tolerates, at most, an error of 2◦ . (D) Comparison between the 
equilibrium distributions that we fit using the initial 100 trials (before participants experience any perturbation) 
and participants’ performance in the washout plateaus between cycles (the sequence of trials with θ = 0 that 
separate forward and backward protocol), to check whether participants equilibrate between cycles, as required 
by the fluctuation theorem. Red shows the normalized error histogram for the in-between plateaus exemplarily 
for participant 7, green shows the histogram of the fitted equilibrium distribution for the initial block of 100 
trials of the same participant. The comparison for all other participants can be found in Fig. 7.
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that depends on the actual rotation angle θn set in trial n. The parameter b is a participant-specific parameter 
allowing for bias due to posture, biomechanics, the mechanics of the manipulandum, or other influences—see 
Fig. 1D. The loss (1) is taken to be the energy (or negative utility) of a participant’s stochastic response Xn = xn . 
For a bounded rational decision-maker26, 27, 31, 39 that optimizes this loss under uncertainty, the optimal pointing 
behavior after a suitably long adaptation time is described by a Boltzmann equilibrium distribution peqn  of the 
form

for all xn ∈ An , where the sensorimotor error En(xn) plays the role of an energy, the free energy term 
Fn =

1
β
log

∫

An
exp (−βEn(xn))dxn is caused by the normalization, and An is the support of the equilibrium dis-

tribution peqn  , which will vary for each participant, as we explain in Sect. A.3.3. See Fig. 1 C for a representation 
of (2). Moreover, the softness-parameter β , also known as inverse temperature or precision, controls the trade-off 
between entropy maximization and energy minimization, essentially interpolating between a purely stochastic 
choice ( β = 0 ) and a purely rational choice ( β → ∞ ) minimizing the energy perfectly.

The task consisted of a sequence of target reaching trials, where the rotation angle θn changed from one trial n 
to the next trial n+ 1 according to a given up-down protocol—see Fig. 1B—, so that participants’ responses over 
trials could be represented by a trajectory x = (x0, x1, . . . , xN ) . When the environment is changing over trials, we 
can distinguish cumulative error changes �Eext(x):=

∑N−1
n=0 (En+1(xn)− En(xn)) that are induced externally by 

changes in the environmental parameter θn , from cumulative error changes �Eint(x):=
∑N

n=1(En(xn)− En(xn−1)) 
due to internal adaptation when subjects change their response from xn−1 to xn . Crucially, it is exactly the exter-
nally induced changes in error, �Eext(x) , analogous to the physical concept of work, that drive the adaptation 
process: if �Eext(x) is large, the system is more surprised and has to adapt more. In the following, we thus refer 
to �Eext(x) as driving error or driving signal. When applying Crooks’ fluctuation theorem for general adaptive 
 systems18 to the above setting, we obtain the linear relation

where xR = (xN , . . . , x1) is the reverse trajectory, �F denotes the free energy difference FN − F0 and the distri-
butions ρF(·) and ρB(·) denote the probability of observing a certain trajectory when the learner faces a series of 
environments in some specific order or the order is reversed, respectively. This form of Crooks’ theorem allows 
for an intuitive interpretation, in that any difference in probability of a trajectory and its reverse signifying a 
hysteresis can be directly related to an excess loss that is irretrievably generated because of imperfect adaptation. 
Unfortunately, Equation (3) is hard to determine from data, as it would require to estimate probability distribu-
tions over paths. However, there is an equivalent form of Crooks’ theorem that groups all trajectories according 
to their associated value of �Eext(x) with corresponding distributions ρF and ρB over these values, such that

The distribution ρF(·) can be interpreted as the probability that the learner experiences a certain overall surprise 
when being exposed sequentially to a series of environments and ρB(·) is the analogous concept when the order 
in which the environments are presented is reversed. In equation (4), these densities are evaluated at the actual 
driving errors �Eext(x) and −�Eext(x) , respectively, for a particular adaptive trajectory x.

A direct consequence of (4) is Jarzynski’s  equality6, which states that

where � · �:=E[ · ] denotes the expectation operator, considering X = (Xn)
N
n=0 a Markov chain with transi-

tion densities �n that have peqn  as stationary distributions, that is, for each n, peqn  is the stationary distribution 
for Xn . In our experiment, X represents participants’ responses that are repeated over multiple repetitions of 
the forward-backward protocol. In the following, we will test the relationships (4) and (5) experimentally with 
�F = 0 as our human learners start and end in the same environmental state (i.e. FN = F0 ). Note that, in our 
particular setting where there is no overall change in the free energy (�F = 0) , Equation (5) suggests that the 
expected value 

〈

e−β�Eext (X)
〉

 equals e−β0
= 1 irrespective of the value taken by β . This provides a quantitative 

prediction that we will evaluate empirically below.
In our experiment the task is divided into 20 cycles of 66 trials each, following the protocol (9) illustrated 

in Fig. 1B. We refer to trials 1 to 25 of each cycle as a realization of the forward process and trials 34 to 58 as a 
realization of the backward process. Notice the backward process consists of the same angles as the forward pro-
cess, that is, the same utility functions, but in reversed order. Thus, we record for each participant 20 values for 
�Eext(x) in both the forward and backward processes that we use to estimate participants’ probability densities 
of the forward and backward processes, ρF and ρB , respectively, using kernel density estimation. As the amount 
of data is limited to test the linear relation in (4), we will use simulation results in the following to compare 
against participants’ behavior.

When simulating an artificial decision-maker based on a stochastic optimization scheme with Markovian 
dynamics, for example a Metropolis-Hasting algorithm with target distribution peqn ∝ exp(−βEn) , it is clear that 
we can recover the linear relationship (4), provided that sufficient samples are  collected18—see, for example, a 

(1)En(x) = 1− e−(x−(θn+b))2 ,

(2)p
eq
n (xn) = exp

(

− β(En(xn)− Fn)
)

,

(3)�Eext(x)−�F =
1

β
log

(

ρF(x)

ρB(xR)

)

,

(4)�Eext(x)−�F =
1

β
log

(

ρF(�Eext(x))

ρB(−�Eext(x))

)

.

(5)
〈

e−β�Eext (X)
〉

= e−β�F ,
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simulation with 1000 cycles in Fig. 2A, where we can see a good adjustment between the theoretical prediction 
(in black) and the linear regression of the observed data (in red). As a result, (5) also holds in this scenario. The 
more critical question is what happens when only few samples are available. To this end, we use the stochastic 
optimization algorithm to simulate the protocol of our experiment, that is, 20 cycles, and indicate confidence 
intervals using 1000 bootstraps. It can be seen in Fig. 2B that the theoretical prediction is consistent with the 99% 
confidence interval in the region where |�Eext| ≤ 4 (which is the region where our experimental data lies). Using 
the same bootstrapped data, we obtain several estimates of �e−�Eext (X)� (the mean of e−�Eext (X) for the observed 
values of �Eext(X) at each bootstrap) which we use to calculate a confidence interval for it. This results in the 
99% confidence interval for �e−�Eext (X)� being (0.48,  1.64), which is consistent with the theoretical prediction 
�e−�Eext (X)� = 1 for �F = 0 according to Equation (5). Accordingly, we will expect a similar behavior for our 
experimental data. Note we take, for simplicity, b = 0 , β = 1 and, for all n, An = [−90, 90] in these simulations 
(see Methods).

Participants’ average adaptive responses can be seen in Fig. 3 compared to the experimentally imposed true 
parameter values (the trial-by-trial responses can be seen in Fig. 6). The green and red lines distinguish the 
forward and backward trajectories, respectively, so that, from the contrast between the two curves, hysteresis 
becomes apparent, as common in simple physical  systems22 and as reported previously in similar experiments for 
sensorimotor  adaptation50. Participants that achieve at least 50% adaptation are shaded by a green background 
color and are our participants of interest. The three participants that fail to achieve this minimum adaptation 
level are marked by a red shade. Instead of excluding these participants entirely from the analysis, we keep them 
in to show the contrast to the well-adapted participants and to highlight that the results reported for the well-
adapted participants do not hold trivially for any participant producing inconsistent behavior.

Figure 4 shows participants’ data compared to the theoretical prediction from (4) and the 99 % confidence 
interval after 1000 bootstraps as in the case of the simulations in Fig. 2B. There, we see that our data follow the 
trend of the theoretical prediction and lie within or close to the confidence interval bounds of the prediction in 
broad regions for several participants. This is not a trivial result, as can be easily seen, when randomizing the 
temporal order of the trajectory points or when replacing the utility function with another one that does not fit 
the setup. Figure 5A,B show this, for example, for an inverted Mexican hat ((10) with σ = 4 ) that assigns low 
utility to the target region, and for resamples of the trajectory points in a random order, respectively. Both results 
are clearly incompatible with the theoretical prediction.

When conducting an additional robustness analysis in Fig. 8, we found that, under the proposed utility 
function, participants’ behavior is compatible with Crooks’ fluctuation theorem for a broad neighbourhood of 
parameter settings, but breaks down when choosing implausible parameters. Regarding Jarzynski’s equality (5), 
the confidence intervals for the majority of participants are consistent with the theoretical prediction when using 
the bootstrapped values to calculate �e−β�Eext (X)� (cf. Table 1). In contrast, when following the same procedure 
for both the inverted Mexican hat and the randomized procedure, we obtain consistency for a considerably 
smaller number of participants. In particular, for the inverted Mexican hat, we obtain consistency for only two 
participants. Moreover, these participants are S8 and S9 , which belong to the group that did not reach at least 50% 
adaptation (indicated by the red background area in the figures). For the randomized procedure, the expected 
number of participants that show consistency is also close to two, although the specific participants which are 
consistent vary with the realization of the randomized procedure. More specifically, after 1000 runs of the ran-
domized procedure, the mean number of consistent participants we observed was 2.33.

Figure 2.  Simulation of Crooks’ fluctuation theorem. (A) Simulation with 1000 cycles. In black, the theoretical 
prediction; in red, the linear regression for the simulated data and, in green, the simulated points. Since the 
simulated data set adjusts pretty well to Crooks’ fluctuation theorem (4), Jarzynski’s equality (5) is fulfilled. (B) 
Simulation with 20 cycles and bootstrapping. The black line is the theoretical prediction (4) while the red line 
and shaded area are, respectively, the mean and the 99 % confidence interval of (4) after 1000 bootstraps of the 
driving error values obtained in a single run (which consists of 20 cycles).



5

Vol.:(0123456789)

Scientific Reports |          (2023) 13:869  | https://doi.org/10.1038/s41598-023-27736-8

www.nature.com/scientificreports/

Discussion
In our experiment we have investigated the hypothesis that human sensorimotor adaptation may be participant 
to the thermodynamic fluctuation theorems first reported by  Crooks7 and  Jarzynski20. In particular, we tested 
whether changes in sensorimotor error induced externally by an experimental protocol are linearly related to 
the log-ratio of the probabilities of behavioral trajectories under a given forward and time-reversed backward 
protocol of a sequence of visuomotor rotations. We found that participants’ data, in all cases where participants 
showed an appropriate adaptive response, was consistent with this prediction or close to its confidence interval 
bounds, as expected from our simulations with finite sample size. Moreover, we found that the exponentiated 
error averaged over the path probabilities was statistically compatible with unity for these participants, in line 
with Jarzynski’s theorem.

Together these results not only extend the experimental evidence of Boltzmann-like relationships between 
the probabilities of behavior and the corresponding order-inducing functions—such as energy, utility, or sen-
sorimotor error—from the equilibrium to the non-equilibrium domain, but also from simple physical systems 
to more complex learning systems when studying adaptation in changing environments, deepening, thus, the 
parallelism between thermodynamics in physics and decision-making  systems31.

When testing for the validity of thermodynamic relations, one of the most critical issues is the choice of the 
energy function, that is, in our case, the error cost function. In physical systems, the energy function is usually 
hypothesized following from simple models involving point masses, springs, rigid bodies, etc., and generally 
requires knowledge of the degrees of freedom of the system under consideration. Here we have used an expo-
nential quadratic error as a utility function, as it has been suggested previously that human pointing behavior 
can be best captured by loss functions that approximately follow a negative parabola for small errors and then 

Figure 3.  Hysteresis effect. The filled triangles are the mean of the observed angles for every deviation in both 
the forward process, in green, and the backward process, in red. The black line is the forward protocol. Note 
that we have mirrored the triangles for the backward process to make them coincide with those in the forward 
process that are exposed to the same true angle. Participants that achieve at least 50% adaptation are shaded by 
a green background color. Hysteresis can be observed between trials 1 and 5, 9 and 17 and 21 and 25. Notice, as 
expected, the forward means are below the backward in the first region, above in the second and below again in 
the third.

Table 1.  Experimental results for Jarzynski’s equality. We include the confidence intervals for the left hand side 
of (5), which we obtain after bootstrapping the observed values of �Eext(x) for the forward process 1000 times 
and estimating �e−β�Eext (X)� by its mean for each set of bootstrapped data. In our experiment we have �F = 0 
in the right hand side of (5), resulting in a theoretical prediction of �e−β�Eext (X)� = 1.0 . Note, that for most 
subjects the value of 1.0 lies inside the confidence interval, which does not hold when assuming unsuitable loss 
functions, as discussed at the end of the Results. Participants that achieve at least 50% adaptation (c.f. Fig. 3) 
are shaded by a green background color .

Participant Confidence interval Participant Confidence interval

1 (0.03, 48.59) 6 (0.04, 3.75)

2 (0.03, 137.58) 7 (0.01, 0.50)

3 (0.01, 3.63) 8 (1.98, 518130.21)

4 (0.49, 63.48) 9 (0.76, 77.24)

5 (0.46, 1.37) 10 (0.26, 48758.33)
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level off for large  errors24. In the absence of very large errors, many studies in the literature on sensorimotor 
learning have only used the quadratic loss  term48, 52. Quadratic errors have also been advocated in the context 
of the central limit theorem and in terms of prediction errors in the context of predictive  coding36, 45–47. Thus, 
our assumptions regarding the loss function are compatible with the literature at large. Crucially, the reported 
results fail when assuming non-sensical cost functions, like the Mexican hat.

Experimental tests of both Jarzynski’s equality (5) and Crooks fluctuation theorem (4) have been previously 
reported in classical  physics5, 11, 28, 37, 49 and also, in the case of Jarzynski’s equality, in quantum  physics1, 44. Impor-
tantly, these results have been successfully tested in several contexts: unfolding and refolding processes involving 
 RNA5, 28, electronic transitions between electrodes manipulating a charge  parameter37, rotation of a macroscopic 
object inside a fluid surrounded by magnets where the current of a wire attached to the macroscopic object is 
 manipulated11, and a trapped  ion1, 44. Despite differences in physical realization, protocols, and energy functions 
(and thus work functions), all the above experiments follow the same basic design behind the approach presented 
here. This supports the claim that fluctuation theorems do not necessarily rely on involved physical assumptions 
but are simple mathematical properties of certain stochastic  processes18, although originally they were derived 
in the context of non-equilibrium  thermodynamics6, 19.

Mathematically, Crooks theorem (4) holds for any Markov process (i), whose initial distribution is in equilib-
rium (ii), and whose transition probabilities satisfy detailed balance with respect to the corresponding equilib-
rium distributions (iii)18. Our experimental test of Equation (4) can be seen, thus, as a test for the hypothesis that 
human sensorimotor adaptation processes satisfy conditions (i), (ii), and (iii). Condition (i) requires adaptation 
to be Markovian, which is in line with most error-driven models of sensorimotor  adaptation43 that assume some 
internal state update of the form xt+1 = f (xt , e) with adaptive state x and error e. While such models have proven 
fruitful for simple adaptation tasks like ours, they also have clear limitations, for example when it comes to meta-
learning processes that have been reported in more complex learning  scenarios2, 17. Condition (ii) is supported 
by our data in the second and last rows of Fig. 7, where it can be seen that participants’ behavior at the beginning 
of each cycle is at least approximately consistent with the equilibrium behavior recorded prior to the start of 
the experiment. Condition (iii) requires that the adaptive process converges to the equilibrium distribution (2) 
dictated by the environment and that the behaviour remains statistically unchanged when staying in that envi-
ronment. Moreover, it requires that the equilibrium behavior at each energy level is time-reversible, that means, 
once adaptation has ceased the trial-by-trial behavior would have the same statistics when played forward or 
backward in a video recording. Note, however, that does not imply time-reversibility over the entire adaptation 
trajectory, but is only required locally for each transition step. In our sensorimotor setting, this would mean 
that after a suitably long adaptation time with perfect adaptation there would ultimately be no hysteresis, and 
accordingly it would be impossible to tell where the learner has come from. If we regard, for example, Metropolis-
Hastings as a plausible model of adaptation, as some kind of stochastic optimization scheme, detailed balance 
and time reversibility would be  fulfilled16, 38. What kind of model describes human adaptive behavior best, and 
whether such a model is compatible with detailed balance is ultimately an open question. In our experiment at 

Figure 4.  Experimental results for Crooks’ fluctuation theorem when the sensorimotor loss behaves as an 
exponential quadratic error (1). The black line is the theoretical prediction of Crooks’ fluctuation theorem (4) 
while the curves stand for the mean path after 1000 bootstraps of the observed driving error values. Participants 
that achieve at least 50% adaptation (c.f. Fig. 3) are shaded by a green background color. The shaded areas inside 
the graphs are the 99% confidence intervals which result from bootstrapping. Note we fit the parameters for 
each participant according to Sect. A.3.3.
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least, the condition seems to be fulfilled well enough to stay within the confidence intervals associated with the 
predictions made by Crooks’ theorem.

While Jarzynski’s equality (5) directly follows from Crooks theorem, weaker assumptions are sufficient to 
derive  it18, 19. In particular, condition (iii) regarding detailed balance is not necessary, as it is only required that 
the behavioral distribution does not change anymore once the equilibrium distribution is reached. Thus, Equa-
tion (5) can be used as a test for the weaker hypothesis that human sensorimotor adaptation satisfies conditions 
(i), (ii) and stationarity after convergence. While Jarzynski’s equality only requires samples from the forward 
process, Crooks theorem also tests the relation between the forward and the backward processes. In particular, 
Crooks theorem decouples the information processing with respect to any particular environment from the 
biases introduced by the adaptation history, that is, it assumes the transition probabilities for any given environ-
ment are independent of the history. In other words, the conditional probabilities have no memory and, thus, all 
memory effects are explained in terms of the state of the learning system prior to making some decision. Hence, 
the observed difference in behaviour after having adapted to the same environment, the hysteresis, is solely 
explained in terms of the information processing history before encountering the environment. Such hysteresis 

Figure 5.  Control results for Crooks’ fluctuation theorem in two scenarios: (A) the sensorimotor loss behaves 
like a Mexican hat function and (B) the sensorimotor loss behaves as an exponential quadratic error but we 
sample the observed angles randomly with repetition. The black line is the theoretical prediction of Crooks’ 
fluctuation theorem (4) while the curves stand for the mean path after 1000 bootstraps of the observed 
driving error values. The shaded areas inside the graphs are the 99% confidence intervals which result from 
bootstrapping. Note, for simplicity, we assume β = 1 for all participants when using the Mexican hat to 
demonstrate that the result in (A) does not trivially hold for any cost function. For (B), we fit the parameters for 
each participant according to Sect. A.3.3.
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effects are not only common in simple physical systems like magnets or elastic bands, but have also been reported 
for sensorimotor  tasks23, 40, 50. The hysteresis effects we report in Fig. 3 are in line with a system obeying Crooks 
theorem and can be replicated using Markov Chain Monte Carlo simulations of  adaptation16.

Our study is part of a number of recent studies that have tried to harness equilibrium and non-equilibrium 
thermodynamics to gain new theoretical insights into simple learning  systems12, 13, 31, 35, 46. For example, the infor-
mation that can be acquired by learning in simple forward neural networks has been shown to be bounded by 
thermodynamic costs given by the entropy change in the weights and the heat dissipated into the  environment42. 
More generally, when interpreting a system’s response to a stochastic driving signal in terms of computation, the 
amount of non-predictive information contained in the state about past environmental fluctuations is directly 
related to the amount of thermodynamic  dissipation46. This suggests that thermodynamic fundamentals, like the 
second law, can be carried over to learning systems. Consider, for example, a Bayesian learner where the utility 
is given by the log-likelihood model and where the data are presented either in one chunk for a single update, 
or consecutively in little batches with many little updates. Rather than having one big surprise, in the latter case 
the cumulative surprise is much smaller as prior expectations can be continuously adapted, up to a point where 
the cumulative surprise reaches a lower bound given by the log-likelihood of the data, which corresponds to 
the free energy difference before and after  learning16. Fluctuation theorems have recently also been attributed 
a fundamental role in the context of the Free Energy Principle, with relations to information geometry and 
decision-theoretic concepts like risk, ambiguity, expected information gain and expected  value9, 33. Due to the 
central role of the concept of variational free energy in inference  processes15, this raises the interesting question 
in how far our results may generalise to any belief-updating process, including for example perceptual inference 
and perceptual hysteresis. Finally, it has even been suggested that the dissipation of absorbed work as it is studied 
in a generalized Crooks theorem may underlie a general thermodynamic mechanism for self-organization and 
adaptation in living  matter12, raising the question of whether such a general principle of adaptive dissipation 
could also govern biological learning  processes35.

Figure 6.  Observed angles in the forward and backward processes. The black line represents the protocol while 
the filled triangles correspond to both the forward trajectories, first and third rows in green, and the backward 
trajectories, second and fourth rows in red.
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Figure 7.  Comparison between participants’ behaviour in washout trials (between perturbation cycles) with the 
fitted equilibrium distribution (recorded before participants experienced any perturbation). The first and third 
rows compare the normalized histogram of the angles observed during the initial 100 trials (blue color), with 
the histogram of the fitted equilibrium distribution (2) over the same trials (green color). The second and the 
forth rows compare the same fitted equilibrium distribution (green color) with the normalized histogram of the 
angles observed in the 0◦ deviation plateaus (washout trials) which separate forward and backward protocol (red 
color). Note the plateau in each cycle consists of 10 points, from which we only include the last 8 to avoid large 
aftereffects. The application of Crooks’ theorem requires that subjects fully equilibrate between protocols, that 
is, in our case their behavior in washout trials should return to the fitted equilibrium behavior at the start of the 
experiment. Compare the discussion on condition (ii) on page 11.
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Figure 8.  Graphical representation of the accuracy of Crooks’ fluctuation theorem for several pairs of 
parameters (b,β) , which we measure through db,β as explained in Sect. A.3.5. The color intensity grows 
monotonically with the distance db,β and is divided into six regions, namely, db,β ≤ 1 , 1 < db,β ≤ 3 , 
3 < db,β ≤ 6 , 6 < db,β ≤ 11 , 11 < db,β ≤ 23 and 23 < db,β . The actual values of db,β can be found in Table 2.

Table 2.  Mean distance between the theoretical prediction in (4) and the mean curve we obtain from 
bootstrapping the observed angles (see Sect. A.3.3) for several pairs of parameters (b,β) . In particular, we 
consider the combinations having b = −10,−3,−1, 0, 1, 3, 10 and β = 0.01, 0.1, 1, 3, 4, 10, 100.

b\β 0.01 0.1 1 3 4 10 100
−10 2.54 2.73 4.51 8.15 10.15 22.53 202.52
−3 2.19 1.99 0.33 3.44 5.42 17.79 197.80
−1 2.42 2.26 0.48 3.08 4.81 17.57 197.55

0 2.35 2.18 0.53 3.31 5.02 17.63 197.61

1 2.08 1.91 0.47 3.61 5.58 17.89 197.90

3 1.66 1.48 0.51 4.22 6.22 18.31 198.33

10 1.62 1.79 3.60 8.98 10.98 21.60 201.60

Table 3.  Mean distance between the theoretical prediction in (4) and the mean curve we obtain from 
bootstrapping the observed angles (see Sect. A.3.3) for several sensorimotor errors that are obtained as convex 
combinations of the exponential quadratic error (1) and the Mexican hat (10). In particular, we consider 
sensorimotor errors of the form �f + (1− �)g , where � = 0, 0.25, 0.5, 0.75, 1 , f is the exponential quadratic 
error with b = 0 and β = 4 (which are close to the values fitted for the participants) and g is the Mexican 
hat with σ = 4 . As expected, the mean distance diminishes as the weight of the exponential quadratic error 
increases.

� Mean distance � Mean distance

0 11.68 0.75 6.04

0.25 10.78 1 5.02

0.5 8.75
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Figure 9.  Histogram of the forward driving signal values using different values of b. In particular, we present the 
histograms for b = 1,−1, 10,−10 . We include the first two since they are close to the values of b we fit from the 
initial 100 trials (where no deviation is applied) and the last two to illustrate the grounds on which we discard 
certain parameter pairs. As expected from the observed hysteresis effect (cf. Fig. 3), the histograms in (A) and 
(B), which correspond to b = 1 and b = −1 , respectively, are biased towards positive values of the driving signal. 
When assuming implausible parameters, like the ones in (C) and (D), which correspond to b = 10 and b = −10 , 
respectively, the bias shifts towards negative values (cf. C,D) and, even, shows a significant concentration of values 
around 0 (cf. C). Note we observe, respectively, the same biases in the backward driving signals.

Figure 10.  Histogram of the forward driving signals using an inverted Mexican hat (10) with σ = 4 as 
sensorimotor loss. Because of unexpected bias towards negative values of the driving signal we observe, it is 
unlikely the data was generated by a a Markov chain following such a sensorimotor loss and we can discard this 
model. Note we observe the same bias in the backward driving signals.
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Data Availability
The datasets generated and analysed during the current study are available from the corresponding author on 
reasonable request.

A Appendix: Methods
A.1 Theoretical methods. The derivation of (4) and (5) in the context of general Markov chains can be 
found  in18. A similar proof of (5) under stronger assumptions was derived  in6 and a different one using the 
same assumptions was given  in19. Regarding (4), a similar proof can be found  in6. Note, however, that the usual 
definition of work in thermodynamics is slightly different for the forward and backward process, based on the 
physical definition of time reversal and the associated symmetry for the work values. In our case, we define the 
driving signal that is analogous to the work concept in the same way, for both forward and backward process. In 
this case, for Equation (4) to hold, we need to assume that E1 = E0 both in the forward and backward  process18. 
Fortunately, this is true for our protocol, since we begin both forward and backward protocol with some washout 
trials without perturbation. It should also be pointed out that, in order for the elements involved in Jarzynski’s 
and Crooks’ derivations to be well-defined, the equilibrium probability density associated to each step in the 
Markov chain ought to be non-zero at both the starting and ending point of that  step18. This will play a relevant 
role in the choice of the support An for the equilibrium distributions peqn  in Sect. A.3.3.

A.2 Simulation methods. In this section, we explain in detail how we simulated (4) and (5).

A.2.1 Metropolis–Hastings algorithm. We  use3 as reference for this section. However, for simplicity, we skip 
over several technical details and may oversimplify some notions.

The Metropolis-Hastings algorithm is a procedure which allows to obtain samples x from a distribution p that 
is proportional to some function f, that is, p(x) = 1

Z f (x) . There are three concepts relevant to this algorithm: U, 
q and α . They are defined as follows

• U(A) stands for the uniform distribution over some set A ⊆ R.
• q(·, ·) is called the candidate generating density. The role of q in the algorithm is to generate a new point y 

given a previous point x, with y being sampled from the distribution q(x, ·) . In our case we define the density 
function in y with 

∫ 90
−90 q(x, y)dy = 1 , as we assume that movements will be towards the target ( 0◦ direction) 

under a maximally induced error of 20◦ . Accordingly, we can expect that practically all responses will be 
covered by choosing a support of ±90◦.

• α(·, ·) is defined as follows: 

 and is included in the algorithm as a filter on the samples proposed by q, so that some of these samples will 
be accepted and some will be rejected, to make the samples appear to be sampled from p.

We can now introduce the Metropolis-Hastings algorithm. The algorithm is initialized at an arbitrary value x0 
and then repeats the following steps for i = 1, 2, . . . ,M : 

 (i) Generate y from q(xi−1, ·) and u from U(0, 1).
 (ii) If u ≤ α(xi−1, y) , then xi = y.
 (iii) Otherwise, xi = xi−1.

Finally, the algorithm returns the values (x1, . . . , xM).
Note that the density of transitions from x to y is therefore given by

which satisfies detailed balance with respect to p ∝ f 3. Thus, p is the stationary distribution of the resulting 
Markov process, and so the xi can be regarded samples from p after the chain has passed a transient stage after 
which the effect of the initialization is negligible. Notice, in our implementation, described below, we only 
require the burn-in phase for the initial energy in order to make sure that the process starts in the correspond-
ing stationary state. However, since we are interested in the adaptation process during a changing energy signal, 
we only use the first sample ( M = 1 ) for the remaining steps, conditioned on the sample from the previous step.

A.2.2 Implementation. Given a set of equilibrium distributions (p0, . . . , pN ) , we use the Metropolis-Hastings 
algorithm on their proportional functions (f0, . . . , fN ) to generate two paths: the forward path where we apply 
the algorithm once at step i ( M = 1 in Sect. A.2.1, as explained above), with p = pi , and the backward path 
where we do the same but with the distributions in the reverse order. In particular, we consider

for n = 0, . . . , 24 for the forward process, where, for n = 1, . . . , 24 , we take

α(x, y) = min
{ f (y)q(y, x)

f (x)q(x, y)
, 1
}

if f (x)q(x, y) > 0,

= 1 otherwise

pM(x, y) = q(x, y)α(x, y) if x �= y,

(6)fn(x) = e−En(x)
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with θn given by (9), and for n = 0 we consider

We will refer to the application of the algorithm following the sequence in (6) with M = 1 for each n = 1, . . . , 25 
as a cycle. Note E0 in (8) differs from En in (7) for n = 1, . . . , 24 . While we would like to take E0 as in (7) with 
θ0 = 0 , since one of our hypothesis is the simulations sample the first point in each cycle from

the values of p0 for x  ∈ [−2, 2] are quite indistinguishable once we fix a certain precision. As a result, the algo-
rithm does not converge to p0 in the long run. To avoid this difficulty, we simply modify the function outside 
[−2, 2] such that points there become distinguishable. This results in the algorithm converging to a distribution 
close to p0 . Note this modification only applies to the generation of the initial samples, hence, we use (7) to 
calculate �Eext(x).

The candidate generating density we use for the nth step with n = 1, . . . , 24 is a normal distribution with mean 
equal to the (n− 1) th sample and standard deviation equal to the mean of the distances between subsequent 
points in the observed data, which turns out to be around 5. Using the values generated by the algorithm during 
a cycle, we calculate �Eext(x) for the forward process via the utilities in (7), and, after generating several of them, 
we apply kernel density estimation (see Sect. A.3.4) to estimate ρF in (4). We proceed analogously to estimate ρB 
and, finally, use the obtained values of �Eext(x) for the forward process together with the estimates of ρF and ρB 
to test (4). This test is done differently for the simulation with the large number of sample and that with a small 
number of them. For the larger one, we simply use the least squares method as the estimate of (4) (cf. Fig. 2A). 
For the smaller one, however, we produce 1000 bootstraps from the produced values of �Eext(x) and find a 
confidence interval for (4) from the curves we obtain from the pair ( ρF , ρB ) for each bootstrap (cf. Fig. 2 B).

A.3 Experimental methods. In this section, we explain the specifics of how we tested experimentally both 
(4) and (5).

A.3.1 Participants. Ten participants P1, . . . ,P10 , five females and five males, participated in this study. Three 
of the authors were among the participants ( P1 , P2 and P3 ). All other participants provided written informed 
consent for participation and were remunerated with 10 Euros per hour. The participants were undergraduate 
and graduate students. The procedures were approved by the Ethics committee of Ulm University. All methods 
were performed in accordance with the relevant guidelines and regulations.

A.3.2 Setup. The experiment was run on a vBOT. Each participant performed the task using the handle of the 
right arm of the vBOT, which was manipulated with the dominant hand. The participants had no direct view of 
the handle but of a screen where its position, altered according to a protocol we describe in the following, was 
represented by a cursor.

A.3.3 Experimental design. Participants were asked to reach the center of a yellow rounded target on the screen 
with the center of their cursor. To begin each trial, the participants were asked to place the cursor inside a 
rounded initial position whose center was 15 cm away from the target’s center along the same vertical. Once the 
cursor crossed the horizontal containing the center of the target, the target became green if participants suc-
cessfully situated the center of the cursor inside the target and red otherwise. Once the target changed its color, 
participants were asked to return the cursor to the initial position to begin the following trial. While both the 
target and the initial position were at the same place each trial, the cursor did not represent the movement of the 
handle veridically each trial. In particular, after 100 trials where the cursor position and the handle coincided, 
there were 1420 trials divided in 20 cycles of 66 trials where the cursor position was determined by rotating the 
vector going from the center of the initial position to the handle’s position. The rotation angle θn for each n in 
any cycle n = 0, . . . , 65 was

where all angles are in degrees and

For each n = 0, . . . , 65 , we extract θ ′n , the angle between the vertical segment joining the center of the initial 
position and the center of the target and the segment joining the center of the initial position and the handle 

(7)En(x) = −e−(x−θn)
2

(8)E0(x) =







−(x + 2) if x < −2,

−e−x2 if − 2 ≤ x ≤ 2,
x − 2 if 2 < x.

p0(x) ∝ ee
−x2

,

(9)











θn = α(n) if n = 0, . . . , 24
θn = 0 if n = 25, . . . , 32
θn = α(57− n) if n = 33, . . . , 57
θn = 0 if n = 58, . . . , 65

α =(0, 5, 10, 15, 20, 20, 20, 20, 20, 15, 10, 5, 0,−5,−10,

− 15,−20,−20,−20,−20,−20,−15,−10,−5, 0).



14

Vol:.(1234567890)

Scientific Reports |          (2023) 13:869  | https://doi.org/10.1038/s41598-023-27736-8

www.nature.com/scientificreports/

in the first recorded point which is more than 12 cm apart from the center of the initial position. One can find 
the recorded angles (x0, . . . , x65) for both the forward and backward processes in Fig. 6. For participant Pj , with 
1 ≤ j ≤ 10 , we take pn,j = p

eq
n  as the equilibrium distribution for the n-th trial, where bj represents the bias 

introduced by the machine for participant Pj . We determine the bias as the mean of the initial 100 trials (where 
the cursor veridically represents the handle). The value cj represents the maximum deviation for participant Pj 
among the distances |xn − (θn + bj)| and |xn−1 − (θn + bj)| , which we use to fix the support of the equilibrium 
distribution for Pj as An = [θn + bj − cj , θn + bj + cj] . The parameter βj represents the spread around the bias, 
which we pick once the bias and the support of the equilibrium distributions are fixed by requiring these dis-
tributions to maximize the likelihood of the observed values for the first 100 trials. We observe the best spread 
parameters are between βj = 0.25 and βj = 5 for all participants. In order to choose the most suitable one for 
each participant, we consider the values between 0.25 and 5 that result from sequentially adding 0.25 to the lowest 
value and pick as βj the one that maximizes the likelihood on the observed angles in the 100 initial trials— see 
Fig. 7 for a comparison between the observed angles and the equilibrium distribution. We discuss, in Sect. A.3.5, 
how the choice of the parameters bj and βj affect the results. Note the choice of cj does not directly affect how we 
measure the accuracy of the predictions, but is key in the maximum likelihood estimation of βj.

Using the angles recorded during a cycle, we calculate �Eext(x) via pn,j for both the forward and backward 
processes, and, using the 20 values per participant, we estimate ρF and ρB in (4) through kernel density estima-
tion (see Sect. A.3.4). Finally, we bootstrap the obtained values of �Eext(x) for the forward and backward process 
to obtain several estimates of ρF and ρB . Each of these pairs is used to produce a curve that estimates (4). The 
mean of these curves for each participant is what we compare to (4) in Fig. 4. The same values of ρF are used to 
test (5) (cf. Table 1).

A.3.4 Kernel density estimation. In order to determine the probability distributions ρF and ρB in (4), we use 
kernel density estimation51. Kernel density estimation consists of choosing a function K, the kernel, and a positive 
number h > 0 , the bandwidth, and approximating p by distributions of the form

We consider here K to be a standard normal distribution. Notice we simply estimate p as a sum of standard 
normal distributions around each observed point xi , for i = 1, . . . , n , and decide how much each xi influences 
other points in R via h. We fix h = 0.7 throughout this work.

A.3.5 Robustness analysis. In this section, we measure model robustness using two approaches: (i) using the 
exponential quadractic error (1) and varying the parameters we fitted, i.e. b and β , and (ii) fixing a pair of param-
eters that are close to the optimal ones for each participant and taking convex combinations of the exponential 
quadractic error and the Mexican hat as sensorimotor errors.

As pointed out in Sect. A.3.3, we fix the parameters in (1) and (4), via the initial 100 trials (where no 
perturbation is applied). To assess model robustness, we consider the effect of assuming the same model 
with different parameters. We consider, in particular, all pairs (b,β) with b ∈ {−10,−3,−1, 0, 1, 3, 10} and 
β ∈ {0.01, 0.1, 1, 3, 4, 10, 100} , since they cover a wide scope of the possible behaviour of (4) using the model 
in (1). For the robustness analysis we fit the data of all participants with the same parameter sets. In Fig. 9, we 
show the histogram of the driving signals �Eext(x) for different pairs of parameters (b,β) . Then, we follow the 
bootstrapping procedure from Sect. A.3.3 using the different values of b and calculate the mean distance between 
the mean of the curves we obtain from the bootstraps and the theoretical prediction (4) with the different values 
of β . In particular, we consider the mean horizontal distance between the prediction and the mean curve at the 
points between �Eext(x) = −4 and �Eext(x) = 4 (that is, the range of values of �Eext(x) we present in Fig. 4) 
with steps of 0.1. We denote the obtained mean distance as db,β.

To assess how well the parameters fit the data, we have to consider the plausibility of the data being generated 
by our model using the different parameter settings (b,β) . Accordingly, it is not enough to simply look at db,β 
as a goodness-of-fit measure. This is the case, as the underlying assumption in our model is that the data comes 
from a Markov chain where the equilibrium distributions at each step are given by the Boltzmann distribution 
(2) with parameters (b,β) . In this situation, we expect participants to lag behind the utility they are adapting to 
most of the time, and hence, by definition, we expect the driving signal to be biased towards positive values. We 
can discard any parameter settings where this is not the case. Accordingly, we can disregard all pairs that have 
b = 10,−10 —see Fig. 9. The values of db,β for all pairs (b,β) we considered can be found in Table 2 (see Fig. 8 for 
a graphical comparison). As we can see there, the best parameters have β = 1 , −3 ≤ b ≤ 3 , and mean distances 
which are both close to each other and significantly better than the rest. This was expected, since the hypothesis 
that the data observed at the plateaus follows (2) for these parameters is not completely implausible (cf. Fig. 7). 
The values b ∈ {−1, 0, 1} and β ∈ {3, 4} , which are the closest to the fitted parameters, also have a small mean 
distance (although larger than the best cases). In contrast, db,β becomes significantly larger for the parameters 
that are clearly unlikely, that is, those that present a huge concentration of the probability around some point, 
i.e. the ones where the value of β is large. In contrast, whenever the values of β become small, the equilibrium 
distributions become all closer to a uniform and, although the mean distance does worsen when compared to 
the best cases, its values do not increase much.

To assess robustness with an obviously non-fitting utility, we consider an inverted Mexican hat as utility 
function, that is, we substitute (1) by

1

nh

n
∑

i=1

K

(

x − xi

h

)

.
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where we take σ = 4 . In this scenario, the bootstrapped data does not reflect the trend of the theoretical pre-
diction (cf. Fig. 5). Moreover, as illustrated in Fig. 10, the model presents an unexpected bias towards negative 
values of the driving signal. Hence, as discussed above, the likelihood of the data coming from such a Markov 
chain is small and we can disregard this model. Furthermore, when following the same robustness analysis 
we performed on the pairs (b,β) using the convex combinations �f + (1− �)g  as sensorimotor loss, where 
� = 0, 0.25, 0.5, 0.75, 1 , f is the exponential quadratic error with b = 0 and β = 4 (which are close to the values 
fitted for the participants) and g is the Mexican hat with σ = 4 , we obtain that the mean distance decreases as � 
increases, as one can see in Table 3.
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